TABLE 1.
Comparison of mimicry-embedding performance applied to various neural network architecturesa
Condition | Precision | Recall | F1 score | AUC |
---|---|---|---|---|
Feed forward: data set | 0.96 | 0.96 | 0.96 | 0.98 |
Feed forward: mimicry-embedded data set | 0.96 | 0.96 | 0.96 | 0.98 |
LeNet: data set | 0.79 | 0.79 | 0.76 | 0.87 |
LeNet: mimicry-embedded data set | 0.81 | 0.81 | 0.79 | 0.89 |
ResNet-101: data set | 0.92 | 0.92 | 0.92 | 0.96 |
ResNet-34: mimicry-embedded data set | 0.96 | 0.96 | 0.96 | 0.98 |
CapsNet: data set | ||||
CapsNet: mimicry-embedded data set | 0.96 | 0.96 | 0.96 | 0.98 |
AUC, area under the receiver operating characteristics curve. All metrics are averaged as one-versus-rest across classes. A missing value indicates “no convergence.”