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Abstract

Stress exposure can produce profound change in physiology and behavior that can impair health 

and well-being. Of note, stress exposure is linked to anxiety disorders and depression in humans. 

The widespread impact of these disorders warrants investigation into treatments to mitigate the 

harmful effects of stress. Pharmacological treatments fail to help many with these disorders, so 

recent work has focused on non-pharmacological alternatives. One of the most promising of these 

alternatives is environmental enrichment (EE). In rodents, EE includes social, physical, and 

cognitive stimulation for the animal, in the form of larger cages, running wheels, and toys. EE 

successfully reduces the maladaptive effects of various stressors, both as treatment and 

prophylaxis. While we know that EE can have beneficial effects under stress conditions, the 

morphological and molecular mechanisms underlying these behavioral effects are still not well 

understood. EE is known to alter neurogenesis, dendrite development, and expression of 

neurotrophic growth factors, effects that vary by type of enrichment, age, and sex. To add to this 

complexity, EE has differential effects in different brain regions. Understanding how EE exerts its 

protective effects on morphological and molecular levels could hold the key to developing more 

targeted pharmacological treatments. In this review, we summarize the literature on the 

morphological and molecular consequences of EE and stress in key emotional regulatory pathways 

in the brain, the hippocampus, prefrontal cortex, and amygdala. The similarities and differences 

amongst these regions provide some insight into stress-EE interaction that may be exploited in 

future efforts toward prevention of, and intervention in, stress-related diseases.
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1. Introduction to the Interaction of Environmental Enrichment (EE) and 

Stress

1.1 EE and Stress: Overview

Environmental enrichment (EE) was first described by Hebb in 1947. Hebb demonstrated 

that allowing rats to move freely in his house, rather than standard cage housing, improved 

their performance on cognitive tasks1. Since then, numerous studies have investigated the 

effects of EE, both behaviorally and mechanistically. While EE protocols can vary greatly 

between labs, EE typically consists of improvements to the physical, cognitive, and/or social 

components of housing2–6. Enriched cage environments usually house multiple rodents 

together in the presence of toys and enclosures. For example, our lab uses 1 m3 wire mesh 

cages to house 10 Sprague-Dawley rats (Figure 1). Rats can interact with each other, climb 

on the wire mesh, and access a variety of toys and shelters that are rotated weekly7,8. 

Animals housed in enriched conditions such as these are often protected from the negative 

physiological or psychological impact of physical and emotional challenges/stressors, as 

compared with standard housed controls2–4. The beneficial effects of EE extend to humans, 

in that humans who engage in socially, cognitively, and physically stimulating activities 

often show improvements in mood and cognition9–11. These improvements are often similar 

to those achieved with medication but without side effects, so EE presents a unique non-

pharmacological opportunity to treat a variety of disorders. Consequently, EE has 

considerable promise as a means of increasing stress resilience.

It is important to note that for the purposes of this review, we define EE as housing in a 

complex environment with opportunities for social interaction. This definition does not 

include paradigms focused purely on exercise, e.g. running wheels alone. EE is not a 

unilateral manipulation, but involves addition of multiple, diverse elements to stimulate the 

animal across different domains. Animals may engage in more physical activity as a result of 

EE housing via play or climbing, but exercise is not the sole or even primary manipulation. 

We are also not considering standard home cage enrichment (social housing, nylon bones, 

crinkle paper, huts, etc.) in our definition of EE. While of clear potential benefit to 

individuals, cage enrichment alone does not afford the spectrum of complexity associated 

with EE, including exercise opportunities, choice of companion animals, choices of 

enclosures, and voluntary investigation of familiar and novel stimuli (toys). It is however 

worth considering that introduction of mandatory enrichment in accordance with regulatory 

guidelines may well have beneficial effects in and of themselves, which may impact the 

magnitude of enhanced activity imparted by EE (as well as potentially occlude any number 

of endpoints previously observed in single-housed, unenriched rats)12–15. The experiments 

cited in this review largely abide by this definition of EE, and any exceptions will be noted.
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It is similarly important to define what we refer to as ‘stress’, since this term can have 

different interpretations. Here, we consider stress to be a ‘real or perceived threat to 

homeostasis or well-being’16. Note we do not give the term a valence: e.g., vigorous 

exercise, enjoyed by many, causes engagement of physiological responses (HPA axis 

activation and autonomic drive) that are indistinguishable from responses to noxious stimuli. 

Here intense exercise is interpreted as a very real threat (requiring mobilization of 

physiological responses to mobilize energy resources), but one that can be managed through 

efficient counter-regulatory adaptations, likely by the brain.

1.2 Conceptual Understanding of EE and Stress Interactions

Multiple hypotheses have been proposed to explain how EE conveys beneficial effects on 

behavior, some based on the contention that EE acts as a mild stressor. While EE is typically 

considered a positive experience, over time it is sufficient to generate physiological changes 

consistent with mild stress, e.g., elevated corticosterone (CORT) secretion, body weight 

reduction, increased adrenal mass, etc. Such observations support the ‘cross-stressor 

adaptation hypothesis’, which proposes that exercise and stress act upon similar mechanisms 

in a way that enables exercise to better prepare an animal to cope with stressors and vice 

versa17,18. Exercise is a component of EE, and may provide activation of physiological 

responses, to which added social and experiential stimuli may synergize. Cross-stressor 

adaptation is consistent with the well-known phenomenon of stress habituation, whereby 

repeated exposure to the same stressor decreases subsequent responses19,20. Thus, it is 

possible that EE may work via a similar mechanism, serving to temper physiological 

processes associated with repeated mild stressor exposure.

This notion that EE acts as a mild stressor is further consistent with the ‘inoculation stress 

hypothesis’, which posits that the variety of morphological and molecular changes initiated 

by EE can improve stress resilience3,21–24. Indeed, engagement of stress pathways by EE is 

suggested by functional connectivity studies in the brains of EE rats, whereby chronic 

connectivity among stress-processing brain regions is increased by EE, while connectivity 

between all regions is decreased25,26. This shift in connectivity was associated with 

improved cognition, suggesting that EE rearranges circuitry in a way that improves 

information processing across the brain, strengthening important connections and weakening 

inefficient ones.

The hypothesis that EE mildly activates stress-related circuitry to improve overall brain 

function also aligns with the notion that stimulus intensity and behavioral effects typically 

obey an inverted U-shaped function, with low or high physiological responses driving 

inferior performance. For example, it is clear that increments in stress hormones (CORT, 

norepinephrine (NE), epinephrine) can improve performance of avoidance memory tasks, 

which are then impaired when hormone levels are driven higher. Thus, stress exposure can 

be adaptive and beneficial when appropriately controlled27–31. It is thought that EE may 

enable sufficient stimulation to improve function over that of animals lacking stimuli 

without pushing the animal into high, maladaptive levels of stress (Figure 2)20,32. In this 

way, EE is adaptive, building stress resilience and ameliorating negative behavioral 

consequences of stress3,20,27.
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Despite that fact that EE causes mild physiological responses, it is also true that it is 

perceived as rewarding. Rats will lever-press for access to a running wheel or social 

counterparts, and they demonstrate conditioned place preference for compartments that 

contain novel, rather than familiar, objects33,34. EE also activates reward circuitry and 

dopamine (DA) production35. These findings suggest that EE is intrinsically rewarding and 

positive manipulation, making it a potentially important intervention to build stress 

resilience36. So while EE activates physiological domains of the stress response, it is 

generally perceived as rewarding, indicating that the context of the stress response matters.

Overall, EE appears to physically and psychologically improve animals’ capacities to cope 

with stress3,11,28–3. These benefits act both prophylactically in preparation for future 

stressors, and as a means of minimizing the impact of previously experienced stressors. This 

concept of improved function in EE conditions also appears to hold true in humans with 

depression and anxiety disorders, as exercise, cognitive training, and social contact all assist 

in amelioration of mood symptoms9–11,37. We will explore the mechanisms thought to play a 

role in this conceptual relationship between EE and stress in later sections.

1.3 Behavioral Effects of EE and Stress

On a behavioral level, EE confers anxiolytic, anti-depressive, and pro-cognitive effects2–5. 

Animals exposed to EE generally habituate to novelty faster, thereby reducing their anxiety-

like behavior and improving their ability to cope with challenges10,38,39. This faster 

habituation is seen in open field (OF) tests, in which EE animals show increased center time 

and less locomotion. These behaviors suggest that the animals are less cautious about the 

novel environment and more exploratory24,40,41. Decreased anxiety-like behavior is 

observed in the elevated plus maze (EPM), where open arm times are increased in animals 

exposed to EE41–44. It seems likely that this increased habituation/decreased anxiety is a 

result of the more constant novelty animals experience in EE, as their environment (toys and 

shelters) changes frequently4,45. Similar beneficial effects are also observed in the domains 

of mood and cognitive processing. Beneficial effects of EE on mood are manifested as 

decreased anhedonia in the sucrose preference test (SPT)46–48, increased active coping in the 

forced swim test (FST)46–50, and increased resilience to social defeat51. EE also improves 

learning and memory in passive avoidance tests52, spatial memory in the radial arm 

maze53,54 and Morris water maze24,39,55–60, and reversal learning in operant touchscreen 

tasks61.

These effects are observed under both baseline and stress conditions. In non-stressed 

animals, simple addition of EE helps improve overall function. When various stressors are 

applied, these benefits are magnified, with EE ameliorating or even reversing detrimental 

effects of stress. For example, EE can rescue anxiety-like behaviors in the OF and EPM and 

depression-like behaviors in the SPT and FST induced by restraint, chronic variable stress, 

and social defeat51,62–64. EE rescues stress-induced increases in freezing during contextual 

and cued fear conditioning and ameliorates avoidance behaviors related to post-traumatic 

stress disorder (PTSD), suggesting beneficial effects on fear reactivity and emotional 

regulation65–69. In the context of stress, EE can work both prophylactically and 
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therapeutically. EE exposure prior to stress can lessen its maladaptive effects, whereas EE 

exposure after stress can improve recovery2,3.

While EE conveys some level of behavioral benefit in most cases, these effects can vary by 

EE paradigm, as well as the age, strain, and sex of the animal. For example, longer EE 

exposures (several weeks) typically have a greater impact on more behaviors than acute 

exposure (hours to days)4. EE applied in adolescence also tends to have stronger effects than 

that initiated in adulthood65. Certain strains of mice may exhibit more aggression in group 

housing than rats or other mouse strains, resulting in attenuation of the benefits of EE70. 

Females and males may respond to certain components of EE differently, resulting in 

variable behaviors between sexes71. While these differences make it difficult to draw parallel 

conclusions across studies, they do not change the fact that EE is primarily beneficial and 

neuroprotective, regardless of specific technical details. These differential behavioral effects 

of EE across conditions have been reviewed elsewhere2,3.

1.4 Physiological Effects of EE and Stress

A variety of physiological responses are affected by EE, including hormones and cytokines. 

CORT release, which is an important factor in stress-related phenotypes, can be altered by 

EE3,19,72. Prior work suggests that EE increases basal CORT and, in some cases, increases 

adrenal mass, the latter finding reflecting long-term activation of the HPA axis73–76. In 

contrast, EE can blunt CORT responses to novel stressors, either by lowering peak responses 

or quickening return to baseline44,73,74,77. This suggests increased basal HPA axis drive in 

EE animals, along with smaller and more quickly resolved stress responses. Such improved 

stress processing would be in line with the resiliency phenotypes described above. It is 

important to note that chronic stress exposure typically causes sensitization rather than 

blunting of CORT responses19,20,78. These data indicate that while chronic HPA axis drive 

may contribute to beneficial actions of EE, it is not sufficient to mimic the impact of chronic 

stress. It is also important to note that while EE can activate the HPA axis, this activation is 

not perceived as stressful since EE is largely a rewarding, rather than aversive, stimulus.

A causal role of HPA axis activation in effects of EE is called into question by the lack of 

generalizability of CORT and ACTH elevations between laboratories. While most groups 

report increased basal and decreased CORT release during stress, contradictory results have 

also been found. Most studies suggest that basal CORT is increased by EE73–76, but others 

have found decreases77 or no change20,79. Similarly, most suggest that CORT responses to 

stress are decreased by EE44,73,74,77, but others report increases7 or no change62,75,80. 

Similar varied results are seen with adrenocorticotropic hormone (ACTH), both basally and 

in response to stress60,81,82. While it is important to note that these studies differ in terms of 

rat strain, EE protocol, and sampling times, CORT and ACTH differences across studies 

suggest that beneficial actions of EE cannot be directly attributed to HPA axis properties 

alone. It should be noted that discrete stress hormone sampling may fail to capture the 

dynamic nature of HPA axis drive. Chronic changes in HPA axis drive can be assessed via 

increases in adrenal weight; however, studies measured this endpoint again found 

contradictory results. Some reported increased adrenal weight in response to EE8,73,83, while 

others found no change7,74,84. Thus, while EE experience likely causes episodic or 
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cumulative increases in CORT secretion, the data do not unequivocally support HPA axis 

drive as a primary cause of the beneficial actions of EE on physiology and behavior.

Stress-buffering by EE extends to sympathoadrenal responses. EE can blunt epinephrine 

release73 and stress-related increases in heart rate85–89, again pointing to an improved 

regulation of stress responses in general.

EE also modulates the immune system in a way that may promote resilience. EE is typically 

anti-inflammatory under basal conditions, although it can also increase the efficiency of the 

immune response4,41,80,86. Many of these immune studies focus specifically on 

exercise10,45,90, but cognitive and social EE have shown similar effects4,91,92. EE reduces 

production of circulating pro-inflammatory factors, such as interleukin 1 beta (IL-1β), tumor 

necrosis factor alpha (TNFα), and interferon gamma (IFNγ), and promotes production of 

circulating anti-inflammatory factors, such as interleukin 10 (IL-10) and interleukin 1 

receptor antagonist (IL-1Ra)4,80,93. While these effects may be secondary to exercise-

induced increases in interleukin 6 (IL-6) release from muscles94; toys and social EE can also 

lower plasma IL-1β and TNFα4,91, making the source of these changes unclear. This shift in 

cytokine production promotes an anti-inflammatory state at baseline, preventing potentially 

deleterious effects of excessive inflammatory responses when they are not required to 

combat a viral or bacterial challenge, while enhancing the body’s ability to deal with these 

challenges. Beyond cytokines, EE stimulates leukocytosis, increasing the proliferation of 

macrophages, neutrophils, monocytes, and natural killer cells41,45,95. Macrophage 

chemotaxis and phagocytosis are also increased by EE45. These changes in cellular 

immunity better prepare the immune system to respond to and resolve challenges. As 

elevations in many of these pro-inflammatory cytokines have been implicated in stress and 

psychiatric disease96,97, this anti-inflammatory profile with improved responsivity is 

expected to promote general health and stress resilience, thereby playing a role in the 

beneficial effects of EE.

2. EE Mechanisms in Stress-Processing Brain Regions

The central nervous system is the primary location for processing EE and stressors, as well 

as for generating the physiological effects and resiliency discussed above. EE promotes 

numerous actions in the brain that likely drive behavioral effects. Understanding these 

actions will be critical for understanding how EE is able to ameliorate maladaptive effects of 

stress. Therefore, this review focuses on the molecular and morphological effects of EE in 

various stress-processing brain regions in adult rodents, as well as how these changes may 

contribute to the interaction between EE and stress. Specifically, we will focus on the 

hippocampus, prefrontal cortex, and amygdala, three regions which are critical to processing 

stressful stimuli and are differentially impacted by EE19. The hippocampus and prefrontal 

cortex typically exert top-down control to terminate or alleviate responses to stressors, 

whereas the amygdala enhances stress responses. We will identify mechanisms consistently 

altered in these regions which present interesting targets for future resilience research, as 

well as unique mechanisms which could hold the key to understanding the complex effects 

of EE. Additionally, we will explore potentially negative effects of EE and important future 

directions for the field.
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2.1 Morphological Effects and Synaptic Plasticity

The morphological effects of EE under baseline and stress conditions are summarized in 

Table 1 and Table 2, respectively.

2.1.1 Cellular Proliferation and Survival—One of the most widely studied effects of 

EE is adult neurogenesis in the hippocampus5,56,98–100. This effect was first recognized by 

Kempermann et al., 1997, using BrdU to identify newborn neurons in the dentate gyrus 

(DG) of mice exposed to EE101. Since then, many groups have also found this EE-induced 

increase in neurogenesis under baseline conditions both in mice and rats5,38,102–106. 

Moreover, EE can block stress-induced decreases in hippocampal neurogenesis, thought to 

contribute to the negative consequences of stress on behavior59,65,97,98,107. While most often 

associated with the exercise component of EE10,108,109, cognitive and social EE can also 

increase neurogenesis66,104,110,111. Indeed, the more complex forms of EE tend to induce 

more lasting effects than exercise alone66,104,110. EE also promotes health and survival of 

existing neurons, as it reduces spontaneous and stress-induced cell death in the 

hippocampus56,102,112,113. This protective effect of EE occurs in mice and rats under both 

baseline and stress conditions43,114,115, possibly as a result of decreased apoptosis113, 

autophagy68, and oxidative stress67,116. Given the role of the hippocampus in inhibiting 

stress responses, improved cell survival conveyed by EE likely contributes to its ability to 

improve stress resilience.

Neurogenesis is a phenomenon largely restricted to the DG of the hippocampus101, and is 

not thought to occur in other stress-regulatory limbic circuits (e.g. prefrontal cortex or 

amygdala). Direct measures of cell survival in EE have not been measured in the prefrontal 

cortex or amygdala under basal conditions or following stress. Similar protection from 

oxidative stress has been described in the prefrontal cortex63,110,116 and hippocampus, 

suggesting that benefits of EE on the hippocampus likely extend to cortical neurons as well. 

We will explore these effects further in later sections.

2.1.2 Dendritic Complexity—In addition to improving cellular health, EE increases the 

plasticity of hippocampal neurons, manifest as increased dendritic complexity (both 

branching and spine density)2,4,117,118. Under baseline conditions, EE increases arborization 

and spinogenesis in both apical and basal dendrites111,119–121. This effect is opposite to that 

seen with stress alone, which decreases the branching and length of apical and basal 

dendrites in the hippocampus106,122. When applied together, EE is able to block these stress-

induced decreases and ultimately increase overall dendritic branching64,123. This increased 

connectivity between neurons likely allows for more rapid communication and ultimately 

more efficient information processing that likely help animals to cope with and recover from 

stressful situations26.

Three studies examined the effects of EE on dendrites in the prefrontal cortex under baseline 

conditions. One found that complex housing increased basal dendrite branching in the 

orbitofrontal cortex (OFC) and decreased basilar branch length in the anterior cingulate 

cortex (Cg3)124. Another found increased spine density without changes in branching in the 

Cg3125. The third found that complex housing increased overall dendritic complexity and 
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spine density in the infralimbic (IL) and prelimbic (PL) cortices126. Overall, the data 

indicates that EE has different effects in individual prefrontal cortex subregions, biased 

toward increased complexity. Increased dendritic complexity in the prefrontal cortex is 

expected to oppose the decreased complexity caused by chronic stress127, although this 

effect has yet to be directly investigated.

Interestingly, EE and stress-induced changes in dendritic complexity in the amygdala, 

specifically the basolateral amygdala (BLA), are in the opposite direction to those seen in 

the hippocampus and prefrontal cortex. The BLA is the focus of many of these studies, as it 

is particularly important to processing psychological stressors19. Chronic stress alone 

increases dendritic complexity of projection neurons in the BLA84,106,122,128. This finding is 

in line with the pro-stress nature of the amygdala, namely that stress increases amygdalar 

activity and drives stress-related behavioral phenotypes19. EE alone does not appear to alter 

these endpoints129. However, when EE and chronic stress are run concurrently in adulthood, 

EE is able to block stress-induced increases in BLA dendritic branching and spine 

density129. This finding also occurs with adult EE after adolescent stress84. However, EE 

failed to reverse increases in BLA dendritic arborization caused by acute stress62, suggesting 

that the protective effects of EE in the amygdala only emerge after chronic stress. The 

differences in these results from those in the hippocampus or prefrontal cortex make the 

amygdala particularly interesting with respect to the interaction of EE and stress.

2.1.3 Synaptic Plasticity and Activity Markers—These changes in neuronal number 

and complexity translate to functional differences in EE and stress. Electrophysiological 

properties of the hippocampus change in response to EE alone, which strengthens long term 

potentiation (LTP) in pyramidal cells of the DG5,10,130 and CA1100,130–133. EE alters both 

the pre- and post-synaptic excitability in these regions to ultimately improve hippocampal 

neuroplasticity, likely contributing to the improved learning and memory of EE-treated 

animals100. EE also blocks stress-induced decreases in LTP and long term depression 

(LTD)134,135. These functional consequences of EE and stress have been further 

demonstrated using molecular markers of synaptic plasticity and neuronal activation. EE 

increases synaptophysin expression throughout the hippocampus64,136–139 and blocks stress-

induced decreases in this plasticity markers64,138. Exercise alone stimulates similar changes 

in post synaptic density protein 95 (PSD95) and synapsin I137,140, suggesting that these 

changes may also exist in EE. Studies examining markers of neuronal activity in the 

hippocampus have yielded less consistent results. Some have found that EE increases the 

Fos response to stress51,60, while others have found decreases in Fos and delta-FosB141,142. 

These differences likely resulted from variations in stress and EE paradigms, or a species 

difference between mice and rats, although none of these factors appear to be the sole cause 

of differential responses. None of these studies conducted further colocalization analysis to 

identify the Fos-associated cell types, so it is difficult to draw conclusions about the 

functional implications of these results. However, studies utilizing cytochrome c oxidase 

(CCO) found that EE decreases the long-term metabolic capacity of the hippocampus, 

suggesting that EE improves the processing efficiency of hippocampal cells25,143,144. This 

heightened activity likely further enhances the ability of this region to adapt to novel stimuli, 

including stress. Altogether, these EE and stress-induced changes to membrane properties, 
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synaptic plasticity markers, and activity support the above morphological observations. EE 

improves synaptic plasticity in the hippocampus, both under baseline and stress conditions, 

putatively guarding against the maladaptive effects of stress.

While fewer studies examined these markers in the prefrontal cortex, this region appears to 

show similar changes in synaptic plasticity as the hippocampus. EE increases synaptophysin 

and synapsin I in the prefrontal cortex136,139,145. Further exploration of electrophysiological 

properties, other plasticity markers, and stress interactions would be interesting for a more 

complete comparison. Again, the Fos results are conflicting in this region, with different 

studies finding that EE can increase51,146,147 or decrease60,142 Fos and delta-FosB responses 

to stress. CCO studies again demonstrate decreased metabolic capacity, and thus improved 

processing efficiency, in the prefrontal cortex25,143,144. These similarities further suggest 

that EE exerts similar effects on the hippocampus and prefrontal cortex.

One study found that exercise increases synaptophysin in the amygdala, suggesting 

increased synaptic plasticity65. However, more studies focusing on EE specifically are 

required to be confident that the amygdala response is the same as the hippocampus and 

prefrontal cortex in this case. In terms of neuronal activation, the amygdala Fos studies were 

relatively more consistent. EE often reduces stress-induced Fos responses in the 

amygdala60,141,142,148,149, suggesting that EE blocks the hyperactivation of the amygdala 

during stress. However, other studies found that EE increased Fos responses to stress147,150, 

so we cannot definitively make this conclusion. Overall, it appears EE dampens stress via 

opposite effects in the hippocampus (increased activity) and amygdala (decreased activity). 

Additionally, CCO studies suggest that EE exerts minimal effects on the metabolic activity 

of the amygdala under baseline conditions, providing another difference from the other 

regions25,143,144. Further studies are warranted to determine if this endpoint changes under 

stress conditions.

2.1.4 Other Cell Types—EE also influences interneurons, glia, and vasculature. Stress 

can often disrupt the function of parvalbumin (PV) interneurons, impairing their inhibitory 

control over excitatory neurons151,152. On the other hand, EE can increase PV 

immunoreactivity in the hippocampus under baseline conditions153 and reverse stress-

induced loss of PV protein levels67. This effect is thought to be mediated by the ability of 

EE to ameliorate oxidative stress67,116, and it likely improves the inhibitory tone of the 

hippocampus. Similar EE protection from stress-induced PV loss has been suggested in the 

prefrontal cortex67 and amygdala40.

EE can increase the number of microglia and astrocytes in the hippocampus under baseline 

conditions154–156, but this has not been explored in the context of stress. This finding is 

further supported by increased levels of the microglia marker ionized calcium binding 

adaptor molecule 1 (IBA1) and the astrocyte marker glial fibrillary acidic protein (GFAP) in 

EE rats99,156. Additionally, EE rescues stress-induced decreases in hippocampal GFAP, 

suggesting that EE’s protective effects extend to astrocytes63. This improved support would 

further enhance the efficiency hippocampal signaling and is expected to contribute to EE-

induced neurogenesis92,157–160. Although some studies have noted increased gliogenesis in 

the neocortex161, direct measures of microglia and astrocytes have not been made in the 
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prefrontal cortex. In the amygdala, EE blocked stress-induced increases of GFAP, suggesting 

that EE reduces stress-induced increases in amygdalar astrocytes63. This amygdala effect is 

again opposite of that seen in the hippocampus.

EE can also increase the vasculature in the hippocampus, via enhanced endothelial cell 

proliferation and angiogenesis10,119,162. This effect would increase delivery of nutrients and 

clearance of waste, adding to the improved efficiency of the hippocampus during EE. 

Increased endothelial cell proliferation was also noted in the prefrontal cortex162. While 

vasculature has not been directly studied during stress or in the amygdala, EE-induced 

alterations in the neurotrophin vascular endothelial growth factor (VEGF) suggest that this 

proposed vascular effect is likely plays a role in both63,66,121. VEGF and other molecular 

mechanisms underlying all these morphological and plasticity effects will be explored in the 

next section.

2.2 Molecular Effects

The molecular effects of EE under baseline and stress conditions are summarized in Table 3 

and Table 4, respectively.

2.2.1 Neurotrophins—Increased neurotrophic activity in the hippocampus of EE 

animals is proposed as a primary molecular mechanisms for stress-protective effects of 

EE2–4,118. Hippocampal brain derived neurotrophic factor (BDNF), in particular, is 

increased by EE under basal conditions99,103,113,140,163–166. EE prevents stress-induced 

decreases in BDNF, which are believed to contribute to the maladaptive behavioral effects of 

stress50,63,64,66,68,167,168. The receptor for BDNF, tropomyosin receptor kinase B (TrkB), is 

also increased by EE and exercise50,169. EE stimulates other neurotrophins in the 

hippocampus as well, including VEGF, nerve growth factor (NGF), neurotrophin-3 (NT-3), 

insulin-like growth factor-1 (IGF-1) and glial cell-derived neurotrophic factor (GDNF), 

under basal and stress conditions50,63,171–173,66,79,113,115,121,163,165,170. Neurotrophins 

generally promote the survival and proliferation of neurons. BDNF and NGF specifically 

increase dendritic complexity163,174–176, while VEGF increases angiogenesis and 

spinogenesis66,121,177,178. Therefore, these molecules are expected to contribute to the 

positive morphological changes induced by EE in stress exposed animals noted above103,179.

EE-induced alterations of BDNF levels in the prefrontal cortex are similar to those seen in 

the hippocampus. EE increases BDNF in the prefrontal cortex under basal conditions163,164, 

and rescues stress-induced decreases in BDNF63,180. Similar protective effects have been 

found with VEGF63 and IGF-1181. However, another study found no change in VEGF69 and 

NGF, NT-3, and GDNF have not been examined in this context. While further studies are 

needed to fully compare the prefrontal cortex to the hippocampus, it appears that these 

regions share similar neurotrophin responses to EE and stress.

Neurotrophins in the amygdala are also impacted by EE and stress, but this region is again 

different from the hippocampus and prefrontal cortex. EE does not impact baseline levels of 

BDNF in the amygdala65,66,129, while stress alone increases BDNF here182,183. When 

animals experience both, EE blocks stress-induced increases in BDNF63,129. This 

directionality is opposite to that of the hippocampus where increased BDNF contributes to 
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stress resilience, suggesting that increased amygdalar BDNF may instead promote, rather 

than ameliorate, stress. Despite this difference in direction, EE still counteracts this effect to 

improve resilience to chronic stress. However, one study specifically examining PTSD-

related stress found that EE enhanced the stress-induced upregulation of BDNF184, 

suggesting that this effect may be sensitive to specific stressors. The other neurotrophins are 

not well-studied in this region. One study found no change in VEGF63, while another noted 

increases in VEGF and NGF in response to EE66. These conflicting results add to the 

complexity of the interaction of EE and stress in the amygdala, and suggest that the 

amygdala is more sensitive to different types of stress than the hippocampus and prefrontal 

cortex.

2.2.2 Hormones—The HPA axis is a critical element of the stress response, and 

glucocorticoid receptors (GR) in the brain are key to regulation of this system. As discussed 

above, CORT, the ligand for GR, is altered by EE and stress, although the directionality of 

this change is inconsistent between studies. In the hippocampus however, EE consistently 

increases GR expression under baseline conditions, while stress decreases GR 

expression63,170,173,185. Together, EE blocks stress-induced loss of GR63,186,187. This 

protective effect extends to GR translocation186, indicating that GR increases not only the 

number of GR receptors, but also their activation. This effect would increase the responsivity 

of the hippocampus to CORT stimulation, which would enhance feedback and ultimately 

dampen HPA responsiveness19,186. This finding supports the notion of a blunted stress 

response in EE animals, which agrees with the majority of CORT studies discussed above 

and further describes the role of the HPA axis in EE-induced stress resilience. Along the 

same lines, toys can decrease FKBP5 expression in the hippocampus66. FKBP5 negatively 

regulates GR, so a decrease in its expression would support this concept of increased GR 

activity in EE. Corticotropin releasing hormone (CRH), another element of the HPA axis, 

can also be altered by EE; although, different studies have found increases188 or 

decreases189 in this hormone and its receptors. The conflicting nature of these studies makes 

it difficult to draw conclusions about CRH in the hippocampus at this point in time. Another 

factor that may be important to EE is neuropeptide Y (NPY), a neuropeptide typically 

associated with PTSD. EE enhances NPY responses to stress and the expression of NPY-Y1 

receptors. These receptors are thought to contribute to stress resilience184,190,191, so NPY 

may be a relatively unrecognized effector of EE.

While these mechanisms have been less studied in the prefrontal cortex, it appears that this 

region does share some characteristics with the hippocampus. EE induced a trend toward 

increased expression of GR in the prefrontal cortex in response to restraint stress, although 

this effect was not statistically significant53. Microdialysis examining free CORT in the 

prefrontal cortex showed that EE decreases the CORT response to restraint within this 

region192. Both of these results support the idea that EE decreases the responsivity of the 

HPA axis to stress: more GR suggests better feedback, which, in this region, would more 

quickly return the CORT response to baseline19,53,192. Lesion studies suggest that EE 

enhances the control of the IL over the HPA axis, further supporting this concept193. Beyond 

GR, EE increased CRH and CRHR2 in the prefrontal cortex; however, aggression between 
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mice may have been confounding in this case189. No studies have examined NPY in this 

region.

The amygdala again responds to EE and stress differently than the hippocampus or 

prefrontal cortex. Stress often increases GR translocation in the amygdala19,183, which 

drives rather than dampens stress responsiveness. EE can block this stress-induced GR 

translocation194, suggesting that EE still opposes stress effects in this region, even though 

the directionality of the effects are switched. While further studies are needed to replicate 

this finding, the continued differential effects between regions is intriguing. EE blocks 

stress-induced increases in CRHR1 in the amygdala191,195, theoretically decreasing the 

excitatory output of the amygdala to the HPA axis and promoting resilience19,183. For NPY, 

EE increased NPY-Y1 expression in the amygdala, which is unexpectedly in agreement with 

the findings in the hippocampus. The exact mechanisms involved in NPY’s role have yet to 

be elucidated but may reveal a rare functional similarity between the hippocampus and 

amygdala.

2.2.3 Neurotransmitters—EE also alters neurotransmission across the brain, under 

both basal and stress conditions. In the hippocampus, EE increases the expression of 

glutamate receptors, specifically α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA)5,83,135,196,197 and N-methyl-D-aspartate (NMDA) receptors197,198. EE decreases 

glutamate transporter expression, which would also increase glutamate neurotransmission 

via decreased astrocytic uptake of glutamate in the synaptic cleft198. These changes are 

consistent with the increases in LTP found in EE. Unfortunately, these glutamate EE studies 

did not examine stress, so, while these EE effects are expected to improve cognition and 

resilience, further studies are needed. Hippocampal serotonin (5-HT) and norepinephrine 

(NE) are also altered in the context of EE and stress. Some found that EE decreased the 

responsiveness of serotonin to stress69,199, while others found that this was increased200. 

Others noted increased expression of serotonin 1A (5-HT1A) receptors and enhanced 

serotonin turnover69,201. While these effects are somewhat contradictory, they seem to 

suggest that EE improves the buffering capacity of the serotonergic system in the 

hippocampus, which could aid in stress coping69. Norepinephrine studies conflict, showing 

increases200 and decreases69 in response to stress, so it is difficult to draw conclusions about 

this system.

Neurotransmitter systems in EE and stress have received more attention in the prefrontal 

cortex. It appears that the glutamatergic system is less involved in the prefrontal effects of 

EE, with more changes being noted in the dopaminergic, cholinergic, and serotonergic 

systems. Glutamate and gamma aminobutyric acid (GABA) levels and receptors are 

unchanged by EE under both baseline and stress conditions202,203. Several changes occur in 

the dopaminergic system when EE is applied in baseline conditions, including reduced 

function and expression of dopamine 1 (D1) receptors and decreased dopamine transporter 

(DAT) surface expression204,205. EE animals also release less dopamine when they are 

stressed192,206. A similar blunted stress response was observed with acetylcholine 

(ACh)192,205, suggesting that EE reduces the responsivity of these two systems in the 

prefrontal cortex. EE effects on serotonin are more uncertain, with most studies showing that 

EE increases its activity and others showing decreases114,200,207. Overall, the notion that EE 
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modulates different neurotransmitter systems in the hippocampus and prefrontal cortex is 

interesting and demonstrates that unique effects exist in every region.

Less information is available regarding the amygdala. One study found that EE increases the 

serotonergic response to stress184, and another found that it lowered norepinephrine under 

basal conditions only69. Clearly, more studies will be needed to understand changes in 

neurotransmission in the amygdala in response to EE and stress.

2.2.4 Immune Markers—Another domain that EE is known to modulate is the immune 

system. As discussed above, EE has many effects on the peripheral immune system, which 

likely have reciprocal effects with the central nervous system4,208. Within the hippocampus, 

EE further modulates various cytokines and chemokines4,93,208. EE typically blunts stress-

induced increases in immune factors such as IL-1β, TNFα, IL-6, IL-1Ra, C-C motif 

chemokine ligand 2 (CCL2), C-C motif chemokine ligand 3 (CCL3), and C-X-C motif 

chemokine 12 (CXCL12) here4,93,99,208,209. One study found increases in these factors, but 

aggression between mice could have been confounding189. It is important to note that these 

findings are associated with either exercise and stress93,208 or EE and immune 

challenge99,209. Together, EE would be expected to reduce stress-induced increases in 

inflammation-associated markers, which would likely be neuroprotective210,211. However, 

more targeted studies are needed to clarify the role of the central immune system in EE and 

stress interactions specifically. For example, the above morphological results pointed to 

increased numbers microglia and astrocytes in the hippocampus of EE animals154–156, yet 

here these glia appear to release fewer cytokines in response to stress. While a little 

counterintuitive, this mismatch does align with the decreased basal activity but increased 

responsiveness of the peripheral immune system noted above, suggesting that EE exerts 

similar immune effects throughout the body. Along the lines of improved efficiency, exercise 

can increase the expression of CX3C chemokine receptor 1 (CX3CR1), which would 

theoretically improve communication between neurons and microglia211,212. There is likely 

a complex interplay between a shift in activity and expression of various cytokines that 

influence the overall activity of the hippocampus in EE and stress that we cannot yet dissect.

Immune-related factors have not been well-studied in the prefrontal cortex or amygdala. In 

the prefrontal cortex, EE can block stress-induced increases of IL-1β and reduce basal 

TNFα180, suggesting that the prefrontal cortex is again behaving like the hippocampus. 

However, another study found no such changes in the prefrontal cortex189. These factors 

have yet to be examined in the amygdala. Given the unclear results in the hippocampus and 

the growing literature that the immune system plays a key role in stress responses211,213,214, 

further studies of EE, stress, and the central immune system would be valuable.

2.2.5 Intracellular Signaling—Going one level deeper, EE can modulate the activity of 

various intracellular signaling pathways and molecules in the hippocampus. EE increases the 

sensitivity of the protein kinase A (PKA)-cAMP pathway, increasing its ability to respond to 

and convey signals, ultimately enhancing hippocampal plasticity and LTP131. EE also 

stimulates extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase 

(MAPK) signaling, specifically the Ras-GRF2-ERK-MAPK pathway in newborn neurons, 

which aids in their survival215. Stress-induced increases in protein kinase M (PKM) activity 
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are rescued by EE, which aids in synaptic remodeling and is believed to result from the 

increased expression of GR activity discussed earlier186. EE-induced increases in AMPA 

receptors also stimulate the expression and activity of serum and glucocorticoid-regulated 

kinase 1 (SGK), a downstream kinase which mediates learning and memory197. Downstream 

of BDNF, the signaling molecule cAMP response element-binding protein (CREB) mediates 

its pro-survival effects. CREB expression and phosphorylation are increased by EE, 

suggesting that BDNF stimulated by EE affects downstream targets58,113,165,174,176. The 

expected pathways involved in VEGF have been even more thoroughly mapped. Here, EE is 

thought to downregulate miR-107, which upregulates hypoxia-inducible factor 1-alpha 

(HIF-1α), which then increases VEGF. VEGF then acts through its receptor Flk-1 to 

stimulate spinogenesis and convey resilience121. EE rescues stress-induced decreases in the 

histone deacetylase sirtuin 1 (SIRT1) and increases in miR-134, changes believed to improve 

synaptic plasticity and cognition64. While these mechanistic studies are currently limited in 

number, they hold the key to understanding the improved efficiency of the hippocampus in 

EE and revealing key molecular pathways that may be targeted pharmacologically.

Intracellular EE effects in the prefrontal cortex are less well studied. Lesion studies 

demonstrate that the IL is necessary for the positive behavioral effects of EE, which supports 

the importance of this region in EE and stress effects (but does not offer a specific 

mechanism)51. Exercise decreases reactive oxygen species (ROS) and inducible nitric oxide 

synthase (iNOS) in the prefrontal cortex216, an effect thought to be mediated by increased 

heat shock protein 70 (HSP70) expression (a chaperone protein known to improve cell 

survival)216–218. These antioxidative actions of EE are expected to improve function of 

prefrontal cortex neurons and combat enhanced reactive oxygen species production 

associated with chronic stress67,110,116,151.

EE reduces stress-induced activation of the ERK-MAPK-CREB pathway and increases in 

neuronal activity marker, early growth response protein 1 (EGR-1), expression in the 

BLA194. These effects support the idea that EE blunts the response of the amygdala to stress, 

which would act to dampen pro-stress signals from this region19,183,194. These stress-related 

effects do not appear to be present in EE animals under baseline conditions65,129, mirroring 

the early observations with dendritic complexity that stress is needed to reveal EE effects in 

the amygdala. Overall EE has few effects in the amygdala under standard conditions, but its 

effects emerge when stress is applied, improving the resilience of the animal.

2.3 Effects in Other Brain Regions

This review chose to focus on three major stress-related brain regions; however, EE effects 

extend beyond these regions and synergistic effects throughout the brain may contribute to 

the protective nature of EE. Many of the cardinal studies of EE examined the somatosensory 

cortices. EE consistently increases dendritic complexity219–222, synaptic plasticity223–225, 

and neurotrophins171 in these areas. Similar effects have been noted in the hypothalamus, 

where EE increases dendritic complexity226, and cerebellum, where EE increases BDNF164. 

In the nucleus accumbens, EE increases DA release, CREB activation, and delta-FosB 

expression in non-stressed animals48,227,228. It also attenuates immediate-early gene 

induction during stress and drug administration228. These nucleus accumbens alterations are 
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expected to contribute to the anti-addictive effects of EE, which have been reviewed 

elsewhere229. In general, these other regions tend to resemble EE effects in the hippocampus 

and prefrontal cortex, rather than those in the amygdala.

3. Comparison of Brain Regions

All together, these results suggest that the neuroprotective effects of EE against stress arise 

from heterogeneous mechanisms throughout the brain in adult rodents. EE and stress both 

modulate a variety of morphological and molecular factors (Figure 3). However, the 

direction of these changes is dependent upon the region, the EE paradigm, and the presence 

of stress. This heterogeneity is both intriguing and challenging, for common mechanisms 

could present novel therapeutic targets and unique mechanisms present new opportunities to 

truly understand how EE conveys resilience.

3.1 Common Mechanisms

If we can identify a mechanism of EE that is consistent throughout the brain, it may be 

possible to target that molecule/pathway pharmacologically. EE in humans is even more 

heterogeneous than it is in rodents11. There are various ways for humans to attain greater 

stimulation from their surroundings, in a way that resembles EE in rodents11,230. For 

example, people can exercise or spend time with friends or perform cognitively stimulating 

activities, but these conditions are difficult to control. Human equivalents of EE have been 

shown to provide numerous benefits, in terms of mood and cognition. EE-like activities 

including exercise, cognitive training, social stimulation, and video games can help people to 

cope with stress and convey anti-depressive effects similar to those seen in rodents9,10,37,231. 

Some of the molecular mechanisms discussed here have also been recapitulated in humans. 

For example, cognitive training can prevent hippocampal atrophy, and exercise can increase 

BDNF in the blood9,11. Ideally, people would select to engage in a range of these EE-like 

activities, protecting them from future stressors and helping them recover from past 

struggles. However, this is often not practical for a variety of circumstances, both internal 

and external. These challenges introduce the need for development of “enviromimetic” 

drugs, which are drugs designed to mimic and enhance EE-induced therapeutic 

effects230,232. For example, exercise and antidepressants can have synergistic effects to 

ameliorate maladaptive behaviors138,233–235. In order to maximize beneficial effects and 

develop more targeted drugs, we need to understand how EE works and identify targets that 

change consistently throughout the brain. This effort would avoid unintended negative side 

effects in one region from opposing the expected benefits in other regions. While brain-wide 

data is not available, we can use the present information regarding highly stress-responsive 

regions to begin identifying molecular targets that could be manipulated to recapitulate the 

stress resilience of EE.

One mechanism that is mostly consistent across regions is increased synaptic plasticity. EE 

increased synaptophysin expression in the hippocampus, prefrontal cortex, and 

amygdala65,136,139. While this is just one measure, it suggests that EE increases the overall 

plasticity of brain, allowing it to adapt to novel (and possibly stressful) stimuli more rapidly. 

While directly targeting synaptophysin is unlikely in humans, stimulating neurotrophic 
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factors that promote synaptic plasticity could be one potential approach to mimic EE 

effects174. Another consistent effect of EE was reduction of stress-induced oxidative stress at 

the cellular level. While presently these effects are linked to PV interneurons, the improved 

overall cell survival in EE animals suggests that other cells benefit from this 

action40,67,112,218. These results suggest that providing stressed individuals with 

supplemental antioxidants could improve their stress resilience in a similar manner as EE. 

Further studies are required to identify more consistent mechanisms in EE, as many of the 

other endpoints examined here showed regional differences.

3.2 Unique Mechanisms

Unfortunately for enviromimetics, the hippocampus, prefrontal cortex, and amygdala 

showed more differences in their responses to EE and stress than similarities. However, these 

differences present interesting opportunities to truly dissect the mechanisms underlying EE 

effects and their role in promoting stress resilience (Figure 4).

While the hippocampus is the most studied of these regions, the prefrontal cortex and 

amygdala are also critical to stress responsivity, with the hippocampus and prefrontal cortex 

inhibiting stress-related endpoints and the amygdala enhancing them19. In most cases, EE 

serves to increase the activity and functionality of the hippocampus and prefrontal cortex, 

while decreasing that of the amygdala. In the context of stress, these effects would all be 

predicted to ameliorate negative physiological or psychological consequences, even though 

they are in different directions. So even though these differential effects make recapitulating 

EE difficult, common functional effects may promote resiliency in EE animals.

While many endpoints demonstrated this pattern of resilience, the molecular mechanisms at 

play in each region were often different. Between the hippocampus and prefrontal cortex, the 

primary differences were the neurotransmitter systems that respond to EE and stress. Minor 

differences were found in dendritic complexity and intracellular signaling, but studies 

directly comparing the two regions using the same paradigm are lacking. Other than these 

endpoints, many of the EE and stress effects were shared between the hippocampus and 

prefrontal cortex. The amygdala was certainly the most unique of these regions, often 

showing opposite EE and stress effects. For example, EE blocked stress-induced increases in 

dendritic branching, neuronal activation, BDNF expression, and GR activity in the 

amygdala. In contrast, EE blocked stress-induced decreases in the same endpoints in the 

hippocampus. Again, these opposing functions are consistent with EE conveying resilience 

against stress in both regions. However, the fact that so many endpoints from so many 

domains exhibit the same differences is impressive and demonstrates the truly unique nature 

of the amygdala. It will be interesting to see if these stark differences hold as more region-

specific studies are conducted.

It is notable that the amygdala appears to be especially susceptible to stress and important to 

the stress-responsive elements of EE. Many of the EE changes in the hippocampus were 

found under baseline conditions, suggesting that the hippocampus benefits the most from EE 

alone. On the other hand, the EE effects in the amygdala only became evident in the 

presence of stress, with the effects growing stronger with more chronic stressors. This points 

to the amygdala as a particularly important target when an animal is stressed. The prefrontal 
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cortex tends to fall in the middle of this stress-responsive spectrum. These observations point 

to the amygdala as a key region governing the interaction between EE and stress that should 

be the focus of future mechanistic research.

4. Challenges of EE

4.1 Heterogeneous Nature of Current Research

While the ability of EE to oppose stress-related behavioral problems is exciting, we need to 

recognize that EE is a complex paradigm with multiple elements, each of which may have 

different effects on the present endpoints. Variations in exercise, social, and cognitive 

components can impact the effectiveness of EE236,237, making it difficult to derive the 

precise causal element of the molecular effects with our current definition of EE that 

encompasses these diverse components. The heterogenous nature of EE paradigms likely 

causes different studies to fall at different points along the inverted U-shaped curve of stress 

experience, eliciting differential levels of stress resilience. Paradigms that are too weak may 

fail to exert any effect, while paradigms that are too strong may cause excessive “stress” that 

is itself harmful. Theoretically, EE that achieves an optimum level of stimulation that trains 

the circuitry but is not deleterious in itself, should have maximum beneficial effects on an 

animal’s stress resilience. Finding this precise balance between the diverse components of 

EE is an important next step in this field, and studies directly comparing different elements 

of EE will help to delineate the source of different beneficial effects66,109,111.

While the present review focused on EE in adults, EE actions vary greatly by the age of the 

animal, with adolescent EE conveying stronger neuroplasticity effects and aged EE 

magnifying increases in neurotrophins and neurotransmitters192,238. EE and stress 

interactions can also vary by the age at which each stimulus is presented144. These age 

differences have been reviewed elsewhere202,239, but should be kept in mind when 

contemplating translational implications of EE. Differences in species and strain can also 

influence how EE and stress interact. For example, Wistar rats often exhibit stronger EE 

responses, both positive and negative, than other rat strains73. Additionally, certain strains of 

mice sometimes show aggression and establish stronger dominance hierarchies. This can 

make EE stressful for subordinate mice and may dampen beneficial effects189,240. However, 

this aggression is not seen in a majority of rat studies and is often limited to particular strains 

of mice180.

Sex differences have also been noted. Some groups have suggested that females are 

generally more sensitive to EE than males, exhibiting stronger changes in synaptic plasticity 

and protective effects against stress-induced anxiety-like behaviors, BDNF expression, and 

hormone responses39,81,111,116,151. Females also appear to be most responsive to the social 

components of EE, while males are more impacted by cognitive and physical EE71,241,242. 

However, a lack of studies directly comparing adult males and females makes it difficult to 

draw conclusions about on the extent of these differences. More studies comparing sex 

differences in early-life EE have suggested further differences in cognition, sociability, and 

HPA axis responses, but developmental confounds limit the current application of these 

results188,238,243,244. While further studies directly comparing males and females are 
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certainly warranted, EE still appears to increase resilience in females71,116,136, suggesting 

that EE’s beneficial actions can present differently and arise from a variety of mechanisms.

4.2 Maladaptive Effects of EE Removal – Relevance to Loss

An additional challenge that is emerging in EE research is the potentially negative 

consequences of EE removal (ER). While some of the beneficial effects of EE appear to 

remain if animals are removed from EE and placed into standard housing117,245, there can 

be maladaptive consequences from the loss of EE or exercise itself7,8,246,247. These harmful 

effects are largely related to mood and appear to be particularly relevant to stress-related 

domains. For example, ER increases depression-like and anxiety-like behaviors when 

compared to control animals that never experienced EE7,8,247. These ER effects should be 

considered when designing EE experiments, since removing animals from EE prior to 

behavioral testing could be confounding.

Beyond complicating EE studies, ER presents an interesting stressor in and of itself. 

Typically, stressing an animal involves exposure to an externally imposed stimulus. The 

stressful nature of ER revolves around loss of positive reinforcers and is internally 

generated7. Loss is recognized by the Research Domain Criteria as a negative valence 

construct, and is broadly described as deprivation of something perceived as valuable248. In 

humans, loss can result from the death of a loved one, losing a job, a health crisis, or 

financial struggles248–251. While loss is recognized in humans and can even precipitate the 

development of depression252–254, it has received little attention in clinical or basic stress 

research. This largely results from difficulties in tracking loss in humans and modeling loss 

in animals. However, studies that have examined loss have yielded interesting similarities 

between human loss and ER. For example, both cause weight gain and generate hypoactive 

HPA axis responses to stress. These phenotypes differ from those observed with major 

depression and chronic stress, setting loss apart as a unique phenomenon7,255–257. As such, 

ER presents an interesting opportunity to study the mechanisms underlying loss and could 

be of great translational value for numerous people suffering from loss. This novel use of EE 

demonstrates the flexibility of the field and points to the opportunity for new discoveries in 

future research.

5. Future Directions

5.1 Links to the Inoculation Stress Hypothesis of EE and Importance of the 
Microenvironment

Despite the heterogeneous nature of EE and its mechanisms, one consistent pattern that 

emerged from all of this work is that EE improves the efficiency of stress circuitry and fine-

tunes its ability to respond appropriately to various challenges. This observation is in line 

with the conceptual framework of the inoculation stress hypothesis, which proposes that 

repeated exposure to novel, diverse stimuli in EE prepares an individual to cope with future 

stress3. It also aligns well with several related theories including the cross-stressor 

adaptation hypothesis, stress habituation, and the inverted-U theory of stress 

resilience18,19,27. The variety of EE-related changes in the brain suggests that benefits are 

conferred by multiple mechanisms. EE induces changes in neurons, glia, endothelial cells, 
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and numerous communication molecules that are shared between them. Consequently, EE is 

capable of altering all aspects of synaptic microenvironments across multiple brain areas, 

including neurons, glia, and blood vessels, as well as the extracellular matrix and 

extracellular space surrounding the so-called “tetrapartite” synapse258–261. By modulating 

the neurotrophins, hormones, neurotransmitters, immune factors, etc. in this 

microenvironment, EE may be able to promote holistic changes that impact all of the cells in 

the system. This broad control enables EE to increase the overall efficiency of signaling 

within each region; ultimately fine-tuning entire microenvironments of neurons to function 

more effectively. All together, these changes may provide for improved intercellular 

communications that can withstand energetic challenges promoted by stress exposure, a 

perspective supported by studies demonstrating that EE improves the efficiency of 

connectivity between brain regions by weakening unnecessary connections and 

strengthening important ones25,26. Overall, the stress-resiliency conveyed by EE appears to 

be the sum of many morphological and molecular changes working in tandem to improve 

the efficiency of stress circuitry.

5.2 Need for More Holistic Analyses

Future studies of EE and stress should consider this holistic nature of EE when trying to 

elucidate the interaction of the two. There is a particular need for more comprehensive omics 

studies of EE and stress117. Only a few groups have performed such studies, and their 

application is limited here by a lack of region-specificity or focus on addiction and 

adolescence262–265. These studies have noted EE effects similar to those reviewed here and 

then identified more specific molecules involved in each. Similar studies focused on EE and 

stress in adults, particularly examining regional differences, would rapidly advance the field. 

This type of information will be invaluable both in efforts to develop novel therapies for 

stress-related disorders and in deepening our understanding of the complex relationship 

between EE and stress.
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ABBREVIATIONS

5-HT Serotonin

5-HT1A Serotonin 1A Receptor

ACh Acetylcholine

ACTH Adrenocorticotrophic Hormone

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BDNF Brain Derived Neurotrophic Factor

BLA Basolateral Amygdala

CCL2 C-C Motif Chemokine Ligand 2
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CCL3 C-C Motif Chemokine Ligand 3

CCO Cytochrome C Oxidase

Cg3 Anterior Cingulate Cortex

CORT Corticosterone

CREB cAMP Response Element-Binding protein

CRH Corticotropin Releasing Hormone

CX3CR1 CX3C Chemokine Receptor 1

CXCL12 C-X-C Motif Chemokine 12

DA Dopamine

D1 Dopamine Receptor 1

DAT Dopamine Transporter

DG Dentate Gyrus

EE Environmental Enrichment

EGR-1 Early Growth Response protein 1

EPM Elevated Plus Maze

ER Enrichment Removal

ERK Extracellular signal-Regulated Kinase

FST Forced Swim Test

GABA Gamma Aminobutyric Acid

GDNF Glial cell-Derived Neurotrophic Factor

GFAP Glial Fibrillary Acidic Protein

GR Glucocorticoid Receptor

HIF-1α Hypoxia-Inducible Factor 1-alpha

HPA Hypothalamic-Pituitary-Adrenal

HSP70 Heat Shock Protein 70

IBA1 Ionized calcium Binding Adaptor molecule 1

IFNγ Interferon gamma

IGF-1 Insulin-like Growth Factor 1

IL Infralimbic
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IL-10 Interleukin 10

IL-1Ra Interleukin 1 Receptor antagonist

IL-1β Interleukin 1 Beta

IL-6 Interleukin 6

iNOS inducible nitric oxide synthase

LTD Long-Term Depression

LTP Long-Term Potentiation

MAPK Mitogen Activated Protein Kinase

NE Norepinephrine

NGF Nerve Growth Factor

NMDA N-methyl-D-aspartate

NPY Neuropeptide Y

NT-3 Neurotrophin-3

OF Open Field

OFC Orbitofrontal Cortex

PKA Protein Kinase A

PKM Protein Kinase M

PL Prelimbic

PSD95 Post Synaptic Density protein 95

PTSD Post-Traumatic Stress Disorder

PV Parvalbumin

ROS Reactive Oxygen Species

SGK Serum and Glucocorticoid-Regulated Kinase 1

SIRT 1 Sirtuin 1

SPT Sucrose Preference Test

TNFα Tumor Necrosis Factor alpha

TrkB Tropomyosin receptor kinase B

VEGF Vascular Endothelial Growth Factor
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HIGHLIGHTS

• Environmental enrichment (EE) can improve stress resilience in adulthood.

• EE improves the overall efficiency of stress-processing corticolimbic regions.

• EE differentially impacts the hippocampus, prefrontal cortex, and amygdala.

• These effects may reveal novel therapeutic targets in stress-related disorders.
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Figure 1: Example of EE housing.
Images of the EE apparatus used in our lab. EE cages are 1m3, have wire mesh walls for 

climbing, contain toys that are rotated weekly, and house 10 rats. This design provides 

physical, cognitive, and social stimulation, which are all traditional elements of EE. (A) 

Empty cage. (B) Cage with rats.
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Figure 2: The position of EE on the inverted-U shaped function of stress intensity.
Stress intensity and behavioral effects exist on a spectrum where too much or too little can 

impair function. However, there is an optimum amount of stress that is protective and 

conveys stress resilience. The positive simulation of EE likely falls in this beneficial part of 

the spectrum, suggesting that EE provides just enough mild stress to guard against other 

stressors.
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Figure 3: Independent effects of EE and stress alone in corticolimbic regions.
Summary of the effects of (A) stress and (B) EE alone on various morphological and 

molecular endpoints. Coloring reflects the intensity of EE and stress effects in each region. ↑ 
= increased activity. ↓ = decreased activity. − = no change. na = no data available.
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Figure 4: Differential interaction of EE and stress in corticolimbic regions.
(A) Summary of the ability of EE to block stress effects on various endpoints. (B) Overall 

comparison of changes within each region and observations regarding similarities and 

differences. Coloring reflects the intensity of EE and stress effects in each region. ✓ = EE 

block stress effects. ✗ = EE does not block stress effects. ↑ = increased activity. ↓ = 

decreased activity. − = no change. na = no data available.
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