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Evolution has direct and indirect consequences on species–species interactions and the environment. However, Earth
systems models describing planktonic activity invariably fail to explicitly consider organism evolution. Here we simulate
the evolution of the single most important physiological characteristic of any organism as described in models—
its maximum growth rate (μm). Using a low-computational-cost approach, we incorporate the evolution of μm for
each of the plankton components in a simple Nutrient-Phytoplankton-Zooplankton -style model such that the fitness
advantages and disadvantages in possessing a high μm evolve to become balanced. The model allows an exploration
of parameter ranges leading to stresses, which drive the evolution of μm. In applications of the method we show
that simulations of climate change give very different projections when the evolution of μm is considered. Thus,
production may decline as evolution reshapes growth and trophic dynamics. Additionally, predictions of extinction of
species may be overstated in simulations lacking evolution as the ability to evolve under changing environmental
conditions supports evolutionary rescue. The model explains why organisms evolved for mature ecosystems (e.g.
temperate summer, reliant on local nutrient recycling or mixotrophy), express lower maximum growth rates than
do organisms evolved for immature ecosystems (e.g. temperate spring, high resource availability).

KEYWORDS: NPZ model; plankton evolution; extinction; climate change

INTRODUCTION

There is a need in ecological models to clarify the role of
evolution of those traits that have the most profound
effects on simulation output at a general level (Bell,

2013; Merila and Hendry, 2014). This is especially so
with respect to plankton given their high growth rates
and their major role in global primary production (Field
et al., 1998). While the evolution of organisms has been
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considered in plankton research using models (Jiang
et al., 2005; Follows et al., 2007; Sauterey et al., 2015),
very little effort has been made to simulate the process
and consequences of evolution itself on organisms and
functional types, and thence on trophic interactions.

Major challenges lie in identifying key traits to evolve,
and then upon what basis to model their evolution, com-
plicated as the topic is by the multi-faceted physiological
interactions associated with any given trait. While most
emphasis in modelling has been hitherto expended on
bottom-up trait trade-offs (especially considering resource
acquisition) such simple approaches fail to easily explain
ecology (Raven et al., 2005; Sommer et al., 2017). It is also
clear that the evolution of individual organisms or func-
tional groups will affect and be affected by changes in the
whole ecosystem and food web and will thus affect trophic
dynamics. Modelling evolution of just one trophic level or
of one functional group in such a system is thus unlikely
to advance understanding; we need an approach to apply
across an ecosystem model. There is then the challenge of
simulating evolution itself. Is this to be considered using an
individual-based modelling (IBM) approach, or biomass-
based, and how many traits can be simulated without
overwhelming the computation?

For pragmatic reasons (computational, and also
because the vast bulk of plankton models are not IBMs;
Arora et al., 2013) we elected to derive a biomass-based
approach. We also sought a single trait that operates
across all organism groups, that is described in most if not
all models, and that captures a critical aspect of organism
function. We focus on the maximum potential growth
rate (μm). Arguably this is the most important feature
contributing to competition success in dynamic settings,
and a trait to which organisms show high sensitivity in
models across all trophic levels. Despite its biological
importance, the evolution of μm as a trait has not figured
prominently in plankton modelling work.

The general perception is that there are fitness benefits
to possessing a high growth rate potential under prevailing
abiotic and biotic conditions (Droop, 1974; Reznick et al.,
2002; Flynn, 2009). Related phytoplankton species show
variation in μm indicating underlying genetic variation
and evolution of this characteristic under different envi-
ronmental conditions (Raven et al., 2005; Litchman et

al., 2012; Edwards et al., 2013; Jin and Agusti, 2018).
In experimental evolution studies on microorganisms, μm
can be modified by selection resulting in genetic adap-
tation (Lenski et al., 1998; Wick et al., 2002). Boyd et al.
(2013) comment that the great variability of maximum
growth rates across phytoplankton isolates from differ-
ent locations complicates modelling work. Understanding
why there is such variation would significantly benefit
plankton science.

The maximum growth rate is, in reality, defined by
interacting physiological and life cycle processes that are
a function of the genetic material of the organism. As
an emergent property of whole organism physiology, it
is an evolvable trait. However, in models, μm is typically
set as a constant (e.g. Geider et al., 1996), or controlled by
a constant that limits key processes, such as the maximum
feeding rate (e.g. Gentleman et al., 2003). All else being
equal, a high μm is the inevitably of competitive advan-
tage. In models, there is no upper limit to the value that
could be assigned to this parameter. However, in reality,
the upward evolution of growth rate is restricted by a
variety of physiological factors (Arendt, 1997; Molenaar
et al., 2009; Dmitriew, 2011; Bosdriesz et al., 2015; Flynn
and Mitra, 2016), and at the upper limit the advantage
of high μm will be counterbalanced by associated costs.
These costs may relate to metabolic trade-offs related
to the synthesis of structural components (Arendt, 1997;
Molenaar et al., 2009), optimizing protein synthesis and
the balance of resources allocated to ribosomal and non-
ribosomal proteins (Bosdriesz et al., 2015). Costs associ-
ated with high growth rate may also lead to increased
mortality for a variety of reasons. During growth, fewer
resources might be allocated to energy reserves, which
may in turn lead to vulnerability to stress and mortality
(Dmitriew, 2011). Rapid growth may also lead to cellular
damage and mortality as a result of free radical genera-
tion and which might be proportionally greater at higher
growth as result of progressive damage to mitochondrial
membranes (Mangel and Munch, 2005; Monaghan et al.,
2009).

We thus identified μm at the core of what could be
viewed as a universal trait trade-off mechanism control-
ling growth potential. We present here a growth rate
evolution model (GREM) to simulate the evolution of μm,
in which natural selection maximizes net growth for each
member of a food web. This mechanism balances the
advantage of possessing a high μm against the metabolic
cost incurred to maintain this trait. To achieve this, in our
models we re-designated μm for each organism (a value
held as constant in traditional models) as a state variable,
so the value could evolve over time. We demonstrate
the behaviour and some implications of such simulations
using a biomass-based NPZ-type of construct, consid-
ering evolution in response to generic stress. Climate
change stressors also influence evolution (Chevin et al.,
2010; Hoffmann and Sgro, 2011; Merila and Hendry,
2014) but plankton models used in climate change sim-
ulations for predictions of the impact of different climate
change scenarios on planetary resources do not describe
organism evolution (Flynn et al., 2015). We thus also con-
sider some aspects pertaining to climate change, which
is a feature of ecology at all scales and is frequently
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Fig. 1. Schematic of NPZZ food-web. Light and dissolved inorganic
nutrient (N) supports the primary producer Phyto, and thence con-
sumers Zoo1 and Zoo2. Wastes and corpses are recycled (black arrows).
Consumers can cannibalize, as indicated. A low rate of mixing in and
out (red arrows, akin to a chemostat) introduces dissolved inorganic
nitrogen (N, from ExtN) and removes some residual DIN and biomass.
Full details are given in the Supplementary Appendix.

characterized by multi-stressors (Cahill et al., 2013), affect-
ing organism growth and thence trophic interactions and
biogeochemistry.

METHOD

The different components of the GREM are described
in the sub-sections below through reference to Fig. 2,
but first, we outline the food web model used (Fig. 1).
Table I describes variables mentioned in this main text;
a Supplementary Table provides a concise description of
all model parameters, together with their units, and also
provides the parameter values used for the simulations of
Figs 3–10. Reference to equations in the Supplementary
Appendix use the style Equation (Ax).

The food web model

To demonstrate the functioning of GREM, we used a
simple nutrient-phytoplankton-zooplankton(1)-zooplan-
kton(2) construct (hereafter, NPZZ) in which only a
single element, nitrogen (with units of mg N m−3), was
considered. This NPZ-type of construct has parallels
in traditional marine ecosystem simulations (Fasham
et al., 1990), of the type that forms the basis of most
Earth systems models informing the Intergovernmental
Panel on Climate Change (Arora et al., 2013). Details
of the equations describing the plankton components,
Phyto Zoo1 and Zoo2, as deployed here, are given in
the Supplementary Appendix. The exact form of the
descriptions for each evolving organism does not affect

the use of GREM except with one important proviso:
it is imperative that there are no inadvertent linkages
between the evolving trait of the maximum growth rate
and other trait descriptions. This matter is explained for
our model as used in the Supplementary Appendix, with
further general consideration in Discussion.

In brief, the NPZZ construct we used contains dis-
solved inorganic nitrogen (N) that supports the growth
of the phytoplanktonic primary producer (Phyto), which
is prey for a zooplanktonic secondary producer (Zoo1)
and thence an additional zooplanktonic tertiary producer
(Zoo2). Zoo1 not only grazes on Phyto but also canni-
balizes itself, whereas Zoo2 not only grazes on Zoo1 but
cannibalizes itself (Fig. 1). The plankton may be consid-
ered as functional types (with simulations describing mean
activity), or as named species; we make no differentiation
between these options here. Note that from hereon, the
terms ‘Phyto’, ‘Zoo1’ and ‘Zoo2’ describe both the names
of the plankton and the state variables representing their
biomass concentrations in the simulations.

The system is, as a real system, not sealed but is
subjected to a low-level dilution rate (0.05 d−1, akin to
a mixing rate across an ergocline) that brings in N, and
washes out residual N and also a proportion of Phyto,
Zoo1 and Zoo2 (none of which are assumed to be capable
of swimming against such a mixing rate). Surface irradi-
ance (Photon Flux Density) is described as varying on a
12 h light (PFD = 1 000 μmol photons m−2 s−1) and 12 h
dark (PFD = 0) cycle. The model food web was operated
in a simulated water column of fixed mixed depth (Dep)
and nutrient loading (Ninit). Dep and Ninit interact to
light-nutrient limit the rate of production.

The growth rate evolution model

The conceptual structure of GREM is shown in Fig. 2A,
with a flow chart for its operation in Fig. 2B. In essence,
and as described in detail below, the maximum growth
rate for each organism (as stated at a reference tempera-
ture; termed μmRT) evolves to balance the advantage of
possessing a high μm against the metabolic cost incurred
to maintain this trait during growth in the current envi-
ronmental setting. A fundamental feature of GREM is
that μmRT for each plankton component is defined by a
state variable whose value can evolve to higher or lower
values during the simulations. All variables mentioned in
the text below are defined in Table I.

Net growth rate and the effect of
temperature in the GREM model

Because the rate of biological processes varies with tem-
perature, we differentiate between the value of μm at
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Table I: Variables mentioned in the main text and figures.

Variable Unit Variable type Description

AE dl c Assimilation efficiency of prey biomass by predator

CRconst dl c Catabolic respiration rate multiplier against μmT; this is considered to increase in

response to raised stress that elicits a metabolic up-shock, such as changes in

salinity or pH

CRexp dl c Stress-related multiplier upon the value of CRconst

Cri gN gN−1 d−1 a Biomass-specific prey capture rate

Crit mgN m−3 d−1 a Value of [Crit (↓) − Crit (↑)] defining direction of evol

Crit (↓/↑) mgN m−3 d−1 a Net change in population biomass with ↓ or ↑evolving μmRT

Dep m c Mixed layer depth

Dil d−1 c Dilution rate

evol d−1 a Evolutionary increment for change of μmRT, positive (↑) or negative (↓)

GRpot d−1 a Potential gross growth rate

Grow (↓/↑) mgN m−3 d−1 a Growth in population biomass with ↓ or ↑evolving μmRT

Loss(↓/↑) mgN m−3 d−1 a Metabolic-related loss in population biomass with ↓ or ↑evolving μmRT

Lossreg d−1 a Metabolic loss rate

mc d−1 a Stress-related mortality coefficient

M (↓/↑) mgN m−3 d−1 a Mortality in population biomass with ↓ or ↑evolving μmRT

Mr d−1 a Intrinsic mortality rate

N mgN m−3 SV Inorganic nutrient nitrogen

Ninit mgN m−3 c Initial and external N

Phyto mgN m−3 SV Phytoplankton biomass

Q10 dl c Multiple increase of μmRT per increase in T by 10◦
RT ◦C c Reference temperature

SfG dl a SfG

T ◦C c Contemporary temperature

Tdif
◦C a T minus reference temperature used to define μmRT

Zoo1 mgN m−3 SV Zooplankton(1) biomass

Zoo2 mgN m−3 SV Zooplankton(2) biomass

μnet d−1 a Net growth rate

μm d−1 - Maximum growth rate (in general terms)

μmRT d−1 SV Value of μm at reference temperature, RT

μmT d−1 a Value of μm at contemporary temperature, T

μT d−1 a Emergent growth rate

λ dl c Control constant for evol as Crit tends to zero

Variable types are: c, constant; a, auxiliary (emergent property); SV, state variable; ‘-’ general abbreviation, not used in equations; dl,

dimensionless. See Supplementary Appendix for further information and values used in the different simulations.

reference temperature RT (defined as μmRT) and the value
at the contemporary temperature in the simulation (μmT).
It is the value of μmRT that evolves; μmT differs from μmRT
by a factor reflecting an environmental effect, which has
no genetic basis upon which to evolve. Initial values of
μmRT (ca. 1 d−1) were selected in accordance for small
plankton species.

Assuming the range of T is not extreme, we define μmT
using an Arrhenius function with reference to a value of
Q10 (where Q10 defines the multiple increases of growth
rate per increase in T by 10◦; e.g. Q10 = 2 doubles the
rate over a 10◦C increase in T). Because we only need
the difference between RT and T, here we refer to that
difference (Tdif = T-RT). Thus:

μmT = μmRT × Q

(
Tdif
10

)

10 (1)

At the reference temperate if Tdif = 0, μmT = μmRT.
The net specific growth rate (μnet) is a function (Equa-

tion 2) of the potential gross growth rate (GRpot), the

metabolic loss rate (e.g. catabolic and anabolic respiration
rates, which may be directly related to stress such as
to changes in pH with ocean acidification (OA), and
are associated with N regeneration N; Lossreg), and an
intrinsic mortality rate (Mr), which is also expected to
increase under stressful conditions.

μnet = GRpot − Lossreg − Mr (2)

In the Supplementary Appendix, we explain how the
terms on the RHS of this equation are derived for our
specific model, recognizing that a variety of assumptions
are made in the literature in the construction of NPZ-type
models and set against the caveat noted above concerning
the importance of avoiding any inadvertent linkage of
other traits to the evolution of μmRT.

Scope for growth

The values of GRpot (d−1) and Lossreg (d−1) for each
organism type, as described in the Supplementary
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Fig. 2. GREM concept. Panel A: the population average maximum
growth rate at reference temperature (μmRT) evolves by decreasing
(i) or increasing (ii) to attain a new equilibrium value (green boxes)
as both maximum growth rate at the reference temperature (μmRT)
and the SfG are optimized (red boxes) so minimizing stress. Panel
B: the flow-schematic summarizing how evolution affects increases or
decreases in μmRT by an amount evol in the GREM model. See text
and Supplementary Appendix for further explanation.

Appendix, are incorporated in an index that represents
the proportion of potential specific growth rate, which
contributes to net growth rate. We call this ‘scope for
growth’ (SfG; dimensionless):

SfG = (
GRpot − Lossreg

)
/GRpot (3)

The specific definitions as applied to Phyto, Zoo1 and
Zoo2 are given in the Supplementary Appendix.

A decrease in SfG, resulting from an increase in Lossreg
relative to GRpot, may be considered as an indication
of stress requiring mitigating responses by the organ-
ism; a failure or inability to moderate this stress can
be interpreted as a failure of homeostatic mechanisms.

In the model, the stress associated with a decrease in
SfG causes a proportional additional mortality loss to
the organism (Supplementary Appendix). The net result
is that SfG is optimized concurrently with the evolution
μmRT at an equilibrium value (Fig. 2), as functions of
the prevailing conditions (e.g. mixed layer depth, light,
temperature, and nutrient load) and parameter values
describing physiology.

Physiological processes change continuously, whereas
organisms integrate those processes and associated losses
over time spans that relate to the life cycle duration of
the organism. In the model, Phyto, Zoo1, Zoo2, μmT and
SfG may change at every timestep; to rationalize model
behaviour with reality, we operationally define SfG as a
rolling average over 1 day.

Evolution of μmRT

GREM enables the value of μmRT for each plankton
component to evolve to higher or lower values during
the simulation by discrete amounts at each timestep. We
justify this approach by the fact that plankton populations
have substantial genetic variation on which selection can
act (Reusch and Boyd, 2013; Collins et al., 2014; Bach
et al., 2018), which allows a quantitative genetics approach
without the need to specify gene frequencies for the traits
of interest. In this respect, the model is similar to adap-
tive dynamics approaches (Abrams, 2005; Waxman and
Gavrilets, 2005). The evolutionary model does not follow
the fate of rare mutations invading resident populations.
Instead, it follows the changes in the value of μmRT as
a consequence of the fitness effects of small increases or
decreases in the trait, as explained below.

In general, in a quantitative genetics model the
response to selection can be represented by an expression
such as R = i × h2 × xp where R is response to selection,
i is the intensity of selection, h2 is the heritability of the
character, and xp is phenotypic standard deviation of the
trait. Values for the independent variables in this equation
are not well known for most populations, including
plankton. We therefore employ a heuristic approach to
determine the direction of change of μmRT, as described
below, following the schematic in Fig. 2B.

Variable evol defines the amount that μmRT either
increases or decreases at each timestep in the simulations.
The method of computation of evol is described in the
Supplementary Appendix. For Phyto, as example, the
net change in biomass is calculated prospectively for two
scenarios in which μ

Phyto
mRT

is increased (↑) or decreased (↓)
by an amount evolPhyto, thus:

μ
Phyto
mRT (↑) = μ

Phyto
mRT + evolPhyto (4)
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and

μ
Phyto
mRT (↓) = μ

Phyto
mRT − evolPhyto (5)

As the value of μ
Phyto
mRT

is held in a state variable,
operationally ±evol represents a timescale dependant
differential (thus ±evol × dt).

From these options (Equation (4) vs Equation (5)), criti-
cal values representing net change in population biomass
based on Equation (2) (see Supplementary Appendix for
this specific model implementation, Equations (A6), (A17)
and (A23)) are defined in general terms as:

CritPhyto (↑) = GrowPhyto (↑)−LossPhyto (↑)−MPhyto (↑) ,
(6)

which is calculated employing μ
Phyto
mRT

(↑), and

CritPhyto (↓) = GrowPhyto (↓)−LossPhyto (↓)−MPhyto (↓) ,
(7)

which is calculated employing μ
Phyto
mRT

(↓).
A single critical value is then defined as:

CritPhyto = CritPhyto (↑) − CritPhyto (↓) (8)

If CritPhyto > 0, the simulation will proceed via the
scenario which has μ

Phyto
mRT

increased by evolPhyto; if

CritPhyto < 0, it will proceed via the scenario with μ
Phyto
mRT

decreased by evolPhyto.
Thus, the prospective analysis sets the direction of the

change according to whether an increase or decrease
in μ

Phyto
mRT

would be favoured by directional selection.

If CritPhyto = 0, μ
Phyto
mRT

will not change. The state vari-

able μ
Phyto
mRT

is thus either increased or decreased by the

amount evolPhyto. The new value of μ
Phyto
mRT

is then used

to calculate the operational value of μ
Phyto
mT

for the next
timestep according to Equation (1).

Over time μ
Phyto
mRT

approaches, an equilibrium value at
which point the value of CritPhyto tends to zero. CritPhyto can
thus be regarded as analogous to a fitness function, which
is optimized at the value 0. As CritPhyto approaches zero,
the selection pressure is expected to become weaker and
the value of evolPhyto would thus be expected to decrease.
This has been simulated by allowing the value of evolPhyto

to decline towards zero as equilibrium is approached
(Supplementary Appendix).
The same type of model construct is used for Zoo1 and

Zoo2, computing evolZoo1 and evolZoo2, with net change in
plankton biomass defined by the grazing (Supplementary
Appendix Equations (A15) and (A16)) less the metabolic
losses (Equation (A18)) and losses as a function of SfG
(Equations (A24) and (A25)). The formulation of Crit

Table II: Summary of simulations carried out.
Variables are defined in the text and Table I.

Type of simulation Summary Figures

Phyto chemostat 150 factorial simulations Figs. 3 and 4

Time course CRconst changes Fig. 5A

Time course Dep changes Fig. 5B

Time course evol lower and higher; mc

lower

Fig. 6A

Time course evol lower and higher; mc

higher

Fig. 6B

NPZZ 200 simulations over

parameter space

Figs. 7 and 8

Time course Tdif changes abruptly Fig. 9

Time course CRconst fluctuates Fig. 10A and B

Time course Tdif fluctuates Fig. 10C and D

Time course CRconst and Tdif fluctuate Fig. 10E and F

See Supplementary Table for details of parameter values.

for each component excludes from the losses those that
the component incurs by being consumed by grazing
by a higher predator. This is because this predation is,
in the context of this particular model, an external fac-
tor beyond the direct influence of the prey and not
expected to cause selective mortality influencing evolu-
tion of μmRT in the prey. For consistency cannibalism is
similarly excluded.

The model was also run for Phyto in a chemostat-
style scenario without Zoo1 and Zoo2, and in which the
dilution rate forces the net growth rate (i.e. dilution rate
= μ

Phyto
net ), and growth was constrained by the residual

abundance of the limiting resource N. The simulations
were run at the reference temperature, thus Tdif = 0
and hence μ

Phyto
mT

= μ
Phyto
mRT

. Respiratory losses associated

with CRPhyto
const were allowed to regenerate N. However,

the SfGPhyto dependent mortality of Phyto was not recy-
cled back into N on the assumption that degradation of
corpses would not occur at a significant rate within the
chemostat. Instead, this mortality loss of Phyto flowed out
of the chemostat to a sink.

The model was implemented in Powersim Studio
10 (www.powersim.com), which runs simulations using
ordinary differential equations, here using an Euler
integration routine. Simulations were run over 2000 or
3000 days; in constant conditions, equilibrium was usually
reached by 500 days or earlier. Statistical analysis was
carried out with Statistical Package for the Social Sciences
(IBM SPSS Statistics).

RESULTS

Table II summarizes the simulations carried out and the
figures in which the simulation results are presented.
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Figure 3 shows simulations where μmRT evolves to
equilibrium for Phyto growing in a chemostat-type
environment (where μnet is set by the dilution rate, Dil;
d−1). Figure 3A shows that equilibrium values of μmRT
decrease with decreasing Dil and thence with enforced
nutrient-limited μnet (consistent with (Droop, 1974)). The
actual relationship differs with different levels of catabolic
respiration that imparts additional stress. Higher μmRT -
dependent stress, imparted here by an elevated catabolic
rate using higher values of the parameters CRconst and
CRexp, leads to the evolution of a lower μmRT. SfG
shows comparatively uniform values across the parameter
ranges. Residual N is somewhat increased by increasing
values of all parameters to ensure that net growth
matches Dil in the face of increased catabolic loss and
SfG dependent mortality. At the maximum value of all
parameters (bottom right mesh in Panel C), a higher-
order interaction is evident as the surface curves upwards
to a higher residual N value (Fig. 3C).

The standardized β values of the regression statistics
for the Phyto chemostat (Fig. 4) confirm the visual inter-
pretation from the mesh plots. Thus, μmRT is positively
associated with Dil but is decreased by higher catabolic
losses (negative β values for CRconst and CRexp), and
residual N is positively associated with all parameters.
More evident than in the mesh plots, which shows unstan-
dardized values, is that SfG is depressed by higher values
of CRconst (i.e. by stress) but increases slightly with higher
value of mc which influences SfG dependent mortality.
Overall adjusted R2 values for main effects for μmRT, SfG,
and N are 0.875, 0.842 and 0.699, respectively. At the
maximum value of all parameters (bottom right mesh
in Fig. 3C), a higher-order interaction is evident as the
surface curves upwards markedly to a residual N value
which is clearly higher than would be expected due to
additive effects of the three parameters (Fig. 3C). This is
indicative of a synergistic response to multi-stressors.

Operating GREM within the dynamic food web NPZZ
model shows that the pattern of evolution of μmRT and
SfG is perfectly reversible under the relief of different
stressors (Fig. 5). Initial biomasses of the components
affect the dynamics but not the final equilibrium values
at steady state (not shown). The rate of evolution towards
the equilibrium value can be varied using the mortal-
ity parameter mc and also a parameter λ that affects
the magnitude of evol (see Supplementary Appendix). A
higher mortality results in a more rapid approach to the
equilibrium μmRT and also lower equilibrium values for
all three plankton components (mc = 1, Fig. 6B compared
with mc = 0, Fig. 6A). The order of values of μmRT for the
different trophic levels remains the same, in reverse order
of the trophic level. A lower value of evol results in a less
rapid approach to the equilibrium value of μmRT (λ = 1,

Fig. 3. Mesh plots for Phyto growing in a N-limited chemostat where
the realized growth rate equals the dilution rate (Dil). Outputs from
150 simulations were run to equilibrium over 2000 days in a factorial
design with varying dilution rate (Dil; d−1), catabolic respiration con-
stants (CRconst and CRexp; dimensionless) and mortality coefficient (mc;
dimensionless); see Table I and Supplementary Table for parameter
values. Shown are mesh surface plots for maximum growth rate at the
reference temperature (μmRT, panel A; d−1), SfG (panel B; dimensionless
quotient) and residual nutrient (N, panel C; mgN m−3).

dashed lines compared with λ = 0.5, solid lines). However,
the equilibrium values are not affected by this difference
in evolutionary rate as dashed and solid lines converge.

Results from an analysis of 200 simulations of the
NPZZ model, run to equilibrium under different condi-
tions, are provided in Fig. 7. In Fig. 7A, the mean values
are compared in those of the simulations where Zoo2 is
lost and those where it is retained at equilibrium. Loss
is thus indicative of system stress leading to low relative
fitness of Zoo2 and its subsequent extinction of this
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Fig. 4. Regression statistics for Phyto chemostat. Data are from the
simulations shown in Fig. 3. Shown are values of standardized regression
coefficients (β values) for linear regression of the output variables
maximum growth rate at the reference temperature (μmRT), SfG and
residual nutrient (N) on the parameters along the X-axis and which also
feature in the mesh plots of Fig. 3.

organism from the system. Higher values of CRconst are
associated with this stress, by analogy with the relationship
observed in the Phyto chemostat (Fig. 3). Also associated
with higher stress leading to Zoo2 extinction are lower
values of assimilation efficiency (AE) and greater water
depth (Dep) that restricts the entry of energy and thus
primary production to the system; these results are con-
sistent with expectations. Smaller effects associated with
Zoo2 loss, but also in line with expectation, are higher
SfG stress-dependent mortality (mc), lower capture rate
(Cri) and lower initial N in the simulation. In Fig. 7B, the
β values for linear regression analysis are shown to allow
comparison of the parameters for their quantitative and
direction of effects on μmRT. Higher values of CRconst
are seen to favour the evolution of lower values of μmRT
(large negative β). Since from Fig. 7A, we observe that
higher CRconst equates to higher stress, cross comparing
with Fig. 7B we can conclude that this higher stress is
also associated with lower values of μmRT. Using similar
reasoning, higher AE, and shallower water depth (lower
Dep, and thence increasing light energy availability and
higher primary production), are also associated with lower
stress and higher μmRT. The parameters Cri, mc and Ninit
have low β values and are thus less influential in explain-
ing variation in μmRT, though of these higher Cri are
associated with higher μmRT. The approach of comparing
Fig 7A and B thus allows confirmation of a priori expec-
tations of the effects of parameters in relation to stress
and overall, these expectations are confirmed well. Using
similar reasoning for explaining Fig. 7C, lower CRconst,
higher AE (for Zoo1 and Zoo2) and shallower depth (for
Phyto) are associated with lower stress and higher values

Fig. 5. Evolution is reversible and maximum growth rate at the
reference temperature (μmRT) at equilibrium is lower for higher trophic
levels. Panel A: time course of changes in μmRT and SfG of organisms
within the NPZZ simulation subjected to a decrease in stress at time
1000, lowering catabolic respiration (CRconst changes from 0.25 to 0.1)
followed by an increase in stress at time 2000 to the original level
(CRconst changes from 0.1 to 0.25). Panel B: time course of changes in
μmRT and SfG of organisms subjected to a decrease in stress at time
1000 due to changes in energy input from illumination via altering
mixed layer water depth (Dep changes from 45 to 5) followed by an
increase in stress at time 2000 to the original level (Dep changes from
5 to 45). In both A and B, SfG values for Zoo1 and Zoo2 are closely
similar and overlap on the graphs.

of SfG, again in line with expectation. Overall adjusted
R2 values for main effects for μmRT for Phyto, Zoo1 and
Zoo2 are 0.832, 0.747 and 0.737, respectively increasing
to 0.851, 0.825 and 0.853 when first order interactions
are included. For SfG, the corresponding groups of values
for main effects are even higher at 0.958, 0.996 and
0.996. The variation not captured will be due to non-
linearity and higher-order interactions, but it is clear that
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Fig. 6. Evolutionary rate affects time to equilibrium but not equilibrium
value. Two values of a constant λ determine the size of the evolutionary
increment evol (Table I and Supplementary Appendix), and two values
of the mortality coefficient (mc) determine the intensity of SfG depen-
dent mortality. Panel A uses mc = 0 (lower mortality) and λ = 0.5 (higher
evol) (solid line) or λ = 1 (lower evol) (dashed line). Panel B uses mc = 1
(higher mortality) and λ = 0.5 (solid line) or λ = 1 (dashed line).

the parameter main effects have substantial explanatory
power.

The simulations of Fig. 7 were repeated with identical
parameters but with evolution disabled, by setting evol
for each of Phyto, Zoo1 and Zoo2 to zero, in order to
demonstrate the added effect on Zoo2 when moving from
a scenario with no evolution to one with evolution (Fig. 8).
With no evolution, Zoo2 survives in 76 out of the 200
simulations, whereas with evolution Zoo2 survives in 135
simulations, providing evidence of evolutionary rescue.
In the majority of evolving simulations, the biomass of
Zoo2 is higher (i.e. normalized (evol-no evol) > 0, Y-axis),
with most plotted points > 0; this indicates that evolution
favours the production of a higher biomass. Thus, on
average over all the 200 simulations, the biomass of Zoo2
is 38% higher with evolution, and in the 76 simulations
in which Zoo2 survives with and without evolution, the
biomass of Zoo2 is 24% higher with evolution.

In a system where temperature increases abruptly and
then falls abruptly, clear differences are seen between non-
evolving and evolving systems (Fig. 9). Initially Tdif is set
at 0 (i.e. T = RT, so μmT and μmRT are equal). In the non-
evolving system, in which μmRT remains constant, μmT
increases to a new stable value as the temperature rises.
For Phyto, SfG declines, although the biomass of Phyto

Fig. 7. Regression statistics for NPZZ model. Detailed analysis of
results from 200 simulations run to equilibrium over 2000 days (see
also the summary in Fig. 8). The parameters shown along the X-
axis are catabolic respiration constant (CRconst; dimensionless), mor-
tality coefficient (mc; d−1), prey capture rate (Cri; gN gN−1 d−1),
AE(dimensionless), mixed layer water depth (Dep; m) and initial and
external N (Ninit; mgN m−3). Values for the parameters were dis-
tributed evenly in parameter space over the simulations (see Supple-
mentary Table for parameter value ranges). Panel A: Mean param-
eter values, expressed as deviations from the overall mean in stan-
dard deviations, are shown for simulations where Zoo2 is lost (N = 65)
and survives (N = 135). For panels B and C, the standardized β

values from regression analysis for the simulations where Zoo2 sur-
vives (N = 135) are analogous to those for the Phyto chemostat in
Fig. 4.
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Fig. 8. Summary of equilibrium values for Zoo2 in NPZZ simu-
lations. Data come from the simulations run to produce Fig. 7, with
parameter values distributed evenly over parameter space but run with
evolution enabled (the value of evol is determined as in Supplementary
Appendix), or with evolution disabled (evol is set to zero). X-axis shows
the equilibrium biomass of Zoo2 in the evolving simulations. The
Y-axis shows the difference between the Zoo2 biomass in evolving vs
non-evolving simulations, normalized to the biomass in the evolving
simulations (as given on the X-axis). Y-axis values of 1 thus indicate
Zoo2 extinction in the non-evolving simulation; Y-axis = 0 indicates
no difference in biomass between Zoo2 evolving and non-evolving;
Y-axis < 0 indicates that non-evolving simulations had higher biomass
than evolving simulations. Most extinctions occurred in low biomass
non-evolving simulations of Zoo2.

increases slightly (Fig. 9A), likely reflecting consequences
of trophic interactions. SfG and biomass for Zoo1 and
Zoo2 are little affected by the temperature increase. On
reversal of the temperature change, the original values
of μmT, SfG and biomass are restored. In the evolving
system, initially, the same response to the increase in tem-
perature is seen as in the non-evolving system. However,
μmRT then evolves downwards so that the expressed μmT
for all components tend towards the equilibrium values
expressed at the lower original temperature (Fig. 9B);
these were the operational optimal values for μmT and
μmRT given the other parameter values used in the simu-
lation. SfG for Phyto initially shows a small decline as the
temperature increases but then evolves towards its original
value. When temperature is decreased, the system, and its
evolving characters revert to their original values.

In Fig. 10 are shown, for both non-evolving and
evolving systems, changes caused by an oscillating stress
(CRconst) that raises respiration, and/or changing temper-
ature (Tdif ). Under conditions of increasing oscillations
in degree and frequency of stress alone (Fig. 10A and B),
varying patterns emerge in the evolution of μmRT,
consequential changes in SfG, and in organism biomass.
Biomass oscillations are markedly different with evolution

(Fig. 10B) compared to food webs without evolving
capabilities (Fig. 10A). With evolution, values of μmRT
decline in consequence of increasing stress, and there
are less marked fluctuations in SfG and biomass in
comparison with non-evolving simulations. With upward-
trending temperatures (Fig. 10C and D), μmT fluctuates
in synchrony with the fluctuating temperature. In the
evolving system (Fig. 10D), μmRT evolves downwards as
temperature trends upwards overall; this results in μmT
moving down towards a lower equilibrium value as the
average temperature rises. This is most evident for Phyto
and is consistent with Fig. 9B where the effects of longer-
term stable changes in Tdif are shown. There are no
noticeable differences in SfG between the non-evolving
and evolving scenarios, and the period of the temperature
oscillations is too short to allow new equilibrium levels to
be discernible.

With oscillations in both temperature (Tdif ) and in
environmental stress (enacted by changing CRconst), there
are more significant differences between non-evolving
(Fig. 10E) and evolving (Fig. 10F) systems. Note that here
Zoo2 becomes extinct at around 1300 days in the non-
evolving system (Fig. 10E). As seen before in evolving
systems (Fig. 8), evolution allows for the potential of evo-
lutionary rescue; here, in the evolving system (Fig. 10F),
there are less marked fluctuations in biomass when evolu-
tion is allowed, and evolution also protects better against
low SfG and low component biomass values—extinction
is less likely and here Zoo2 survives (Cf. Fig. 10E).

DISCUSSION

Evolution is inseparable from ecology, yet in simulations
of plankton ecology that extend over what amounts to
many 100s if not 1000s of generations, this critical process
has received little attention. Here, we have presented
a demonstrator for an approach to simulating evolu-
tion, together with illustrations of its operation to indi-
cate some implications for simulating long-term plankton
dynamics without or with evolution. We discuss below
some of the features of this development.

Investigations of processes that are consequences of
evolution have been widely explored through trait-trade-
off (TTO) approaches. Allometric-linked aspects of phy-
toplankton nutrient acquisition (e.g. Litchman et al., 2006,
2007; Finkel et al., 2010; Andersen et al., 2016) have
provided a rich source of inspiration for many mod-
ellers. Such concepts build from the classic view that
the half-saturation constant for resource acquisition is
a pivotal trait defining competition advantage (Tilman,
1976; Morel, 1987) and that smaller organisms may be
expected to exhibit lower half saturation values and grow
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Fig. 9. Growth within the NPZZ simulation with abrupt and persistent changes in temperature (Tdif ). The Tdif value increases from 0 to 5◦C
between 300 and 350 days, then decreases from 5 to 0◦C between 1350 and 1400 days, while CRconst is held constant. Dashed lines, μmT; solid
lines, μmRT. Panel A: Model output of a non-evolving system. Panel B: Model output of an evolving system.

faster. However, various questions can be raised over the
interpretation of experimentally derived half-saturation
constants for nutrient uptake (Flynn et al., 2018), and
also whether analogous mathematical constructs for food
(prey) acquisition are even appropriate (Flynn and Mitra,
2016).

Perhaps the best-known deployment of TTO concepts
at a grand scale has been the DARWIN model of Follows
et al. (2007), in which a wide range of phytoplankton func-
tional type descriptions compete in an in silico ocean. Such
modelling efforts, however, do not describe or consider
evolutionary processes during the simulation and depend
upon a series of fixed assumptions for TTOs. There is no
universal TTO considered in such models except perhaps
that small cells generally have the potential to grow faster.
That relationship is at best described as a scatter plot (e.g.
Fig. 3 in Finkel et al., 2010), and we must conclude that
there must be a set of higher-level factors that control the
potential for growth in real populations (Boyd et al., 2013).
What our work demonstrates is that through evolution
we should expect significant variation in expression of
the maximum growth rate by otherwise similar organisms
growing in different environments. We also expect those
higher-level factors to include resource acquisition and
trophic interactions acting throughout the food web.

Locating traits that are of universal importance or
are of sufficient commonality, to justify modelling their
evolution is far from simple. Developing evolutionary
simulations also rather forces the modeller to revisit other
parts of the model, to ensure there are no unintended

consequences of the in silico evolution of the selected
trait(s). While the basis of the approach we describe for
GREM also provides a tractable tool for exploring the
evolution of other traits, there is an important general
proviso that the evolving traits must not confound the
description of other traits in unrealistic ways. The models
must also not be constructed in such a way that permits
the evolution of traits to evolve to ever higher or unrealis-
tic values (such as the maximum rate of C-fixation linked
to RuBisCO activity (Flynn and Raven, 2017). So, in the
context of GREM, it is imperative that for no organism
sub-model is there an inadvertent linkage between the
evolving trait of μmRT and other trait descriptions.

Here, through Equation (A4), we overcame such a
challenge which would otherwise have seen an evolu-
tionary increase in μmRT occurring simultaneously with
an enhanced nutrient acquisition potential. This comes
about because retention of the same half-saturation con-
stant for resource acquisition (Kg) with an increasing
μmRT, inadvertently provides the simulated organism with
an additional advantage as the growth rate at limiting
nutrient concentrations is also raised. However, such an
event is implausible because unless the resource acqui-
sition kinetics (i.e. nutrient transportation system) also
evolved simultaneously, then a slower-growing variant
should exhibit a lower Kg and thus be at a competitive
advantage (Flynn et al., 2018) in low-nutrient system, as
expected of slower growing ‘K-select’ species (Tilman,
1976). An allied issue is the importance of using an
appropriate consumer (zooplankton) description. Often
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Fig. 10. Growth under changing conditions. Changes over time in biomass, and physiological parameters for phytoplankton Phyto, Zoo1 and
Zoo2 in the NPZZ simulation. The catabolic respiration (CRconst) value is varied with increasing magnitude to represent changes in stress (panels
A, B, E, F) or held constant (C, D). Temperature changes (Tdif ) are either held at zero (so μmRT and μmT are identical in value; A and B) or varies
with increasing magnitude and trending upwards (panels C-F). Left-hand panels (A, C, E) show non-evolving systems with values of μmRT fixed.
Right-hand panels (B, D, F) show the same system but with μmRT evolving according to GREM (Fig. 2). Values of SfG are also shown.
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feeding (grazing) descriptions use an approach where the
zooplankton maximum growth rate is modelled as an
emergent function of feeding as restrained by a stated
fixed maximum feeding rate (Gentleman et al., 2003;
Mitra et al., 2014a; a so-called ‘live-to-eat’ approach as
termed by Flynn, 2018). Using this approach, irrespective
of food availability, the simulated consumer can never
respond to stress by increasing its feeding rate. Here we
used an ‘eat-to-live’ functionality (Flynn, 2018), in which
the maximum feeding rate is a function of the maxi-
mum growth rate. This description enables the simulated
zooplankton to increase its potential to feed in response
to an increased demand for energy to compensate for
elevated stress, as is expected in reality. This ‘eat-to-live’
implementation, together with an encounter-based graz-
ing function (Mitra and Flynn, 2006; Flynn and Mitra,
2016), enables the μmRT for each consumer zooplankton
to usefully evolve in a model.

In more general terms our model simulates what we
propose to be a universal TTO, namely balancing the
advantage of processing a high potential growth rate
against the disadvantage of the stress of being unable to
fulfil that potential due to external factors. Flynn (2009)
suggested a simple empirical approach to this topic, work-
ing on the argument that maintaining a good state of
organism health (low stress) is important to survival. This
was inspired by Droop’s (1974) observation that a phy-
toplankton culture forced to grow slowly in a nutrient-
limited chemostat lost the ability to grow at a high rate;
over the course of several months, the organisms evolved
to have a lower maximum growth rate. Of course, the
allometric-linked TTO relationships mentioned above
make an individual organism more or less able to compete
well in nutrient-stressed conditions, but the central tenet
in the work developed in the current paper is that all
those very many traits and their putative TTOs find a
focus in supporting the potential for delivery of a growth
rate closer to, rather than further from, a given max-
imum growth rate potential. A TTO reflected in our
current results, seen in the simulations carried out over
parameter space (Figs. 7 and 8), is the contrast between
higher maximum growth with higher respiratory costs
and lower maximum growth rate with lower respiratory
costs, the two scenarios being associated with different sets
of parameter values but giving the same value of SfG.

Higher growth rates, if sustainable, are of clear
competitive advantage for population growth, whereas
increasing costs associated with high growth rate when
conditions are less favourable leads to increased stress and
mortality. There are various lines of supporting evidence
for the evolution of μmRT to represent a universal TTO
across many realms of biology and ecology. During
growth, fewer resources might be allocated to energy

reserves, which may in turn lead to vulnerability to stress
and mortality (Dmitriew, 2011). Rapid growth may also
lead to cellular damage and mortality as a result of free
radical generation and is expected to be proportionally
greater at higher growth as result of progressive damage
to mitochondrial membranes (Mangel and Munch, 2005;
Monaghan et al., 2009). In yeast, the death rate per gener-
ation has been observed to increase with the division rate
(Nakaoka and Wakamoto, 2017). In Escherichia coli, the
sensitivity to stress of mild heat, ultra violet type A light
and sunlight is greater for cells with higher specific growth
rate (Berney et al., 2006). In zebra finches, free radical
damage to red blood cells is correlated with growth rate,
suggesting that oxidative damage may constrain growth
rate (Alonso-Alvarez et al., 2007). Standard metabolic rate
is higher for a fast-growth genotypes in the fish Menidia

(Arnott et al., 2006) and rainbow trout (Allen et al., 2016).
Finally, a variety of maintenance costs such as metabolic
shifts, molecular turnover and defence against stress, also
subtract from the intrinsic growth rate and show a clear
positive correlation with maximum growth rate potential
across a range of microbial species (van Bodegom, 2007).
All such data point to a distinct risk, of additional costs, to
be able to grow fast, setting a trade-off that is only worth
exploiting when the potential is realizable.

GREM is a deterministic model for evolution in line
with observations that plankton populations are large,
providing substantial genetic variation on which selection
can act to cause phenotypic shifts (Reusch and Boyd,
2013). In this circumstance, the standing genetic variance
can be assumed to be ever present (Jiang et al., 2005).
We thus use a quantitative genetics approach without
specifying gene frequencies and in which adaptation is
not mutation limited. The approach allows evolutionary
equilibria as a function of parameter values to be deter-
mined easily and quickly. This makes feasible running
large numbers of simulations across parameter space
where each is run up to several thousand days to equi-
librium. Given initial parameter values, our simulation
results are repeatable and reversible (Fig. 5), consistent
with the view that evolution is often repeatable given
similar environmental conditions (Blount et al., 2018).
Of course, in nature, such conditions are most unlikely
to be met due to the complexity of the biotic and abi-
otic interconnectivities and feedbacks, and alternative
steady-state solutions may exist. Oscillatory and chaotic
behaviour occurs in predator-prey systems including NPZ
constructs in some circumstances (Edwards and Brindley,
1996; Sherratt et al., 1997; Gibson et al., 2005). As can be
seen in many of the simulations presented here, there are
no noticeable oscillations in biomass at equilibrium that
facilitates the attributing of the variation in final equi-
librium values to variation in parameter values. Results
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with evolution are nevertheless highly contingent on the
initial values of the parameters (conditions) we use and
are thus consistent with the divergent outcomes observed
in nature and in laboratory experiments. We demonstrate
a regression method to assess the quantitative importance
of the parameters in explaining the variation in out-
put variables in samples of simulations across parameter
space both for the Phyto chemostat (Fig. 4) and the NPZZ
system (Fig. 7). This method may be useful generally in
analysis the results of NPZ type simulations. The role
of interactions between multi-stressor traits is potentially
of great importance in plankton communities, requiring
further study (Taherzadeh et al., 2019) In our results,
parameter main effects are dominant quantitatively but a
higher-order interaction was clearly evident in the Phyto
chemostat indicating synergism in the response to multi-
stressors (Fig. 3).

A consistent and expected feature of the results is that
higher trophic levels have lower biomass at equilibrium
(for example, Figs 9 and 10). More interesting is that
maximum growth rate and SfG also follow this trend as
an emergent property of GREM (Figs 5, 6, 10 and 11).
Equilibrium values are usually reached in the simulations
in a few hundred days (for example, Figs 5 and 6) but the
rate of approach can be affected by parameter values. For
example, higher mortality indicating more intense selec-
tion, or increase in the size of the evolutionary increments
set by the variable evol increases the rate of approach to
equilibrium (Fig. 6). Equilibrium values in the simulations
attained over 100 s of days are consistent with experi-
mental evolution in plankton populations where genetic
adaptation to stressors occur on similar timescales, much
shorter than that for ongoing climate change (Bach et al.,
2018).

The results shown in Fig. 7 provide an insight as to
whether high or low parameter values are associated with
stress as judged by Zoo2 loss (Fig. 7A), and thence whether
this stress is associated with higher or lower values of
μmRT (Fig. 7B). We can see that higher basal respiration
(CRconst), lower AE, and lower rates of energy input
(higher value of Dep, restraining primary production) are
all associated with higher stress and lowering of μmRT.
The direction of evolution described by GREM is entirely
consistent with intuitive expectations of the effect of
higher or lower values of these parameters.

In total then, the behaviour of the model running
with GREM describing evolution is consistent with expec-
tations. The GREM approach allows us to tentatively
explore the implications of climate change on evolution
and ecology in different model systems in future research.
Because of its fundamental importance for adaptation
and survival, evolutionary change needs to be more exten-
sively represented in models of climate change. Our

results show that when the maximum growth rate of
an organism is allowed to evolve, as occurs in the real
world, resource allocations and acquisitions show differ-
ent dynamics to when such evolution is disallowed; these
changes are reflected in changes in population dynamics
and indeed in the evolution of μmRT and thence in
the expression of μT. We must then also expect that
organisms growing in mature ecosystems (K-type, e.g.
in the temperate summer) will have lower μmRT than
those growing in immature ecosystems (r-type organisms,
e.g. in the spring bloom). This can then also explain
why mixoplankton, which one may otherwise expect to
be able to grow rapidly by mixotrophically exploiting
various nutrient resources but which also live in mature
ecosystems (Mitra et al., 2014b), actually grow rather
slowly compared with many non-mixoplankton isolates
from immature ecosystems (Flynn et al., 2019).

Evolution in response to stress and temperature
changes will be affected by changes in the whole
ecosystem as there is adaptation to new conditions (Figs. 9
and 10). This is in line with the suggestion that complex
models with competing species may give more realistic
responses of species to climate change (Bach et al.,
2018). The increased sensitivity of populations in the
absence of evolution of μmRT (Figs. 8 and 10) implies
also that small real populations, lacking genetic diversity,
are also more likely to become extinct. In a system not
impacted by frequent and/or severe stresses, μmRT evolves
upwards, with elevated SfG, lowering the likelihood of
extinction, and stabilizing trophic dynamics. Conversely,
in an environment where conditions are severe more
frequently, as expected under climate change (Doney et al.,
2012; Thornton et al., 2014), μmRT evolves downwards
(Figs. 5, 9 and 10B and F); evolution under climate
change would then decrease production but enhance
the prevention of extinction through evolutionary rescue
(Bell, 2013; DeLong and Belmaker, 2019).

Interestingly, our simulations suggest that advantages
for growth brought about by elevated temperatures
(Toseland et al., 2013) may be countered at least in part
by the evolution of decreased μmRT such that μmT is
ultimately little changed (Fig. 10D); this will be so unless
there are concurrent changes in factors that decrease
stress so allowing an increase in μmRT that de facto exploits
an improved SfG. Growing at higher temperatures
raises the catalytic efficiency of enzymes and will thus
alter resource allocations, unless thermal tolerance is
approached, and costs or maintenance exceed gains.
Here, we considered a generic stress that raises catabolic
respiration and otherwise decreases SfG; for marine
plankton, an example of such a stressor is OA. Responses
to temperature changes and OA are widely acknowledged
as being multi-stressors for marine organisms (Sommer
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et al., 2015), to which we can add the classically considered
issues of nutrient, light availability and mixed layer depth;
all these factors are expected to affect SfG in reality.

There are other features of organisms that are affected
by growth rate, and hence that will impact upon compet-
itive advantage and evolution, that we do not explore in
our model but should be borne in mind. Some examples
include the following: Organisms growing at different
temperatures or under different types of nutrient stress
often display different allometric responses (e.g. organ-
isms may be larger when growing at low temperatures,
affecting resource acquisition; see also Finkel et al., 2010).
Behavioural responses of starved animals may expose
them to different risks of predation. Such features can
be included in the next explorations of the application of
GREM—here we wished to demonstrate the concepts in
a comprehensive way using an otherwise simple model.

The work we have undertaken raises many additional
questions concerning evolution and modelling thereof.
Is there much to gain from simulating the evolution
of μmRT using an individual-based-model approach, or
a multispecies consortium rather than functional type
descriptions? How are dynamics affected by evolution in
organisms that enter some form of stasis (encystment)
under deleterious conditions? How important is the rel-
ative rate of evolution of different components in the
food web? On the flip side, one may question whether
explicitly modelling evolution is more useful than extend-
ing the DARWIN (Follows et al., 2007) approach and
just supply a very large number of configurations for
each functional types (including predators and now also
mixoplankton; Flynn et al., 2019). By allowing each plank-
ton functional type to evolve, a computationally compact
approach such as GREM may be cheaper to run in pro-
longed simulations than simulating many different func-
tional type descriptions each differing in their fixed maxi-
mum growth rate. Understanding better how stress and
satisfying organism’s demand for resources affects their
ecology and thence ecosystem dynamics as each organism
group evolves is also likely to be an interesting exercise.

To operate GREM within a simulation framework that
requires the transference of material between adjacent
grid cells, such as in 3D models, some thoughts are
required for how to best represent the state variable
describing μmRT. In such models, it is necessary to define
state variables in terms of mass (e.g. mgN m−3); a state
variable with units of d−1 cannot be exchanged (shared)
between grid cells. However, the value of μmRT represents
a metabolic capacity, analogous to an enzyme activity
(i.e. the kcat value, with units of mole substrate per mol
enzyme per second). As such the rate documented by
μmRT is associated with a mass of biochemical com-
ponents and could equally well be associated with a

concentration of biochemical material (e.g. with units
of mgN m−3), where each unit of that component is
associated with an activity potential residing within an
organism (which is assigned a state variable with mass
concentration units, as usual).

CONCLUSION

We conclude that it is as important to consider the evo-
lution of μmRT in models as it is to include descriptions
of competing species to provide more realistic simulated
responses of ecology to climate change (Bach et al., 2018).
GREM is computationally inexpensive to operate, requir-
ing only one additional state variable for the evolving
μmRT of each simulated organism. Although explored
here for plankton dynamics, we suggest that conceptual
underpinnings of GREM, which μmRT evolves to allow an
organism to match its demands for resources against the
supply, is likely to be universal across all life forms. As such
GREM provides a useful tool to explore evolution affect-
ing individual species, ecosystems and biogeochemical
processes at all levels.
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