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Abstract

Separating facial pose and expression within images requires a camera model for 3D-to-2D 

mapping. The weak perspective (WP) camera has been the most popular choice; it is the default, if 

not the only option, in state-of-the-art facial analysis methods and software. WP camera is justified 

by the supposition that its errors are negligible when the subjects are relatively far from the 

camera, yet this claim has never been tested despite nearly 20 years of research. This paper 

critically examines the suitability of WP camera for separating facial pose and expression. First, 

we theoretically show that WP causes pose-expression ambiguity, as it leads to estimation of 

spurious expressions. Next, we experimentally quantify the magnitude of spurious expressions. 

Finally, we test whether spurious expressions have detrimental effects on a common facial analysis 

application, namely Action Unit (AU) detection. Contrary to conventional wisdom, we find that 

severe pose-expression ambiguity exists even when subjects are not close to the camera, leading to 

large false positive rates in AU detection. We also demonstrate that the magnitude and 

characteristics of spurious expressions depend on the point distribution model used to model the 

expressions. Our results suggest that common assumptions about WP need to be revisited in facial 

expression modeling, and that facial analysis software should encourage and facilitate the use of 

the true camera model whenever possible.

1. Introduction

Facial expression analysis is one of the most studied problems in computer vision, motivated 

by numerous applications in industry, clinical research, entertainment, and marketing. 

Variations in head pose create a significant challenge for facial expression analysis [30], as 

expressions look significantly different from different angles. Disentangling facial 

expression from pose is important for improving expression recognition accuracy, as well as 

from an explainable AI standpoint, as one cannot reliably interpret the decisions of a facial 

behavior analysis system if the expression coefficients are confounded by head movements.

The dominant approach for disentangling pose and expressions within 2D images is to 

project facial shape to the 3D space, where it can be decomposed into rigid (rotation, 
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translation) and non-rigid factors (expressions) (Section 2.1). This process necessitates a 

camera model responsible for the 2D-3D projection. The weak perspective (WP) camera 

(i.e., scaled orthographic camera) is the de facto standard model, used in almost all state-of-

the-art approaches (Section 1.1). The conventional wisdom is that WP camera is appropriate 

when subjects are not close to the camera (Section 1.1); however, to our knowledge, no 

study investigated this claim in 20 years of research. Such an investigation is particularly 

urgent now, as advances in mobile technologies and online communication lead to a surge in 

facial videos recorded using cameras with large field-of-view (FOV) from close distances, 

and WP camera’s approximation errors increase under those circumstances [19].

In this paper, we theoretically and experimentally investigate the suitability of WP camera 

for separating facial pose and expressions. Specifically, we show that WP camera leads to 

spurious expression estimation, thereby introducing pose-expression ambiguity. This paper 

has four contributions. First, we theoretically prove the existence of spurious expressions 

under WP camera. Second, we experimentally quantify the magnitude of spurious 

expressions across a large set of camera configurations, including different FOVs and face 

sizes (Fig. 1) that are representative of a range of modern cameras and common uses (e.g., 

photography, webcam/smartphone recordings). Third, we show that the magnitude of 

spurious expressions varies substantially with the point distribution model (PDM) used to 

model facial expressions. Last, we show that errors in pose-expression separation have 

significant practical implications, as they lead to false positives in Action Unit (AU) 

detection [30].

Our analyses yield the following conclusions, which are important for both users of current 

3D facial analysis software and for researchers developing novel methods.

1. Facial pose and expression cannot be separated with existing methods even when 

WP errors are small, as errors are exacerbated in the optimization process. This 

finding contradicts the conventional wisdom, which suggests that pose and 

expression can be separated with WP if the subject is far from the camera.

2. The PDM used to model expressions can significantly contribute to the 

exacerbation of WP camera’s approximation errors. Future research is necessary 

to design PDMs and optimization procedures that allow for facial pose and 

expression separability.

3. WP camera makes large approximation errors and should be abandoned for 

cameras that have high FOV (60°+) especially when the face is relatively close to 

the camera, as often happens with personal videos or in online communication.

The results of our paper call for reconsideration of the use of WP camera (Section 5). The 

paper’s main results can be reproduced with the code on https://github.com/sariyanidi/

WP_pose-expression-separation.

1.1. Related work

Since the seminal study of Tomasi and Kanade [31], the orthographic projection, which is a 

special case of WP projection [19], has been very popular in computer vision. WP is a 
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simplistic camera model as it cannot represent the perspective effect [19]; that is, parts of 

objects do not appear relatively smaller or larger depending on their distance from the 

camera. While WP is clearly not a realistic camera model, the conventional wisdom is that it 

is appropriate for facial analysis, because WP approximation errors are inconsequential if 

subjects are far enough from the camera since the within-face depth variation is generally 

much smaller than the subject-to-camera distance [13, 17, 26, 9, 35]. WP camera has been 

broadly used in facial analysis [15, 27, 28, 42, 33, 17, 39, 36, 32, 37, 26, 9, 29, 35, 21, 22, 

41, 16] as it facilitates the projection of 2D facial shape to 3D space by removing the non-

linearity of perspective projection. More specifically, WP camera is used to separate facial 

pose and expression [13, 9, 27, 42, 17, 26, 35, 41] or, more generally, to disentangle rigid 

and non-rigid motions [38, 40, 34, 14]. Notably, no study has tested the main assumption of 

the WP camera in the context of facial expressions, and it is unclear whether the 

approximation errors of WP are indeed small enough to allow for facial pose-expression 

separation. Revisiting this assumption is particularly timely as novel studies continue to use 

WP camera [41, 10, 11, 22, 16]. Moreover, there is recent increased interest in 3D shape and 

texture estimation from 2D images, with recently proposed 3D morphable models [25, 18] 

and publicly available software [10, 20, 8], all using the WP camera.

2. Pose-expression separation

Studies that separate pose and expression within 2D image(s) typically map the face onto the 

3D space, as 3D facial shape can be expressed as a combination of pose and expression 

(Section 2.1). Thus, one can separate facial pose and expression by accurately estimating the 

pose and expression coefficients in this combination. Most methods use the facial model that 

is reviewed in Section 2.1. We then review in Section 2.2 the use of this model to estimate 

pose and expression coefficients from 2D images. These reviews allow us to theoretically 

demonstrate that pose-expression ambiguity is inherent in WP camera (Section 3).

2.1. Modeling pose and expression

Let Xi i = 1
N  be a set of N 3D points (i.e., Xi ∈ ℝ3) that represent a facial shape that is 

neutral and frontal w.r.t. camera. Moreover, let Xi i = 1
N  be a set of N points from the same 

person but with a possible expression and pose variation. Then, the latter can be plausibly 

generated as

Xi = R Xi + ΔXi , (1)

where R is a 3 × 3 rotation matrix (we ignore translation for simplicity) and ΔXi := (ΔXi, 

ΔYi, ΔZi)T represents the facial expression variation in ith point. Typically, the expression 

variation is modeled with a linear model. That is, ΔX1
T , …, ΔXN

T T = Be, where B ∈ ℝ3N × M

is a prelearnt expression basis matrix (referred to also as expression PDM) with M 
components, and e is the set of coefficients that explains the expression in the given facial 

shape.
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The facial model used in most methods that decouple pose and expression [41, 12, 21, 26, 

34] is essentially the same as (1); the main difference is the way in which neutral face is 

modeled. Neutral face Xi i = 1
N  is generally assumed to be unknown and estimated with an 

identity PDM [41, 12].Since the aim of our study is to analyze pose-expression separability, 

we will assume that the neutral face is known and thus avoid possible errors in its 

estimation.

2.1.1 2D-3D mapping—With the formulation in (1), the problem of pose and expression 

separation is essentially equivalent to the accurate estimation of the rotation matrix R and 

expression coefficients e. The estimation of R and e from 2D images requires a proper 

mapping defined between the 2D and 3D points.

Suppose that the images are captured with a CCD camera. Then the 2D image points, xi, are 

accurately computed with a perspective projection [19] matrix P defined as1

P ≔
αx 0 cx
0 αy cy
0 0 1

, (2)

where (cx, cy) is the principal point and αx and αy are the focal length of the camera in the 

horizontal and vertical direction, respectively. To obtain the image point xi corresponding to 

Xi, we first compute the homogeneous image coordinates Xi′ ≔ Xi′, Y i′, Zi′ T  define as 

Xi′ ≔ P R Xi + ΔXi + t , where t := (tx, ty, tz) is the 3D location of the camera. The image 

point xi can finally be obtained by dehomogenizing, i.e.

xi = αxXi′/Zi′ + cx, αyY i′/Zi′ + cy
T . (3)

For analytical clarity, hereafter we assume that tx = ty = 0.

2.1.2 Mapping via weak perspective camera—A major challenge to separating pose 

and expression is that the camera model (i.e., P) is generally not known. Moreover, the 

dehomogenizing in the perspective transformation adds a non-linearity that complicates the 

estimation of unknown variables. Therefore, most studies use the WP projection (Section 

1.1), which is a simple model but generally considered to be reasonable when the camera-to-

object distance is large compared to within-object depth variation. The image point 

corresponding to the 3D point Xi under a WP camera model can be computed as [19]

W(σ)R Xi + ΔXi + c, (4)

where W(σ) is the WP projection matrix defined as

W(σ) ≔
σx 0 0
0 σy 0 , (5)
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and c = (cx, cy)T. The parameters σx and σy in (5) are the horizontal and vertical scale 

factors, respectively. The practical role of those factors is to make the face appear bigger or 

smaller depending on its proximity to the camera; the WP model cannot otherwise adjust the 

face size as it does not have the perspective effect.

2.2. Estimating pose and expression coefficients

We can now formulate the problem of estimating pose and expression coefficients under WP 

camera. We assume that we know the neutral face (i.e. the points {Xi}) to facilitate the 

interpretation of experimental outcomes, as in this case R and e remain as the only 

unknowns.

Suppose that we are given a set of 3D points X i = 1
N  corresponding to a neutral and frontal 

face of a person, and a set of 2D image points representing the facial shape of the same 

person, xi i = 1
N , with a possible pose (i.e., rotation) and expression variation. Let xi i = 1

N  be 

the zero-mean image points defined as xi ≔ xi − (1/N)∑i = 1
N xi. Then, the rotation and 

expression coefficients can be estimated by minimizing the error function JB defined as

JB(R, e, σ) ≔ ∑
i = 1

N
xi − W(σ)R Xi + [Be]i , (6)

w.r.t. variables σ, R and e which respectively correspond to WP scale parameter, rotation 

matrix and expression coefficients2. (The term c in (4) can be eliminated when we operate 

on zero-mean image points [31].) R is subject to the implicit constraint R ∈ SO(3). The 

operation [⋅]i outputs a 3-vector that represents the expression variation in the ith point; that 

is, [Be]i contains the three values of the vector Be corresponding to positions 3i−2, 3i−1 and 

3i. The minimization of error function (6) is often carried out with the Gauss-Newton 

method [13, 28, 12, 11].

3. Ambiguity in pose-expression separation

If the image points xi i = 1
N  represent a facial shape with neutral expression, then the 

expression coefficients e estimated by minimizing (6) should ideally be 0. As we 

theoretically demonstrate below, this is not the case; instead, the use of WP camera leads to 

inherent ambiguity.

If a facial shape Xi i = 1
N  has a neutral expression, then ΔXi = 0 for i = 1, …, N and (1) can 

be rewritten as

Xi = RXi . (7)

Since we assume that there is no expression, let us for now assume that the expression PDM 

is the null matrix, i.e., B = 0. Then, the function (6) simplifies to
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J0(R, σ) ≔ ∑
i = 1

N
xi − W(σ)RXi . (8)

Note that this can be interpreted as the 3D-to-2D mapping error of the WP camera for 

parameters R and σ, since (xi − W(σ)RXi) represents the difference between the correct 2D 

projection of the point Xi and the 2D projection of the same point under the WP camera [see 

(4) for ΔXi = 0]. The minimal 3D-to-2D mapping error (in terms of ℓ2) is encoded in the 

residual vector

r ≔ x − W
.

σ* R
. *X, (9)

where x and X are column vectors x ≔ x1
T , …, xN

T T
 and X ≔ X1

T , …, XN
T T

. W
.

σ*  and R
. * are 

block-diagonal matrices with N matrices on their diagonals, W
.

σ* ≔ diag W σ* , …, W σ*
and R

. * ≔ diag R*, …, R* . R* and σ* are minimizers of (8). We now list this paper’s main 

theoretical result.

Theorem 3.1. Suppose we have 3D facial points with a neutral expression, Xi i = 1
N , and 2D 

image points xi i = 1
N  corresponding to those 3D points but with a rotation. Let R* and σ* 

minimize J0(R, σ), r be defined as in (9), and B ∈ ℝ3N × M be a matrix such that rank 
W
.

σ* R
. *B = M < 2N. Then,

min
R, e, σ

JB(R, e, σ) ≤ min
R, σ

J0(R, σ) . (10)

Moreover, this inequality holds strictly (i.e., without equality) if r ∉ Null Ẇ σ* R
. *B T , in 

which case ∣∣e*∣∣>0 where e* is the minimizer of JB(R, e, σ) w.r.t. variable e.

For the proof, refer to Supplementary Appendix A. The assumption rank W
.

σ* R
. *B = M is 

a mild one, because PDMs are typically obtained with principal component analysis, which 

yields skinny and full column-rank matrices, and also because R
.
 and W σ*  are full (row) 

rank. Moreover, as we argue in Supplementary Appendix B, r ∈ Null Ẇ σ* R
. *B T  is not a 

practically likely event. The theorem states that the error in (6) will be smaller than the error 

in (8) even when there is no expression (i.e., a neutral face), since the error between the 

correct 2D projection of the point Xi and the 2D projection of the same point under the WP 

camera will be reduced by employing spurious expression coefficients in (6). Thus, this 

theorem formally demonstrates that spurious expressions will be generated (i.e., e ≠ 0) if 

r ∉ Null Ẇ σ* R
. *B T . Next, we empirically investigate whether those spurious expressions 

are sufficiently large to be harmful in practice.
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4. Experimental Analysis

We now experimentally show that the WP camera creates facial pose-expression ambiguity. 

Our experiments are coherent with our theoretical analysis in Section 3; that is, we use 

sequences that contain a neutral (i.e., expressionless) face and demonstrate that the use of 

WP camera leads to spurious expression detection.

Our experimental analysis is threefold. Section 4.3 quantifies the 3D-to-2D mapping errors 

of the WP camera w.r.t. pose. Section 4.4 quantifies spurious expressions and also 

investigates the effect of the facial expression PDM (i.e., B) choice. Section 4.5 shows that 

spurious expression coefficients lead to false positives in AU estimation.

4.1. Dataset

We conduct our analysis on synthesized data to ensure that the facial sequences that we use 

contain no expression variations, and to know the exact facial pose (i.e., ground truth) and 

3D locations of facial points. We experiment with three fields of view, 30°, 60°and 90°, and 

two face sizes (relative to image) per FOV, namely large and small (Fig. 1b, c).

We synthesize facial sequences using the Basel’09 model [24]. We generate 100 facial 

identities by randomly choosing 100 different identity coefficients from the Basel model 

(Fig. 2a). We use the widely used set of N = 68 facial landmarks, known also as iBUG-68 

points (see Fig. 2b). Throughout experiments, we study the effect of (out-ofplane) pose 

variation, namely rotation along the yaw and pitch axes. To this end, for each synthesized 

identity we generate two sequences, each containing a face rotated from −45° to 45° along 

one of the two afore-listed axes (see Fig. 3). Thus, our experiments involve 200 sequences 

per FOV and distance, and since we have three FOVs and two distances, a total of 1200 

sequences.

4.2. Optimization

In all experiments, we use the Gauss-Newton optimization algorithm to minimize (6) and 

(8), as this algorithm has been used by previous studies (Section 2.2). To initialize the 

estimated rotation matrix for (6), we use the rotation matrix obtained by minimizing the 

simpler function (8).

4.3. Analysis of 3D-to-2D mapping errors

We now experimentally analyze how the 3D-2D mapping error of the WP camera varies 

with head rotation.

Metric.—The mapping error for the ith facial point of kth sequence is xi
k − W σ* R*Xi

k, 

where σ* and R* are obtained by minimizing J0 (Section 3). We report the average mapping 

error for all the N = 68 landmark points (eoverall) and also the average for landmarks related 

to brows (ebrow), eyes (eeyes) and mouth (emouth). Let Ieyes be a set that contains the 

landmark indices corresponding to the eyes (i.e., the yellow points in Fig. 2b). Then, average 
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mapping error for the eye landmarks, eeyes, is computed by averaging both over the 

sequences and over the landmarks in Ieyes as

eeyes  ≔ 1
K ∑

k = 1

K 1
ℐeyes 

∑
i = 1

N xi
k − W σ* R*Xi

k

diod 
k , (11)

where we divide to the interocular distance of the 3D face, diod 
k , to better interpret the error 

(Fig. 2b). The errors eoverall, ebrows and emouth are computed similarly by replacing the set 

Ieyes accordingly (Ioverall is {1, …, N}).

Results.—Fig. 4 shows the average errors eoverall, ebrow, eeyes and emouth against rotation 

amount; each panel shows the error for a unique FOV and subject-to-camera distance 

combination. The symbols θ and ϕ denote rotation around yaw and pitch axes, respectively. 

As expected, the mapping errors increase with FOV when the face size is constant (Fig. 1c). 

Errors are also higher when the subject is closer to the camera. Since faces are 

approximately symmetric w.r.t. the vertical line, the rotation around the the yaw axis (Fig. 

3a) generates a nearly symmetric error pattern (Fig. 4a). The average error varies for each 

facial feature. Eyebrows generate consistently the highest error for yaw rotations, followed 

by eyes and mouth. For pitch rotations, the ranking of features in terms of errors depends on 

the rotation amount. The error for a FOV of 60° can get close to 0.1diod, which is a 

magnitude quite noticeable to the eye; for example, it is large enough to create an impression 

of a raised/lowered brow or a blink (Fig. 2b).

4.4. Analysis of spurious expression coefficients

We now analyze the magnitude of spurious expressions, whose existence is suggested by 

Theorem 3.1. Importantly, we show how spurious expressions vary with the choice of facial 

expression PDM, B, as well as facial pose, FOV and subject-to-camera distance.

Metrics.—We measure the magnitude of spurious expressions via the l2 norm of the 

estimated expressions in the kth sequence, Bek*. Since our sequences contain no expression 

variation (Section 4.1), a non-zero ek* will always indicate spurious expressions. Similarly to 

Section 4.3, we report results separately for eyes, brows and mouth. The average magnitude 

of spurious expression for eyes is denoted with yeyes and computed by averaging over the K 
sequences as

yeyes  ≔ 1
K ∑

k = 1

K 1
ℐeyes 

∑
i ∈ ℐeyes 

‖ Bek* i′‖
diod 

k (12)

where ℐeyes  and diod 
k  are defined as in Section 4.3. Here we consider only the spurious 

expression magnitude along the x and y axes: The ⋅ i′ operator parses the two values that 

correspond to the expression variation ignoring the z axis; Bek* i′ that is contains the values 

of the vector Bek* corresponding to the positions 3i−2, 3i−1. This allows us to compare the 
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magnitude of spurious expressions yeyes with the 3D-to-2D mapping errors eeyes, when there 

is no rotation. The average magnitude of spurious expressions for all points, yoverall, and for 

other facial features, ybrows, ymouth, are computed similarly.

Facial expression PDMs.—We use two PDMs which, to our knowledge, are the only 

publicly available PDMs to model expressions alone: (i) Basel’17: The expression PDM of 

the Basel’17 model [18]; and (ii) ITWMM: The expression PDM of the in-the-wild method 

by Zhu et al. [41], used also by a morphable model in-the-wild study [12]. We omitted 

PDMs which do not model expressions alone (e.g. OpenFace PDMs [10], Surrey PDM [20]).

Results.—When we use an expression PDM, estimated 2D points improve significantly 

(e.g. compare Fig. 5b, c with Fig. 5a) as predicted by Theorem 3.1. However, this causes 

spurious expressions (Fig. 6) and therefore harms pose-expression separation, as we 

elaborate in this section.

Fig. 7 quantifies the magnitude of spurious expressions for different PDMs as well as FOVs 

and subject-to-camera distances. As predicted by Theorem 3.1 and the argument that follows 

it, there are always spurious expressions. The magnitude of spurious expressions increases 

with FOV and is also higher when the subject is close to the camera. However, Fig. 7 

uncovers an important result that is not obvious: Facial parts that have small 3D-to-2D 

mapping errors can have high spurious expressions and vice versa. For example, mapping 

errors for the mouth (Fig. 4a) are lower compared to other features, and yet spurious 

expressions for the mouth are larger than those of other features for the ITWMM PDM (Fig. 

7a). Another novel result is that the magnitude of spurious expressions is generally larger 

than the mapping errors. These observations are explained by the fact that e is not the only 

variable when minimizing (6), and that the optimal R and σ determined by the optimization 

algorithm depend on whether B is 0 or not. The differences in the values of R and σ cause 

additional landmark movement, which is compensated by the algorithm via additional 

activation of e coefficients. Another important result of Fig. 7 is that the magnitude of 

spurious expressions, and the facial features that have the highest spurious expressions, 

depend on the PDM used. For example, the ITWMM PDM makes larger errors for the 

mouth region, whereas the Basel’17 PDM makes comparable errors across all features.

4.5. Analysis of spurious Action Units

While we have demonstrated the presence of spurious expressions, the question of whether 

they have significant practical implications for automated facial expression analysis systems 

remains. In this section, we show that spurious expressions can indeed be damaging, and 

lead to false positives in the application of AU detection. To this end, we train AU detectors 

that take as input the expression coefficients e* and output the predicted AU. We use an 

SVM classifier and avoid more sophisticated classifiers (e.g., deep learning) as our purpose 

is not to maximize AU detection accuracy but to analyze the possible false positives that 

may be caused by spurious expression coefficients e*.

Training AU detectors.—To train AU detectors, we use the 327 videos from MMI dataset 

[23] that contain temporal phase annotation. We train 8 detectors for 8 AUs, namely AU1, 
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AU2, AU4, AU45 AU12, AU17, AU25 and AU26. To train them, we compute the e* 
coefficients by minimizing (6). Since the MMI dataset is 2D, it does not have the neutral 3D 

facial shape Xi i = 1
N  needed in (6). To estimate Xi i = 1

N  we use the first frame of each MMI 

video; this contains a neutral expression and therefore we can use the Basel’09 model to 

estimate the 3D shape of the person from this frame. We train each AU detector with 

differential features; that is, we subtract the expression coefficients of the first (i.e. neutral) 

frame from the frame that contains the AU. As negative samples, we used the frames with 

other AUs and frames without AUs (i.e., neutral frames other than the first frame). We 

validated each AU detector with a 5-fold cross-validation via F1 score (Table 1). The false 

positive rate (FPR) of any AU was not higher than 0.02 (Table 1), highlighting the feasibility 

of the experiment; i.e., we can reliably assert that false positives in the test set will be mostly 

due to spurious expressions. The Basel’17 PDM achieved the highest F1 score for most AUs 

[23].

Test sequences.—Our testing sequences are strictly the 1200 synthesized sequences 

(Section 4.1) that have no expression variation, as our purpose is to analyze how an AU 

detector behaves when it is fed spurious coefficients. Therefore, an AU detector that yields a 

positive output to any frame in our test sequences will be yielding a false positive.

Metrics.—We measure the false positive rate (FPR) for each AU. For brevity, we report 

average FPR over all AUs. We have Nseq=600 sequences with yaw rotation (Section 4.1). 

The average FPR over the 8 AUs under θ degrees yaw rotation is denoted with FPRθ, which 

is defined as

FPRθ = 1
8Nseq

∑
i ∈ ℐAU

FPθ
AUi

(13)

where FPθ
AUi is the number of false positives for AUi under θ degrees yaw rotation and IAU 

is the set of the 8 AUs that we use. The average FPR for AUs under pitch rotation of ϕ 
degrees, FPRϕ, is defined similarly.

Results.—Fig. 8 shows the FPRs in AU detection on synthesized sequences (Section 4.1). 

As expected from the results of previous sections, FPRs increase with FOV and are higher 

when the subject is closer to the camera. Never-theless, FPRs are non-zero even when the 

FOV is as small as 30° and the subject is as far from the camera as shown in Fig. 1c 

(bottom), for pitch or yaw rotations of 25° or higher. For FOV of 60°, some false positive 

AUs exist even when there is a rotation only slightly higher than 0°. In sum, the standard 

approach to facial pose and expression separation leads to an unacceptable number of false 

positives.

Results with original ITWMM software.—To verify this section’s findings, we 

repeated experiments using the original ITWMM [12] source code (with WP camera), 

which, to our knowledge, is the only publicly available 2D-based 3D facial shape estimation 

method that contains a separate PDM for expressions only and uses Gauss-Newton 
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optimization. The results similarly indicated a severe pose sensitivity, and there were false 

positive AUs across all FOVs even when the face was far from the camera (Supplementary 

Appendix C). This experiment ensures that our findings are not artifacts of our own 

implementation, further emphasizing the significance of spurious facial expressions induced 

by the WP camera model.

Results with perspective camera.—To verify that the false positive AUs stem from the 

WP camera, and are not due to changing data characteristics between the training and testing 

sets (MMI vs. synthesized images), we re-run this section’s experiments by replacing the 

WP model in (6) with the true camera model—the perspective transformation according to 

(2). There were no false positives of AUs for any FOV or subject-to-camera distance in this 

case, which is not surprising as we use noiseless 3D and 2D points.

5. Discussion

For nearly two decades, the WP camera has been a common component in virtually all 

methods that separate facial pose and expression. While it continues to be the default camera 

model in very recent studies published in top-tier conferences and journals, the suitability of 

WP camera for this task has never been thoroughly and systematically investigated (Section 

1.1). Our study takes a first step in critically evaluating this issue, with two important 

findings.

First, pose and expression cannot be separated reliably even when WP camera errors are 

indeed small. This is a particularly striking finding as it contradicts the conventional wisdom 

that WP camera is usable when the face is not close to the camera (Section 1.1). The 

ambiguity in these circumstances is caused by the interactions between the estimated 

rotation and expression coefficients: The optimization algorithm can find a solution that 

explains the 2D points well, but with incorrect pose and expression parameters (Section 4.4). 

Moreover, our results highlight that the PDM used to model expressions has a significant 

impact on the amount and characteristics of errors (i.e., spurious expressions). These 

observations naturally beg the question (and future research direction): Can one find design 

criteria for PDMs that minimize spurious expressions? As an extreme example of a badly 

designed PDM, one can imagine an “expression” PDM that contains components resembling 

rotation. In such a case, clearly one cannot guarantee to correctly estimate pose and 

expression by minimizing (6), even when no camera approximation errors exist.

Second, our experiments that quantify the approximation errors of WP camera in terms of 

interocular distance diod show that it is particularly unreliable for modeling facial 

expressions recorded from close distance cameras with large FOV, such as smartphones or 

web-cams (Fig. 1). Given the surge in videos of this kind of late, novel methods and 

software likely need to re-consider the use of WP camera. While use of the WP camera 

model may be justified for applications that use images with completely unknown sources, 

in many applications, it is used with no theoretical or practical reasons. For example, in most 

clinical applications or personal social/entertainment/artistic applications, the camera that is 

used is known. One can use the images’ metadata or the camera’s technical specifications 
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(i.e., FOV and image width/height), or add a simple camera calibration step, to estimate the 

true perspective projection, thereby obviating the need for WP camera. Facial expression 

analysis software should warn users about the limitations of the default WP camera and 

instead encourage the use of the true projection matrix, especially if the camera has large 

FOV and/or the size of the face is small relative to the image.

6. Conclusion

We revisited a problem studied for more than 20 years, namely separating facial pose and 

expression within 2D images, and showed that the use of the WP camera model is a barrier 

to achieving reliable results. We theoretically showed that WP camera generates spurious 

expressions. Our systematic experiments demonstrated that, contrary to conventional 

wisdom, pose-expression ambiguity exists even when subjects are far from the camera (i.e., 

when WP camera’s errors are small). We also showed that spurious expressions led to false 

positives in facial AU detection. We discussed the implications of our findings and suggested 

future research directions to address the issues caused by WP camera. Of note, WP camera 

is used in many computer vision applications (Section 1.1), suggesting that the findings of 

this study may have implications beyond facial analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) The three FOVs used in this paper; the perspective effect increases with FOV. (b) Two 

subject-to-camera distances for each FOV. (Zclose , Zfar) was (8.5m, 3.5m), (3.9m, 1.6m) and 

(2.3m, 0.9m) for 30°, 60° and 90° FOV, respectively. (c) Illustration of head size relative to 

image size with Zclose  (top) and with Zfar (bottom); the head size was approximately the 

same, independently of FOV, for either distance. (d) The FOV of several cameras; the 

sources for these data are in [3, 6, 5, 4, 1, 2, 7]
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Figure 2. 
(a) Examples of the generated facial identities that were used in the experiments. We use 

only facial shape but here we show also facial texture to enhance interpretation. (b) The 68-

point facial shape model (iBUG-68) that is used for the experiments, and the illustration of 

the interocular distance diod. Note that even a spurious expression of 0.1diod magnitude is 

large enough to create the impression, say, of a blink or a raised eyebrow.
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Figure 3. 
The rotation range; (a) yaw rotation, (b) pitch rotation.
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Figure 4. 
3D-to-2D mapping errors vs. rotation amount for various FOVs (30°, 60°, 90°) and subject-

to-camera distances (close, far; Fig. 1). (a) yaw rotation; (b) pitch rotation. The y axis shows 

error rate relative to interocular distance (Fig. 2); e.g., 0.01 means 0.01diod. Note that errors 

increase with FOV; the range of y axis is scaled separately for each subplot to enhance 

interpretation.
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Figure 5. 
Projection of facial points according to the correct perspective projection (CCD camera 

model) and according to the WP projection for a camera with FOV of 90° and close subject-

to-camera distance and for −45°, 0° and 45° pitch rotation. The WP projection is carried out 

with (a) no expression PDM, i.e. B=0, (b) with the Basel’17 PDM and (c) with the ITWMM 

PDM.
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Figure 6. 
The spurious expressions obtained by minimizing JB where the B used is the (a) Basel’17 

PDM and (b) the ITWMM PDM. Each red arrow depicts the effect of the spurious 

expression Be* on the corresponding landmark.
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Figure 7. 
The magnitude of spurious expressions against the rotation amount, shown separately for the 

Basel’17 PDM and the ITWMM PDM, and for various FOVs (30°, 60°, 90°) and subject-to-

camera distances (close, far; see Fig. 1). (a) Yaw rotation; (b) pitch rotation. The y axis 

shows error rate relative to interocular distance diod (Fig. 2). Note that spurious expressions 

increase with FOV; the range of y axis is scaled separately for each subplot to enhance 

interpretation.
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Figure 8. 
The AU false positive rates (FPRs) against the rotation amount for various various FOVs 

(30°, 60°, 90°) and subject-to-camera distances (close, far; see Fig. 1). (a) Yaw rotation; (b) 

pitch rotation.
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Table 1.

AU detection results in terms of F1 score, true positive rate (TPR) and false positive rate (FPR) on MMI 

dataset reported separately for the Basel’17 PDM and the ITWMM PDM.

AU1 AU2 AU4 AU45 AU12 AU17 AU25 AU26

Basel’17

F1 0.66 0.64 0.47 0.70 0.43 0.48 0.80 0.45

TPR 0.58 0.63 0.41 0.58 0.31 0.36 0.72 0.36

FPR 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02

ITWMM

F1 0.62 0.42 0.4 0.68 0.34 0.36 0.8 0.08

TPR 0.49 0.31 0.28 0.56 0.24 0.24 0.71 0.05

FPR 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01
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