Skip to main content
. 2020 Sep 9;5(5):e00836-20. doi: 10.1128/mSphere.00836-20

TABLE 1.

Comparison of mimicry-embedding performance applied to various neural network architecturesa

Condition Precision Recall F1 score AUC
Feed forward: data set 0.96 0.96 0.96 0.98
Feed forward: mimicry-embedded data set 0.96 0.96 0.96 0.98
LeNet: data set 0.79 0.79 0.76 0.87
LeNet: mimicry-embedded data set 0.81 0.81 0.79 0.89
ResNet-101: data set 0.92 0.92 0.92 0.96
ResNet-34: mimicry-embedded data set 0.96 0.96 0.96 0.98
CapsNet: data set
CapsNet: mimicry-embedded data set 0.96 0.96 0.96 0.98
a

AUC, area under the receiver operating characteristics curve. All metrics are averaged as one-versus-rest across classes. A missing value indicates “no convergence.”