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Abstract

The lipids that make up biological membranes tend to be the forgotten molecules of cell biology. 

The paucity of data on these important entities likely reflects the difficulties of studying and 

understanding their biological roles, rather than revealing a lack of importance. Indeed, the lipid 

composition of biological membranes has a profound impact on a diverse array of cellular 

processes. The focus of this review is on the effects of different lipid classes on the function of 

mitochondria, particularly bioenergetics, in health and disease.

Introduction

The mitochondrion is a fascinating organelle comprising inner mitochondrial membranes 

(IMM) and outer mitochondrial membranes (OMM) that serve distinct and no overlapping 

functions. Though the lipid composition of these structures has typically received little 

attention, a recent flurry of publications has revealed that mitochondrial lipids modulate the 

energy producing and cell death controlling functions of this organelle. Herein, we will 

discuss the mechanisms linking lipids to changes in cellular bioenergetics and other 

mitochondrial functions in normal physiology and will explore how disruption of the 

mitochondrial lip dome influences the progression of cardio metabolic disease.

Oxidative phosphorylation (OXPHOS) consists of a sequence of reactions by which energy 

from electron donors is transduced to generation of a proton motive force that culminates in 

the synthesis of ATP. Inefficiency in the OXPHOS system can induce pathology by 

impairing bioenergetics, creating redox imbalances, and promoting oxidative stress. In 

particular, compromised mitochondrial function is regarded as a hallmark in obesity-related 
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metabolic syndrome [1]. Evidence is rapidly mounting that this and similar disorders are 

caused by a pathological accumulation of specific intra cellular lipids [2,3]. One 

consequence of such lipid imbalances is an alteration in the lipid milieu of mitochondrial 

membranes, specifically the IMM wherein the OXPHOS enzymes reside. The phenotypes 

caused by human mutations that perturb IMM lipids directly are severe, sometimes fatal, 

and are characterized by mitochondrial dysfunction, including impaired respiration [4–7]. 

Therefore, it is reasonable to hypothesize that the IMM lipid imbalances associated with 

metabolic disorders might have significant consequences for mitochondrial electron flux and 

efficiency also.

The biophysical effects of altered membrane lipid composition on the OXPHOS system are 

complex and multifaceted. The IMM primarily consists of a few classes of abundant 

phospholipids (phosphatidylcholine [PC], phosphatidylethanolamine [PE], cardiolipin [CL], 
and phosphatidylinositol [PI]), with the remainder consisting of other complex lipids that 

are of relatively low abundance (sphingolipids, cholesterol, and others). The effects of 

perturbing a few of the individual lipid classes, such as PE and CL, on electron transport and 

OXPHOS enzymes are relatively well described [8,9]. However, the various perturbations in 

multiple classes of lipids that might occur in a complex disorder such as obesity are very 

difficult to model and therefore the consequences are more poorly defined. Moreover, there 

are several lipid species (such as ceramides) whose abundances are low but that exhibit 

potentially profound effects on OXPHOS that remain poorly described. In addition to 

directly influencing protein function via lipid protein interactions, the lipid composition of 

the IMM also modulates cristae morphology [10], mitochondrial fusion and fission [11,12], 

the assembly of the OXPHOS complexes into super complexes [13], metabolite transport, 

and lipid micro domain formation [14], each of which indirectly affects bioenergetics.

The direct or indirect effects of lipids on the OXPHOS system can be compartmentalized 

into four distinct nodes as follows (Figure 1) [15]: (1) the initial donation of electrons from 

NADH and succinate to complex I and II; (2) electron transfer from complex I and II to 

complex III and then complex IV, whereas protons are pumped into the intermembrane 

space, (3) maintenance of the proton motive force across the IMM in the face of 

mechanisms that carry protons down their con centration gradient back into the 

mitochondrial matrix (mitochondrial uncoupling), and (4) proton current flux through 

complex V to drive ATP synthesis. In step 1, although the efficiency of electron donation 

from NADH or succinate to the electron transport system (ETS) is not known to be affected, 

the supply of NADH and succinate is completely controlled by the rate of import of 

substrates such as pyruvate via the mitochondrial pyruvate carrier or fatty acids via carnitine 

palmate transferase and their oxidation in the tricarboxylic acid cycle. These import 

processes can be affected by IMM lipid composition. In step 2, electrons can prematurely 

‘jump’ to molecular O2 or other ac- captors before doing so in a highly controlled manner in 

complex IV and their propensity to do so appears to be dramatically increased when the 

efficiency of electron transport is low. For example, electron stalling in complex III is 

thought to lead to reverse electron transfer in complex I, which then enables electrons to 

reduce O2 thereby contributing a large fraction of the reactive oxygen species burden [16]. 

The oxidants that result initiate the oxidative stress cascade and also have important 
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signaling roles. Membrane lipids may directly affect electron transfer efficiency within each 

respiratory complex, as well as by modulating electron transfer between the complexes. This 

is profoundly affected by formation of ETS super complexes and the lateral infusibility of 

electron carriers, which are modulated by IMM lipid composition. In step 3, the proton 

gradient may be modulated by opening/closing of cristae junctions or other membrane 

dynamics events, which can produce subdomains of the intermembrane space that can 

achieve a higher proton concentration. In contrast, the proton gradient can become dissipated 

by proton current flux independent of complex V, which is commonly referred to as ‘proton 

leak’. Both of these can be affected by the IMM lipid composition. In fact, the predominant 

uncoupling protein (UCP1) is thought to be directly activated by lipids [17,18]. Step 4 is 

stoichiometric ally fixed [19], and its activity is dependent on total cellular work (DGATP). 

There is currently no evidence that IMM lipids have positive or negative effects on the 

energetic efficiency of ATP production per proton flux.

In this review, we shall summarize our limited understanding regarding the lipid 

composition of mitochondrial membranes, how these lipids are generated and transported 

into mitochondria, and their effects on physiology.

Lipid composition of mammalian mitochondria

The lipid composition of mitochondrial membranes is distinct from any other organelle. In 

liver, mitochondria consist of 34–55% PC, 19–36% PE, 12–23% CL, 5–8% PI, 1% 

phosphatidylserine (PS), 1e2% lysophospholipids, 1e3% sphingomyelin (SM), and 1e2% 

phosphatidic acid (PA) [20]. In comparison, skeletal muscle mitochondria consist of ~40% 

PC, ~ 30% PE, ~15% CL, ~7% PI, ~3% PS, ~3% Lysol-PC, and ~2% SM [21]. The 

variability in reported data, potentially arising from differences in mitochondrial purity and 

mass spectrometry procedures, makes it difficult to conclude whether there are meaningful 

differences in mitochondrial membrane lipids between different tissues. It is also unknown 

whether there are tissue-dependent relationships between membrane lipid composition and 

mitochondrial functions [15].

Unlike the plasma membrane, cholesterol and SM are not major constituents of 

mitochondria. Because these lipids are largely responsible for the formation of micro 

domain in the plasma membrane, it is unclear to what extent mitochondrial membranes form 

lipid domains analogous to ‘lipid rafts’ formed at the cell surface. Nonetheless, it is clear 

that some lipid classes segregate to form domains of a particular curvature or orientation. 

Mitochondria are highly abundant in PE and CL, both conically shaped no bilayer lipids that 

stabilize the negatively curved inner leaflet in cristae (Figure 2). CL is highly abundant only 

in mitochondria and has been traditionally used as a marker of mitochondrial content. The 

lipid composition of mitochondria is kept distinct from other organelles by the hydrophilic 

barrier of the cytosol, specific lipid carriers at mitochondrial contact sites, and mitochondria 

resident lipid-synthesizing enzymes.

Mitochondria consist of two phospholipid bilayers: the OMM and the IMM. The OMM is 

lipid-rich, relatively smooth, and highly fluid, whereas the IMM is protein rich, extensively 

folded, and highly compartmentalized. The phospholipid composition of the liver OMM is 
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44–59% PC, 20–35% PE, 5–20% PI, with the remaining phospholipid pool consisting of 

PS, PA, CL, and lysophospholipids [20]. By contrast, the IMM consists of 38–45% PC, 

32–39% PE, 14–23% CL, 2–7% PI, with the remaining consisting mostly of PS, PG, and 

lysophospholipids. In the following context, we discuss the pathways of phospholipid and 

sphingolipid biosynthesis, and their potential roles in modulating mitochondrial 

bioenergetics.

Glycerophospholipids

Pathways for phospholipid biosynthesis differ in some aspects between mammalian cells and 

unicellular or genism’s such as yeast (Figure 3). In both cases, the endoplasmic reticulum 

(ER) is the major hub for phospholipid biosynthesis. As intermediates in the pathway of 

triglyceride synthesis, which also occurs at the ER, PA, and diacylglycerol (DAG) serve as 

precursors for the remaining seven classes of phospholipids (PC, PE, CL, PI, PS, PG, and 

CDP-DAG). In yeast, PA is the predominant precursor, which is converted to CDP-DAG by 

the enzyme Cds1 (ER) or Tam41 (mitochondria). In yeast, all classes of phospholipids can 

be derived from CDP-DAG. In contrast, mammalian cells appear to not possess the ability to 

generate PS from CDP-DAG (reaction mediated by Cho1), making the PA/CDP-DAG 
pathway precursors only for CL, PI, and. PG Instead, PC, PE, PS are generated through the 

Kennedy Pathway, by which DAG is converted to PE or PC by reaction with CDP-

ethanolamine or CDP-choline, respectively [22]. PE or PC can then be converted to PS by 

PSS1 or PSS2 [23,24]. Yeast also has the Kennedy pathway, but appears to not possess the 

PSS1 and PSS2 enzymes to synthesize PS from PE and PC. It is unclear how or why 

mammals relegate the synthesis of PC, PE, PS to the CDP ethanolamine or CDP-choline 

route, rather than also having the CDP-DAG route.

It is believed that ER-synthesized phospholipids are a major contributor to the lipid content 

of mitochondria. In both mammals and yeast, phospholipid molecules are thought to be 

transported into mitochondria primarily at mitochondrial-associated membranes sites of the 

ER, which are sites of close apposition between mitochondria and ER that have a unique 

protein composition and function [25–27]. However, mutants for mitochondrial associated 

membranes assembly do not demonstrate gross impairment in mitochondrial membrane 

biogenesis, suggesting an alternate route [26]. Instead, lipids may also enter mitochondria 

through lysosomes via vacuole and mitochondria patch (clamp) [28,29]. Phospholipids are 

transported across these contact sites by class-specific lipid carriers such as PRELID1/Ups1 
for PA [30,31], STARD7 for PC [32], and PRELID3b/ Ups2 for PS [33,34]. For reasons 

that are currently unknown, PE generated at the ER does not seem to be a significant 

contributor to mitochondria lipid content [35]. Rather, mitochondrial PE is generated by PS 
decarboxylase (PSD) which resides in the IMM [8,36,37]. CL, a phospholipid mostly 

unique to mitochondria, is also generated in the IMM by a sequence of reactions [38,39] 

that involves combining two phospholipid intermediates (PG and CDP-DAG) to generate a 

four-acyl chain phospholipid, which is catalyzed by CL synthase (CLS). Many of the 

phospholipids, but especially CL, undergo trans acylation reactions that appear to be critical 

for their proper function in mitochondria as human mutations in this pathway are lethal [4].
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Metabolic insults perturb the phospholipid milieu in key metabolic tissues. In the liver, 

progression of nonalcoholic fatty liver disease coincides with robust changes in the cellular 

lipedema in mice [40–42] and in humans [43,44]. However, although some studies have 

linked these lipid signatures to changes in mitochondrial function [40,41], there are currently 

no reports that describe lipidomic changes that occur specifically in the mitochondria. In 

skeletal muscle, obesity or exercise induces changes in the cellular lipedema in mice [45,46], 

rats [47,48], and humans [49,50]. Similarly, it is unclear to what extent these changes reflect 

or elicit changes to the mitochondrial lipidome. We recently reported perturbations that 

occur in the muscle mitochondrial lipidome in response to exercise or inactivity [8] with 

changes in PE and CL being the common features. In mouse brown adipose tissue, cold 

exposure promotes a disproportionately large increase in CL content, suggestive of 

mitochondrial phospholipid remodeling [39]. It is unknown whether these changes in 

mitochondrial phospholipids represent an adaptive (or maladaptive) mechanism to support 

the bioenergetics or other metabolic demands in these situations or whether they are merely 

epiphenomena of metabolic rewiring that occurs upon these interventions.

What is the evidence that mitochondrial phospholipids affect the bioenergetics of the 

organelle? Phospholipids are known to directly interact with the enzymes of the ETS and to 

affect their activities. CL is tightly and specifically bound to Complex I and sustains its 

structural integrity [51], whereas PC and PE are more loosely bound and modulate the 

catalytic activity of complex I. Similarly, PE binds to complex II [52], PE and CL to 

complex III [53,54], PC, PE, and CL to complex IV [55], and CL to complex V [56]. PE 
and CL are also important for the individual ETS complexes to assembly into super 

complexes [57,58], which are believed to facilitate the efficient transfer of electrons. In 

addition, PE and CL also regulate proton leak by interacting with UCP1 [17,18] and the 

ATP/ADP carrier [59,60]. IMM lipids also indirectly affect bioenergetics by modulating 

cristae morphology [11], the formation of cristae junctions [10], as well as mitochondrial 

fusion, fission, and mycophagy [11,12,61], all of which can affect the establishment and 

maintenance of the proton gradient (JM). It is also conceivable that mitochondrial lipids 

regulate mitochondrial substrate flux through metabolite transporters of the mitochondrial 

carrier family and carnitine palmitoyltransferase-1 [62]. Thus, phospholipid composition of 

the IMM, particularly the content of PE and CL, has strong implications for the activity and 

efficiency of OXPHOS.

Human mutations that promote loss of mitochondrial PE or CL are characterized by 

oxidative stress and have devastating pathological consequences. Recent studies identified 

families with mutations in the PISD gene (which encodes the PSD enzyme) that lead to 

severe mitochondrial dysfunction and are associated with congenital cataracts, short stature, 

facial dysophism, platyspondyly, ataxia, and intellectual disability [5,6]. Whole-body 

deletion of the mouse gene encoding the PSD enzyme causes embryonic lethality [36]. 

Mitochondria from embryonic fibroblasts of these mice are swollen, rounded, and 

fragmented, consistent with the idea that PE is important for cristae development and overall 

mitochondrial morphology. In CHO cells, reducing PSD expression decreases the activities 

and/or abundance of ETS complex I, II, and IV, super complex formation, and ATP 
synthesis [37]. Skeletal muscle specific loss of PSD promotes rapid loss of muscle mass 
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[8,63] that culminates in diaphragm failure and lethality [8]. In the liver, a defect in 

mitochondrial PS transfer promotes nonalcoholic steatohepatitis [64]. Together, these studies 

demonstrate that mitochondrial PE is absolutely required not only for normal mitochondrial 

function but also for prenatal and postnatal overall health.

There are two known human genetic defects attributed to defects in enzymes of 

mitochondrial CL metabolism. Barth syndrome is an X-linked genetic disorder that is 

caused by a mutation in the TAZ gene, which encodes a CL transacylase [4]. Affected 

individuals lack mature CL and have abnormal mitochondrial cristae and reduced oxidative 

capacity in heart and skeletal muscle [65]. A mouse model of Barth syndrome recapitulates 

many of the human disease phenotypes [66]. Sengers syndrome is an autosomal-recessive 

disorder caused by a mutation in the gene that encodes the mitochondrial acyl glycerol 

kinase (AGK) enzyme [7]. Individuals with Sengers syndrome suffer from congenital 

cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic 

acidosis. It is thought that the disease-causing mutation leads to a loss of AGK enzymatic 

activity, decreasing the synthesis of mitochondrial PA, an important precursor for CL 
synthesis [7]. It is noteworthy that these defects in CL deficiency likely reflect a 

combination of effects on OXPHOS system, as well as on mycophagy and apoptosis [67,68] 

Other studies in genetically modified mice have also linked CL biosynthesis to 

mitochondrial function [69,70]. Adipose tissueespecific inactivation of CLS caused robust 

metabolic abnormalities that culminated in defects in adipose tissue thermogenesis and 

whole-body glucose homeostasis [39]. It is likely that other tissues will also have interesting 

and important phenotypes upon perturbation of CL synthesis and remodeling.

The physiological consequences of changes in other lipid classes are more difficult to 

interpret, as such changes are often not specific to mitochondria. For example, because 

mitochondrial PC is generated by enzymes located in the ER, it is not possible to 

specifically eliminate or modulate mitochondrial PC. Deletion of the genes encoding the ER 
enzymes that synthesize PC perturbs phospholipid composition throughout the cell, leading 

to confounding and complex phenotypes. Nevertheless, they can provide some insights 

regarding the roles of these lipids in mitochondria. A rare congenital muscular dystrophy 

disease in humans is caused by homozygous or compound heterozygous mutations in the 

gene encoding the choline kinase-β [71].

These individuals have reduced PC, abnormally enlarged mitochondria, and early-onset 

muscle wasting, muscle weakness, and hypotonic. A defect in choline kinase-β also leads to 

muscular dystrophy in mice, with swollen mitochondria that have lower membrane potential 

[72]. Altogether, it is clear that mitochondrial phospholipids play an essential role in 

supporting, and perhaps controlling, mitochondrial respiratory flux and efficiency. In turn, it 

is of significant interest to identify mechanisms by which IMM phospholipids are 

themselves modulated in response to metabolic insults and thereby regulate OXPHOS flux 

and efficiency or other aspects of mitochondrial function.
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Sphingolipids

Despite being minor constituents of the mitochondrial liposome [73], sphingolipids 

particularly C16 ceramides potently affect cellular bioenergetics (Figure 4). They accrue in 

inner and outer mitochondria membranes under conditions of nutritional overload, serving as 

signals of lipid excess that influence the properties of this important organelle [74].

In mammals, sphingolipid production involves a 4-step biosynthetic cascade that converts 

fatty and amino acids into ceramides, the precursors of the most complex sphingolipids (e.g. 

SMs, gangliosides, etc.). In the first step in the pathway, serine palmitoyltransferase 

condenses serine and palmitoyl- CoA to 3-ketodihydrosphingosine, which is a transient 

intermediate. The enzyme 3-ketodihydrosphingosine reductase rapidly converts this 

molecule into dihydrosphingosine to create the basic structure of the sphenoid backbone. 

One of six (dihydro)ceramide synthases (CERS1–6) adds a variable acyl chain to the 

scaffold, with each enzyme differing in substrate specificity and tissue distribution [75]. The 

CERS6 enzyme produces the mitochondrial C16 ceramides that predominantly influence 

function of the organelle [76]. The final reaction, catalyzed by dihydroceramide desaturase 1 

(DES1), inserts a double bond into dihydroceramides to produce the more abundant 

ceramides [77]. In selected tissues such as the skin and the gut, a different desaturase 

isoform (DES2) inserts a hydroxyl group, rather than inserting the double bond. This 

reaction produces phytoceramides that are important for barrier function.

In most tissues, ceramides are the first major species of sphingolipid to accumulate and are 

major regulators of cellular metabolism and energetics. Though de novo sphingolipid 

synthesis occurs predominantly in the ER, scattered reports suggest that some enzymes in 

the pathway reside in mitochondria, including CERS1,2,4, and 6 and neutral 

sphingomyelinase [78]. Therefore, mitochondrial sphingolipids might be regulated 

independently of other organelles in response to signaling or metabolic cues.

SM, the most abundant sphingolipid, is a cylindrical lipid that includes a choline head group 

(Figure 2) [79]. Though the head group is similar to PC, the hydrophobic regions are very 

different. For one thing, they frequently have a mismatch in acyl chain lengths. This leads to 

interdigitating of the fatty acids which is implicated in forming ‘metastable’ membrane 

micro domains [80]. They have a much higher melting temperature than PC, for example. 

Moreover, the ceramide moiety of SM binds cholesterol much more tightly than glycolipids 

bind cholesterol. This likely contributes to the phase separation that promotes the formation 

of rafts. In the absence of the choline head group, the ceramides displace cholesterol and 

pack tightly with one another, leading to the speculation that they form stable membrane 

platforms, and perhaps even channels in the mitochondrial outer membrane [81,82].

Studies conducted in cultured cells or isolated mitochondria demonstrate that ceramides 

inhibit electron transport chain activity and induce formation of reactive oxygen species. The 

initial experiments were carried out with the no physiological short-chain ceramide analog 

C2-ceramide [83,84], but similar observations were later made using naturally occurring 

sphingolipids or following experimental manipulations to influence the endogenous 

sphingolipid pool. For example, Zig don et al. [85] found that treating isolated mitochondria 
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with C16 ceramide, sphingosine, or sphingosine led to inhibition of complex IV. By 

comparison, very long chain ceramides (e.g. C24-ceramides) failed to affect complex 

activity. Richer et al. [86] determined that overexpression of CERS6, which produces 

mitochondrial C16 ceramides and inhibits complex II. Similarly, inhibition or knockdown of 

sphingomyelinase synthase-2 led to accumulation of ceramides and impairments in 

mitochondrial respiration [87]. In many of these studies, the interventions were shown to 

also decrease the IMM potential and ATP production and increase reactive oxygen species.

Similar findings were also reported in mice undergoing experimental manipulations, 

targeting the sphingolipid pool. (a) Knockout of the mouse ceramide transport protein 

CERT, which carries ceramides from the ER to the Golgi for SM production, increases 

mitochondrial ceramide levels while reducing complex IV activity [88]. (b) CERS2-null 

mice undergo massive remodeling of the hepatic sphingolipid pool, including a marked 

upregulation of C16-ceramides. These animals exhibit impairments in complex II and IV, 

increased oxidative stress, and a profound hepatopathy. (c) Mice lacking one copy of the 

Cers2 gene exhibit impairments in hepatic complex I, II, and IV and susceptibility to hepatic 

insulin resistance and steatosis, upon challenge with a high fat diet [86]. In this latter study, 

the effects of CERS2 haploinsufficiency were reversed by treating with the serine 

palmitoyltransferase inhibitor muricin, suggesting that the accumulation of C16-

sphingolipids drove the mitochondrial pathology. (d) Mice lacking CERS6 in the whole 

body, liver, or brown adipocytes have increased mitochondrial oxygen consumption and 

protection from hepatic steatosis and insulin resistance [76,89]. (e) Pharmacological 

inhibition or genetic depletion of CERS1, the major CERS isoform in skeletal muscle, 

increases muscle respiratory capacity [90,91].

The mechanism(s) by which C16 ceramides influence the IMM and respiratory complex 

activity remain elusive. Researchers have speculated that C16 ceramides, which have unique 

biophysical properties [81], might influence the hydrophobicity and other biophysical 

properties of the membrane and therefore influence complex activity or stability [92]. 

However, little experimental support for this idea has thus far emerged. Scientists have also 

recommended that the lipid might serve as an allosteric effector of individual respiratory 

chain complexes. Using a biotin-labeled C6-ceramide coupled with a proteomics approach, 

Kota et al. [93] identified a complex IV subunit as a putative ceramide binding protein, but 

the functional consequences of this interaction have not been elucidated. Hammer Schmidt 

et al. [89] used a SILAC-based proteomics approach to identify sphingolipid-binding 

proteins, using the functional sphingosine analog pacSph to identify proteins that interacted 

with sphingolipids produced by CERS6 but not CERS5. They identified mitochondrial 

fission factor as a downstream effector linking ceramides to an alteration in mitochondrial 

morphology and diminution of respiratory capacity [89]. Indeed, they determined that 

CERS6 depletion produced fused, very large, and highly efficient mitochondria; 

mitochondrial fission factor was essential for these effects [89]. These studies support prior 

observations by Smith et al. [94], who reported that fission was requisite for the impairment 

in oxygen consumption caused by short-chain ceramide analogs in vitro. Nonetheless, these 

ceramide effects on fission are unlikely to fully explain the effects of the lipid on cellular 
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bioenergetics, as sphingolipids have acute effects on the isolated organelle that cannot be 

downstream of effects on mitochondrial OMM dynamics.

When ceramide levels increase to even higher levels, they cause profound mitochondrial 

impact that go beyond energetic impairment to cell death. Highly elevated C16-ceramide 

induces mitochondrial outer membrane permeabilization (MOMP), thus promoting 

cytochrome c release to drive apoptosis [95]. Birbes et al. [96] found that overexpressing a 

mitochondrial targeted sphingomyelinase, which produces mitochondrial ceramides, induced 

apoptosis in culture lines. By comparison, overexpressing sphingomyelinase constructs 

directed to other organelles had no effect. Jain et al. [97] similarly demonstrated that 

diverting ER ceramides from the Golgi apparatus to the mitochondria (i.e. by overexpressing 

a mitochondrial-targeted ceramide transfer protein) induced Bax-dependent apoptosis. 

Convincingly, inhibition of enzymes in the ceramide biosynthesis pathway negates the 

effects of many proapoptotic stimuli [78].

Several mechanisms have been proposed to link mitochondrial ceramides to MOMP. 

Ceramides have been shown to promote translocation of the proapoptotic protein BAX to 

mitochondrial membranes, functioning synergistically with the protein to induce 

oligomerization that promotes MOMP [98]. Voltage-dependent anion channel 2 has also 

been identified as a mitochondrial ceramide binding protein that enhances MOMP [99]. 

Siskind et al. [100–103] have also reported that C16 ceramides are sufficient to form 

channels that directly allow passage of molecules such as cytochrome c. The channels rely 

on the formation of hydrogen bonds between ceramides, which cannot occur between the 

dihydroceramides [103,104]. The ant apoptotic protein BCLXL1 disrupts formation of these 

ceramide channels [105–107]. Ceramides have also been shown to alter signaling pathways 

that provide ant apoptotic signals, such as the prosurvival protein kinase Akt/PKB [108], but 

it is unclear whether these effects emanate from ceramides localized in mitochondria.

Although the paragraphs aforementioned discuss sphingolipid actions on mitochondria using 

mammalian models, several groups have additionally probed this interaction in yeast. 

Notably, yeast sphingolipids are considerably different than those found in mammals, 

comprising phytoceramides in place of ceramides and mannose diinositolphosphoceramide 

in place of complex lipids such as SM and gangliosides. Nonetheless, deletion of genes 

involved in sphingolipid production in Saccharomyces cerevisiae often alters mitochondrial 

morphology and function, producing phenotypes such poor growth on no fermentable 

carbon sources or by the appearance of petite colonies [109,110]. Additional work is 

necessary to determine downstream mechanisms and to tease out the functional differences 

between yeast sphingolipids and their mammalian counterparts.

These ceramide actions have clinical implications in the context of obesity or inflammation. 

For example, inhibition of ceramide production in mice reverses insulin resistance and 

hepatic steatosis [74]. These actions are attributable, at least in part, to changes in 

mitochondrial energetics. Moreover, ceramide induction of apoptosis contributes to diabetes 

and heart failure, by killing pancreatic beta cells and cardio myocytes, respectively [94]. 

Because of these observations, pharmaceuticals targeting ceramide biosynthesis are 

emerging as attractive potential therapies for a broad spectrum of cardio metabolic disorders.
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Concluding remarks

Membrane lipids are abundant and fairly difficult to both analyze and manipulate with 

precision. As a result, our understanding of the biological impact of these common 

molecules dramatically lags behind other small and large biological molecules. We have 

clear evidence that the quantity and quality of membrane lipids have profound effects on 

mitochondria, particularly on the complex processes that underlie OXPHOS. We are still at 

the very beginning in our development of a mechanistic understanding of these effects. As 

that knowledge evolves in concert with an enhanced ability to quantitate mitochondrial lipids 

in different physiological and pathophysiological states, we will be better able to define (and 

hopefully someday use) these complex interactions to manipulate mitochondrial efficiency 

and function.
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Figure 1. Four steps of ETS energy transduction.
Step 1: NADH or succinate donates electrons to complex I or II, respectively. Step 2: 

Electrons undergo sequential chain reactions within complex I whose action drive its proton 

pumping. Complex II does not possess a proton pumping activity. Both complex I and II 

donate the electrons to coenzyme Q and transfers them to complex III. Complex III also 

channels energy from the electrons to pump protons and hand them over to cytochrome C 

that carries them to complex IV. Energy from the electrons is again extracted in complex IV 

to pump protons, after which they are accepted by molecular oxygen to become water. Step 

3: Protons pumped by complex I, III, and IV becomes permeated in the intermembrane 

space. The proton gradient across the inner mitochondrial membrane is determined by the 

number of protons pumped divided by the volume of the intermembrane space which can be 

affected by closing of cristae junctions or mitochondrial fusion/fission. Proton gradient can 

also become dissipated by uncoupling proteins. Step 4: Cellular work (ADP/ATP) drives the 

complex V to channel the proton motive force for ATP resynthesis. Cyt C, cytochrome C; 

QH2/Q, qunol/quinone; UCP, uncoupling protein; ETS , electron transport system.
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Figure 2. Shapes of lipids and their effects on membrane curvature.
Cylindrical lipids such as PC, SM, PI, and PS produce the planar portion of the membrane 

bilayer. In contrast, PE, CL, PA, and lysophospholipids are cone-shaped nonbilayer forming 

lipids that produce positive or negative curvature in the membranes. PC, 

phosphatidylcholine; SM, sphingomyelin; PI, phosphatidylinositol; PS, phosphatidylserine; 

PE, phosphatidylethanolamine; CL, cardiolipin; PA, phosphatidic acid.

Funai et al. Page 18

Curr Opin Cell Biol. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Pathways for phospholipid biosynthesis in human and yeast.
Synthesis of phospholipid branch out of the pathway of triglyceride biosynthesis which 

occurs at ER. All glycerophospholipids are generated from PA or DAG. In yeast, all 

phospholipids can be generated from PA, whereas mammals do not possess the ability to 

generate PE, PC, PS from PA. Rather mammals rely on the Kennedy pathway for their 

syntheses. Lipids generated at ER are transported to mitochondria by class-specific lipid 

carriers. Mitochondria are highly enriched in CL and PE, aided by presence of IMM-resident 

enzymes that generate these lipids. AGL, acylglycerol kinase; CCT/Pct1, 

CTP:phosphocholine cytidylyltransferase; CDP, cytidine diphosphate; CDS1/2/Cds1/ 

TAMM41/Tamm41, CDP-diacylglycerol synthase; CEPT1, choline/ethanolamine 

phosphotransferase; Cho, choline; ChPT1/Cpt1, choline phosphotransferase; CK/Cki1, 

choline kinase; CLS/Crd1, cardiolipin synthase; DAG, diacylglycerol; ECT/Pkt1, 

CTP:phosphoethanolamine cytidylyltransferase; Eth, ethanolamine; EK/Eki1, ethanolamine 

kinase; Ept1, ethanolamine phosphotransferase; ER, endoplasmic reticulum; FA, fatty acid; 

Gly-3-P, glycerol 3-phosphate; Lipin1/Pah1, PA phosphatase; LPA, lysophosphatidic acid; 

PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEMT/

Cho2/Opi3, PE methyltransferase; PG, phosphatidylglycerol; PGP, PG phosphate; PGS1/

Pgs1, PG synthase; PI, phosphatidylinositol; PIS1/Pis1, PI synthase; PS, phosphatidylserine; 

PSD/psd1, PS decarboxylase; PSS1/2/Cho1, PS synthase; PTPM1/Gep4, PGP phosphatase; 

PRELID1/Ups1/ Mdm35, mitochondrial PA transfer protein; PRELID3b/Ups2/Mdm35, 

mitochondrial PS transfer protein; STARD7, steroidogenic acute regulatory protein–related 

lipid transfer domains 7; TAG, triacylglycerol.
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Figure 4. Schematic depicting the influence of sphingolipids on mitochondrial function.
The early steps of the sphingolipid biosynthesis pathway occur in the ER, where acyl-CoAs 

and amino acids combine to form the dihydroceramides and ceramides that are scaffolds for 

complex sphingolipids. These lipids then move to the Golgi apparatus, where additional 

modifications produce the majority of species comprising the cellular sphingolipidome. A 

subset of studies suggests that some of the early biosynthetic steps may occur in 

mitochondria, though this remains and active area of investigation and debate. SPT, serine 

palmitoyltransferase; KDHR, 3-ketodihydrosphingosine reductase; CERS ceramide 

synthase; DES, dihydroceramide desaturase; SMS, sphingomyelin synthase; GCS, 

glucosylceramide synthase; N-SMase, neutral sphingomyelinase; ETC, electron transport 

chain; MOMP, mitochondrial outer membrane permeabilization.
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