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Abstract

Association between electroencephalography (EEG) and individually personal information

is being explored by the scientific community. Though person identification using EEG is an

attraction among researchers, the complexity of sensing limits using such technologies in

real-world applications. In this research, the challenge has been addressed by reducing the

complexity of the brain signal acquisition and analysis processes. This was achieved by

reducing the number of electrodes, simplifying the critical task without compromising accu-

racy. Event-related potentials (ERP), a.k.a. time-locked stimulation, was used to collect

data from each subject’s head. Following a relaxation period, each subject was visually pre-

sented a random four-digit number and then asked to think of it for 10 seconds. Fifteen trials

were conducted with each subject with relaxation and visual stimulation phases preceding

each mental recall segment. We introduce a novel derived feature, dubbed Inter-Hemi-

spheric Amplitude Ratio (IHAR), which expresses the ratio of amplitudes of laterally corre-

sponding electrode pairs. The feature was extracted after expanding the training set using

signal augmentation techniques and tested with several machine learning (ML) algorithms,

including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and k-Near-

est Neighbor (kNN). Most of the ML algorithms showed 100% accuracy with 14 electrodes,

and according to our results, perfect accuracy can also be achieved using fewer electrodes.

However, AF3, AF4, F7, and F8 electrode combination with kNN classifier which yielded

99.0±0.8% testing accuracy is the best for person identification to maintain both user-friend-

liness and performance. Surprisingly, the relaxation phase manifested the highest accuracy

of the three phases.

Introduction

A person identification system verifies the identity of a given individual from a set of people.

In contrast, authentication uses different classification methods (such as one-class classifica-

tion, template matching, and score level fusion) to confirm identity. Both identification and

authentication have the same pre-processing and feature-extraction steps. An identification
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process is often conducted in police departments using records or visual information of

arrested criminals as biometrics. Even though potential applications in this domain are fewer

than those for authentication, the process can be enhanced to create an authentication system.

Currently, there are several strategies for both cases, including knowledge (such as of a pass-

code), possession (such as of an ID card), and biometric traits. Biometric-based techniques use

biological or physiological attributes such as fingerprint, palm-print, iris, and voice to identify

someone. Biometrics are usually more convenient and intimately personal compared to other

strategies.

A brain-computer interface (BCI) or neural-control interface (NCI) represents direct com-

munication between an external device and an enhanced or exposed brain. Besides functional

magnetic resonance imaging (fMRI) and positron emission tomography (PET), which observe

changes of blood flow, other methods can track electrical activity, such as electroencephalogra-

phy (EEG) and magnetoencephalography (MEG). EEG is a non-invasive, electrophysiological

monitoring method to record electrical activity of a human brain. International standards

have been established regarding placement of electrodes over the human scalp with different

resolutions. The 10-20 system is the most popular for low-resolution capture, and the 10-5 sys-

tem, which allows more than 300 electrodes, has highest resolution. Since EEG is innocuous,

medically safe, it has attracted considerable attention from the scientific community for such

applications as machine learning, robotics, and health care. This study mainly focuses on per-

son identification using EEG analysis to find unique brain signal patterns.

0.1 Related research

Relevance for individually personal information in EEG signals was revealed in the early 1930s

[1]. Even though EEG has low spatial resolution compared to fMRI, several studies have

shown considerable accuracy in this domain [2–4]. Pozo-Banos et al. [5] reported in a compre-

hensive review about EEG subject identification that EEG has subject-specific information.

Jayarathne et al. [6] and Almehmadi et al. [7] compiled comprehensive surveys of EEG-based

access control systems. These surveys reported suitability, state of the art of EEG for person

identification, and important parameters which must be adjusted to implement an authentica-

tion system with desired security and usability levels. To find unique features of EEG signals,

researchers have used different kinds of stimulation, including visually evoked potentials

(VEP) [8], auditory stimulation, motor movement, and assigned math problems [9]. Also,

devices used to capture EEG signals have various attributes, such as number of electrodes, elec-

trode type (dry or wet), and wired or wireless computer connection. Chen et al. have shown

that wet electrodes allow better signal quality than dry ones [10]. Nevertheless, dry electrode

headsets provide more user-friendliness. Despite perfect accuracy having been achieved in sev-

eral studies, most systems are not very convenient or user-friendly.

The brain emits different EEG signal patterns according to stimuli and responses. Research-

ers have confirmed that as stimulus sets become increasingly complex, distinctiveness of sub-

jects becomes higher [5]. Moreover, visual stimulation is the most promising and popular

modality in this field. Poulos et al. [11, 12] tested two different approaches with the same

computational geometry classification algorithm without using any specific task. They

achieved 91% and 95% accuracy for Auto Regression (AR) type of alpha-band EEG signals,

extracting spectral features via Fourier Transform (FT), and 84% maximum accuracy for

Learning Vector Quantizer (LVQ) network with AR parameters as features [2]. Singhal et al.

[13], Das et al. [8], Palaniappan et al. [14], and Yazdani et al. [15] used VEP as a stimulation

when capturing EEG signals, achieving 78%, 94.08%, 94.18%, and 100% accuracy respectively.

Most approaches have used temporal domain features and achieved considerable accuracy.

PLOS ONE EEG-based person identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0238872 September 11, 2020 2 / 24

https://doi.org/10.1371/journal.pone.0238872


In our approach, a new feature called Inter-Hemispherical Amplitude Ratio (IHAR) is

introduced, and features are extracted from various mental task data sets to find uniqueness. A

similar technique (inter-hemispheric amplitude relationship) was used by Goldstein et al. to

observe differences of REM and NREM sleep patterns of humans, cats, and rabbits [16]. Gold-

stein’s approach emphasizes differences of REM and NREM stages of EEG signal for easy

observation, although a classification technique was not used. Even though various time- and

frequency-domain features have been proposed, feature extraction method with low computa-

tional complexity is better for embedded system implementations with low computational

power budget. Several studies can be found about various asymmetries of the head, concerning

such topics as skull asymmetry [17], structural cerebral asymmetry [18], and functional cere-

bral asymmetry [19]. Functional asymmetry has been analyzed using fMRI, PET [20], and

EEG in different domains. Based on functional asymmetry of the brain, IHAR was calculated

to find subjective features to distinguish people.

Classification is the most popular supervised learning problem domain in machine learning

(ML). This process is concerned with identifying the sub-population to which each given

observation belongs, based on a training set of tagged data containing observations whose sub-

populations are known. There are various algorithms to solve this kind of problem, including

Linear Discrimination Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbor

(kNN), and Decision Trees. Before training these algorithms, features must be extracted from

the raw data. The above-described IHAR feature was extracted and tested with different ML

classification algorithms, discussed in next section. Furthermore, we noted the accuracy while

reducing the number of channels to increase user-friendliness of EEG capturing devices,

because less calibration time is required for minimal electrode setups.

1 Methodology

1.1 Experimental setup and apparatus

The same dataset used in a previous experiment [21] was used to perform the analysis reported

here. Twelve mentally healthy subjects (6 males and 6 females, ages 24 to 45) were recruited

for this experiment, including students and academic staff at the Sabaragamuwa University of

Sri Lanka. An equal number of males and female subjects were selected to avoid gender bias.

The experiment was performed after obtaining written consent. The Sabaragamuwa University

of Sri Lanka ethics committee waived the need for ethical approval. Since our focus is to imple-

ment an identification system for a small group of users, we decided to conduct this experi-

ment with a limited number of users. However, scalability issues of the proposed approach are

discussed in the results and discussion section.

Subjects were instructed to stay still while capturing EEG readings, to reduce artifacts of

head motion. The EMOTIV Epoc+ headset was used to collect signals in a calm and silent

room. Wang et al. [22] had compared the EMOTIV headset with a clinical grade EEG device

and confirmed that it produces reliable signals. Fig 1 shows the electrode distribution of the

headset. The Epoc+ headset has 14 wet electrodes, and saline solution was used to increase

their conductance. It took 10 to 15 minutes to set up the headset for each subject. A software

package comes with an accessory to inject time-stamp markers, which can be used to separate

trials and phases. The device was precisely tested before the experiment. The effect of ambient

electromagnetic waves, including power lines, was minimized by isolating the experimental

location, away from EMI (electromagnetic interference) of noise-producing equipment.
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1.2 Trial organization

Each experimental trial included three main phases—relaxation, visual stimulation, and men-

tal recall—as shown in Fig 2. Calm music (“Magic Forest,” by Alexander Blu) was used to relax

each subject with closed eyes for 10 s. Then a four-digit random number (white characters on

black background) was shown on a screen (17” LCD monitor, 1366 × 768 pixel resolution) for

10 s. Finally, the subject was instructed to imagine the number seen on the screen for 10 s with

closed eyes. The four-digit number was used assuming it helps to evoke more distinctive brain

signal patterns in visual and mental recall phases. A single trial consisted of these three phases,

and trials were recorded continuously with 128 Hz sampling rate. For each subject, 15 trials

were conducted, separating trials using time-stamped markers. An inconvenience of the wet

electrode system is that the electrodes dry out over time, lowering signal quality. Therefore, the

Fig 1. Electrode placement of the EMOTIV Epoc+ EEG headset (AF: Anterior-Frontal, F: Frontal, FC: Fronto-

Central, T: Temporal, P: Parietal, O: Occipital), where odd numbers denote left hemisphere and even numbers

represent right. Black dots indicate location of reference electrodes (“device ground” or “chassis ground”).

https://doi.org/10.1371/journal.pone.0238872.g001
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time allocated to each subject was determined by the interval which allowed consistent signal

quality.

1.3 Pre-processing and visualization

One way of visualizing collected EEG data is by plotting a topographic distribution. Even

though topographs are usually used in geomatics, here the power distribution is plotted as the

third dimension (instead of elevation) as a contour map. First, the data was normalized and

converted to the frequency domain, using Discrete Fourier Transform (DFT) to calculate the

power of each channel:

x̂½n� ¼
x½n� � minðxÞ

maxðxÞ � minðxÞ
; ð1Þ

where x[n] is a sequence of raw samples and x̂½n� is the corresponding vector of normalized

samples. The DFT is calculated as

X̂ ½k� ¼
XN� 1

n¼0

x̂½n�e
� j

2p

N

� �

nk

; ð2Þ

where X̂ ½k� are the frequency-domain coefficients, N is the window size, and k = 0, 1, 2, � � �, N
− 1. Finally power is calculated as

P ¼ X̂ � �̂X ¼
X
jX̂ ½k�j2; ð3Þ

Fig 2. Structure of experiment: Each subject underwent 15 trials, and each trial comprised three phases. The stimulation

phase necessarily precedes recall phase, and relaxation phase also serves as a refractory period, an implicit interval between trials,

to be consistent with similar studies. (Each subject has tested for about 10 min).

https://doi.org/10.1371/journal.pone.0238872.g002
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where
�̂X is the complex conjugate of the sample sequence, and P is power (strictly speaking,

energy) of the channel. After calculating the power values, Natural Neighbor Interpolation

[23] is used to infer power values between the electrodes. Plotting the contours for the calcu-

lated values gives presumed topographic fields. Our MATLAB code is shared on GitHub

https://github.com/ijmax/EEG-processing/blob/master/topograph.m.

The three trial phases (relaxation, visual stimulation, and mental recall) were separated

from the continuous signals and saved as separate datasets. Each phase was set to fixed dura-

tion to maintain consistency, but the actual length differed slightly from phase to phase. Each

phase for each trial for each subject had around 1280 samples because each signal was recorded

at 128 Hz sampling rate for 10 seconds. The sample length of each phase was truncated to a

fixed size (1280) by removing excess samples from the end. When using 14 electrode channels,

each phase can be considered a 14 × 1280 matrix. Each phase set contains 180 trials, because

12 subjects were recruited and 15 trials were conducted for each subject. Fig 3 shows the topo-

graphic distribution plots of 12 subjects. Clear differences among these power distributions

can be seen through this visualization. Every subject seems to have a uniquely personal brain

wave patterns, even when performing the same task. Also, maximum and minimum power

values differ from subject to subject.

1.4 Data augmentation

Data augmentation is a technique to increase the diversity of training data to improve results

and avoid overfitting without collecting new data. Due to lack of trials per subject in our exper-

iment, data augmentation techniques were used to expand the dataset. These techniques are

usually domain-specific. Therefore, three signal augmentation techniques which have been

used to improve classification performance of wearable sensor data was used [24].

Fig 3. Topographic plots of 12 subjects for relaxation phase. (Maroon color represents high power values, and dark blue represents

low).

https://doi.org/10.1371/journal.pone.0238872.g003
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Fig 4 shows visualization of raw and augmented signals using following techniques:

• Jittering: This is a process of adding random noise to the signal. Normally distributed ran-

dom noise was generated with standard deviation of 0.05.

• Random sampling: In this process, some samples are randomly removed, interpolation of

remaining samples recovering the original length of the signal.

• Permutation: In this process, the temporal location of within-window events are randomly

shuffled. 4 randomly selected segments with random length (minimum 5 samples) were

altered randomly. To allow symmetry testing such as IHAR, time-wise alignment must be

preserved, so the same permutation was applied to all 14 electrode channels.

Ten trials were separated after shuffling (to avoid bias from ordering such as learning effects)

from each subject as training data and each 10 second trial was used to generate 10 instances

from each augmentation technique, resulting 300 new trials. Final training set contained

12 × 310 = 3720 trials in total. Remaining 5 trials for each subject were kept as testing set. The

same process was performed for all three phases.

Scatter plots of some selected features as seen in Fig 5 were used to confirm that distribution

of features of augmented signals were not changed significantly. According to the scatter plots,

augmentation has widened the margins of each class while preserving the separable nature of

features.

1.5 Inter-Hemispheric Amplitude Ratio (IHAR) vs. other features (LC, WL,

SSC, AR)

There is asymmetry between brain hemispheres [25]. In human neuroanatomy, brain asym-

metry can be categorized into two classes: (a) neuroanatomical differences such as neuronal

Fig 4. Visualization of raw and augmented signals subject to jittering, random sampling, and permutation techniques. Orange trace

represents the original raw signal, and blue trace represents the augmented signal in each plot.

https://doi.org/10.1371/journal.pone.0238872.g004
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densities, size of regions, etc., and (b) functional differences [26]. Such asymmetry can be seen

in the power distributions of EEG data. All standard electrode placement systems (10-20, 10-

10, 10-5) are bilaterally symmetric across the inion-nasion line, the median or sagittal plane.

Also, most experimental results have shown that time-domain data contains discriminative

aspects such as Autoregressive (AR) features [1], matching peaks [13, 27], and statistical fea-

tures [28]. IHAR is also calculated in the time domain, and symmetric electrode pairs are

needed. The proposed feature extraction method has two stages: (1) smoothing and (2) calcu-

lating ratio of corresponding channel pairs. Instead of using frequency-domain low-pass filter-

ing for smoothing, a moving average (MA) filter [29] was used to remove high frequencies and

random noise. The MA filter, applied in our analysis only for the IHAR feature, is an efficient

way of extracting low-frequency signals compared to frequency-domain low-pass filters. It can

also be calculated quickly, so is appropriate for modest embedded systems, such as anticipated

practical deployment. Furthermore, power line noise can be easily removed from a captured

raw signal [30].

A similar derived parameter, dubbed “laterality coefficient” (LC), had been introduced [31]

to study motor rehabilitation after a stroke. However, LC has not been used to find subjective

differences among human subjects. Comparison of feature distribution of LC and IHAR can

be seen in Fig 6. The same feature pair for both IHAR and LC were plotted, and IHAR showed

more discrimination compared to LC as suggested by heterogeneous distributions across var-

ied feature pairs.

Fig 7 shows the frequency response for a MA filter with three different window sizes. Three

comprehensive analyses were performed, for window sizes 4, 16, and 32. Unlike other low-

pass filters, MA filter does not have a sharp cut-off. The frequency response of an MA filter

Fig 5. Distribution of features before and after the augmentation, using color to distinguish respective subjects. Top 3 plots

show features of 10 training trials, while bottom 3 plots show corresponding features of augmented trials.

https://doi.org/10.1371/journal.pone.0238872.g005
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can be expressed as

HðoÞ ¼
1

L
1 � e� joL

1 � e� jo

� �

; ð4Þ

where angular frequency ω = 2πf, e−jω is complex phasor of filter transfer function, and L is

window size. As seen in Fig 7, when the window size is 4, the cut-off frequency (at which

Fig 6. Comparison of selected feature distribution of IHAR and LC. Top 5 show scatter plots of IHAR, while bottom 5 plots show LC

of corresponding feature pairs.

https://doi.org/10.1371/journal.pone.0238872.g006

Fig 7. Frequency response of the MA filter with various window sizes.

https://doi.org/10.1371/journal.pone.0238872.g007
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magnitude is attenuated by 3 dB so full-scale gain is 1=
ffiffiffi
2
p
� :7) is *15 Hz (fs = 128 Hz), so

the passband includes Delta (δ), Theta (θ), and Alpha (α) frequency ranges. Only δ band can

be extracted when window size 16 or 32 is used. Most cognitive tasks, including relaxation and

mental recall, produce low-frequency EEG signals [32]. Therefore, the above-mentioned win-

dow sizes were used to extract information in low-frequency signals. Furthermore, this filter-

ing process eliminates power line noise, which “hum” lies between 50–60 Hz. The MA filter

can be expressed as

xA½n� ¼
1

L

XL� 1

k¼0

x½n þ k�; ð5Þ

where L is the window size, and x[�] are the time-domain samples. Finally, IHAR is calculated

by dividing samples of a left channel by samples of its corresponding right channel:

xIHAR½i; ~n� ¼
x½left½i�; ~n�
x½right½i�; ~n�

; ð6Þ

where i = 1, 2, . . ., 7 or total number of channel pairs, ~n ¼ 1; 2; . . . ; total samples in the phase

sequence. left[�] & right[�] are left and right channels lists arranged to align corresponding

bilateral pairs, as in

left ¼ AF3; F7; F3; FC5; T7; P7; O1;

right ¼ AF4; F8; F4; FC6; T8; P8; O2:

For simplicity, henceforth the “IHAR” subscript is elided, and x is understood to refer to

xIHAR.

To validate performance of the proposed feature, several time-domain features were calcu-

lated for comparison:

• Laterality Coefficient (LC): ratio of difference and sum of a bilateral EEG pair, (L − R)/(L +

R).

• Waveform Length (WL): cumulative length of a particular segment of a signal.

• Slope Sign Change (SSC): number of times the slope of a signal changes its sign.

• Auto-regressive coefficients (AR): AR modeling is a process of predicting future values based

on past values of time series data. Scalar values which model the prediction.

Except for LC, these features have especially been used in EMG analysis studies, including

limb movement classification. Geethanjali et al. [33] conducted a performance comparison of

some of these features using LDA classifier and obtained 67–100% accuracy range for pair-

wise mental tasks classification. Each feature was extracted using a sliding window similar to

MA filter process applied in our calculation of IHAR, so the extraction process was consistent

for all features types. To calculate these four comparing features, some functions in “Myoelec-

tric control development toolbox” developed by Chan et al. [34] were used. No smoothing,

low-pass filtering, or averaging was applied to these compared features (besides IHAR).

When calculating each of these four features, the kernal window convolves through rows of

the trial phase matrix (14 × 1280). The size of the output matrix after feature calculation

depends upon the window size. Then the output matrix is flattened in row-major order to

make a feature vector and fed to a classifier.
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1.6 Classification

The extracted feature set was tested with several ML techniques to determine which algorithms

show high accuracy for person identification. Unlike authentication, person identification is a

straightforward classification problem, so traditional ML algorithms can be applied. Not

knowing a priori which are best suited for this problem domain, we compared four well-

known techniques.

1.6.1 Linear Discriminant Analysis (LDA). LDA [35, 36] is most commonly used as a

dimensionality reduction method, similar to Principal Component Analysis (PCA). Assuming

equal covariance for each class, and that conditional classes are multivariate, the LDA discrimi-

nant function δk(x) (which separates inferred classes) can be defined as in Eq 7 and the classifi-

cation rule shown in Eq 8:

dkðxÞ ¼ logpk þ xTS� 1mk �
1

2
mT

kS
� 1mk; ð7Þ

where πk denotes the prior probability that an observation belongs to the kth class, S is the

common covariance matrix (not to be confused with the ∑ operator for summation), and μk is

the mean of class k. The classification rule can be defined as

ĜðxÞ ¼ arg max
k
ðdkðxÞÞ: ð8Þ

1.6.2 Quadratic Discriminant Analysis (QDA). The main difference of QDA from LDA

is that QDA relaxes the assumption that the inputs of every class have the same covariance.

Also, class decision boundaries are not linear but quadratic [37]. Eq 9 shows the QDA discrim-

inant function. The classification rule is the same as that for LDA.

dkðxÞ ¼ logpk �
1

2
ðx � mkÞ

T
S� 1

k ðx � mkÞ �
1

2
logjSkj; ð9Þ

where Sk is the covariance matrix of the kth class.

1.6.3 Support Vector Machine (SVM). SVM, a.k.a. Support Vector Network, is also a

classification technique, finding the hyperplane which maximizes the margin between two

classes [38]. So-called support vectors define the hyperplane that makes the separation. Linear,

polynomial, Radial Basis Function (RBF), and sigmoid are the basic types of SVM kernels [39].

The SVM decision function can be expressed as

f ðxÞ ¼ signð
XN

i¼1

aiyiKðxi; xÞ þ bÞ; ð10Þ

where N is the size of training data, K is the kernel function that measures similarity between

xi (support vector) and x (feature values), αi is Lagrange multiplier, yi represents the member-

ship class of each datum (±1), and b is a numeric constant. We used linear, polynomial, and

RBF kernels to determine accuracy of the extracted features, respectively described following.

Linear SVM: a linear kernel was used, and its kernel function can be expressed as inner

(“dot”) product of support vector and feature values:

Kðxi; xÞ ¼ xT
i � x: ð11Þ
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Quadratic and cubic (d = 2 and 3) SVM polynomial kernels were used,

Kðxi; xÞ ¼ ðxT
i xþ cÞd; ð12Þ

with c = 1 for both cases.

Medium and Coarse Gaussian SVM: An RBF kernel function was used with σ = 16 and 64:

Kðxi; xÞ ¼ exp �
k xi � x k2

2s2

� �

; ð13Þ

where kxi − xk is Euclidean distance, and standard deviation σ determines the width of the

Gaussian kernel.

1.6.4 k-Nearest Neighbor (kNN). kNN is the simplest machine learning algorithm, mea-

suring distance to a given data point. k stands for the number of neighbors which should be

taken into account, and accuracy can be varied by adjusting its value. There are several dis-

tance measurements, including Euclidean distance (Eq 14):

dðx; x0Þ ¼k x � x0 k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1

wiðxi � x0iÞ
2

s

; ð14Þ

where d(x, x0) is the distance between points x and x0, and wi is edge weight.

kNN (k = 1) with Euclidean distance with equal weights were used in this analysis.

After extracting the IHAR feature, accuracy was tested in several ways. First we tested three

phases with all 14 electrodes (7 electrode pairs). Further, accuracy was checked for three trial

phases while reducing the number of electrodes. An augmented training dataset (3720 trials)

was used to train all the above-discussed ML models, and remaining 60 trials (5 trials per each

subject) with original signal data was used to test the models. K-fold cross-validation with 10

folds was used to validate the trained model. Accuracy was calculated as the ratio of correctly

classified trials to all testing trials.

2 Results and discussion

After separating three trial phases from each single EEG signal, each phase was visualized

using a custom MATLAB script. Fig 3 depicts the distribution of power of the relaxation

phase, over crania of 12 subjects, showing some differences after channel-wise normalization

(linear scaling with bias to remap to 0–1). Original unipolar (unbalanced) unsigned electrode

data remain so after normalization. Clear asymmetry can be observed across all the nasion-

inion lines. The EMOTIV Epoc+ headset uses mastoid bones as reference electrodes which

helps to maintain a fair alignment of electrodes. Moreover, symmetry of electrodes was

roughly checked by measuring distances from the sagital line before recording. However,

phrenology discredited measurement of head shapes, and the helmet, cap, or headset were

sometimes not perfectly aligned with the subject’s sagital plane. Perfectly consistent electrode

alignment is practically impossible (without extreme invasive techniques such as Neural Lace

[40]).

Data augmentation is used in machine learning when the training dataset is significantly

small. Even if large number of trials provide more reliable classification results, such collection

reduces the practicality in this domain. Therefore, data augmentation provides extra conve-

nience to users when they record their brain signals for training. In this experiment, augmen-

tation techniques and parameters were selected heuristically. However, drastic changes of

parameters could affect classification results.
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To check whether the extracted features are specific to individual subjects, statistical

hypothesis testing was performed. Expressing “extracted IHAR features do not have subjective

discrimination” as the null hypothesis, MANOVA (Multivariate Analysis of Variance) was

used for this test. The null hypothesis was rejected for all relaxation, visual, and mental recall

phases with the p-values 0.0043, 0.031, and 0.0037, respectively, which are all less than conven-

tional threshold 0.05.

Validation and testing accuracies of the three phases with 14 electrodes for the above-dis-

cussed machine learning techniques are shown in Fig 8. The data of each subject was trained

against that of every other subject, which creates N(N − 1)/2 = 66 classifiers, the so-called One-

vs.-One (OVO) multiclass classification method. This method shows even better accuracy

than One-vs.-All (OVA), albeit only slightly. Validation and testing accuracies for the same

data set with OVA method can be seen in Fig 9. OVO is usually better than OVA because class

imbalance occurs using OVA method even if OVA is faster in training. QDA, linear SVM,

Fig 8. Accuracy of three phases with 14 electrodes for various discriminant analysis, support vector machine, and

k-nearest neighbor techniques with OVO method. (a) Validation accuracies. (b) Testing accuracies.

https://doi.org/10.1371/journal.pone.0238872.g008
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Gaussian SVM, and kNN showed the highest validation accuracy for all three phases. The test-

ing results also were close to 100% for the same ML techniques. Furthermore, relaxation phase

showed higher validation and testing accuracy than other phases. Signal patterns evoked in the

relaxation phase seem more stable compared to those from the other phases. Lateral asymme-

try or energy difference of alpha activity between two hemispheres during the relaxation

explains the high performance of relaxation phase [41]. Quadratic SVM showed better valida-

tion accuracy, but testing accuracy was slightly lower. Even though cubic SVM acheived lowest

validation accuracy among all techniques, testing accuracy was lightly increased. The relaxa-

tion phase generally yielded highest accuracy with OVO method.

Comparison of performances with other time-domain features for same conditions is

shown in Fig 10. All 14 channels were used to test each feature extraction method. While

IHAR achieved highest accuracy, LC was the next best-performing feature, achieving

Fig 9. Accuracy of three phases with 14 electrodes with OVA method. (a) Validation accuracies. (b) Testing

accuracies.

https://doi.org/10.1371/journal.pone.0238872.g009
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95.4±0.9% validation accuracy for kNN classifier, and 83.3±0.1% maximum testing accuracy

for QDA. The conceptual similarity of the LC feature to proposed IHAR explains why it

achieved comparable results, especially for validation (but not testing). AR, SSC, and WL

showed less than 50% validation accuracies for most of the ML techniques. Even though the

AR feature has been used in many EEG-related studies, it did not show considerable results for

any classifier.

After selecting the best ML algorithms among tested candidates, accuracy was checked for

each electrode pair. Results can be seen in Table 1. The highest testing accuracy, 94.7±1.1%,

was from the FC5-FC6 electrode pair for QDA with relaxation phase. According to the results,

FC5-FC6 electrode pair yielded over 90% accuracy for most of the ML algorithms. Other fron-

tal electrode pairs F7-F8 and AF3-AF4 were the next highest. Occipital electrodes (O1-O2)

showed the worst accuracy, 43.5±2.8% for the linear SVM with relaxation task. In addition,

Fig 10. Comparison of accuracy across features (AR: Auto-regressive coefficients, SSC: Slope sign change, WL:

Waveform length, LC: Laterality coefficient, and IHAR: Inter-hemispheric amplitude ratio) extracted during

relaxation phase using all 14 electrodes. (a) Validation accuracies. (b) Testing accuracies.

https://doi.org/10.1371/journal.pone.0238872.g010
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O1-O2 showed the worst testing accuracy even for the visual stimulation phase in contrast to

most research findings [42, 43]. In most of the studies, so-called oddball stimulus has been

used to get the P300 (positive peak at 300 ms after the stimulation) spike from the occipital

area. In our study, the image (four-digit number) was shown without making any changes

(blinking or switching with another image) as visual stimulation. This explains the poor per-

formance of occipital electrodes for visual stimulation. Several studies have considered frontal

asymmetry in cognitive processes of the brain [44, 45]. Our results also showed considerable

accuracy for the frontal electrodes for relaxation and mental recall phases.

In order to increase accuracy further with minimum electrode setup, the model was trained

again by considering sets of electrode pairs. 100% testing accuracy was shown by the four fron-

tal electrodes (F7-F8 and FC5-FC6) for all classifiers except LDA. As seen in Fig 11, accuracy

increases when combining other frontal electrode pairs. A Receiver Operating Characteristic

(ROC) curve, created by plotting the true positive rate (TPR) against the false positive rate

Fig 11. Accuracies of combination of 2 frontal electrode pairs which yielded higher accuracies. (a) Validation

accuracies. (b) Testing accuracies.

https://doi.org/10.1371/journal.pone.0238872.g011

PLOS ONE EEG-based person identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0238872 September 11, 2020 17 / 24

https://doi.org/10.1371/journal.pone.0238872.g011
https://doi.org/10.1371/journal.pone.0238872


(FPR), was plotted for all subjects with F7-F8 and FC5-FC6 electrode combination. The AUC

(area under the ROC curve) value of all classifiers was unity, which means the trained model

was a perfect classifier. Considering user-friendliness of specific hardware design for EEG bio-

metrics, the anterior frontal electrodes AF3-AF4 pair is better than FC5-FC6, which is nearer

to the coronal center. Therefore, the AF3-AF4 and F7-F8 electrode setup also was tested, and

99.0±0.8% (kNN), 98.3±0.1% (QDA), 98.3±0.1% (linear SVM), 98.3±0.1% (quadratic SVM),

and 98.1±0.5% (LDA) testing accuracies were achieved for relaxation phase. The average AUC

value for these cases lies between 0.98 and 1. These results seem to accommodate lighter

devices which require less calibration time, such as Muse [46]. Even though entire hemispheres

manifest asymmetry, the “frontal asymmetry” feature has been introduced in EEG analysis,

calculated using frontal channels. Specifically, frontal asymmetry has been used in emotion

and attention-related analysis [47, 48]. Since the frontal lobe is responsible for executive tasks

[49], IHAR-based analysis for relaxation and mental recall phases shows high accuracy in fron-

tal electrodes.

Specificity (true positive rate) and sensitivity (true negative rate) were calculated for elec-

trode combinations which showed higher accuracies. Specificity is the ratio of number of trials

that correctly classified as negatives to number of all negative testing trials, while sensitivity is

the ratio of number of trials that correctly classified as positives to number of all positive test-

ing trials. Models with high specificity values are better in the authentication domain because

they decrease risk of granting access to imposters. As shown in Table 2, all electrode combina-

tions achieved highest specificity value, which confirms suitability of IHAR method for this

problem (better to tolerate occasional false rejection rather that allow false accepts).

More information can be captured using high-resolution EEG devices. Compared with

consumer-grade devices, clinical grade devices have more electrodes. Even though high accu-

racy can be achieved with the help of many electrodes, lighter electrode setup provides more

user-friendliness. As shown in Table 3, other approaches achieved high accuracy using more

channels, for compound or complex tasks. Our approach achieved the same accuracy with

only four frontal electrodes for a simple task. However, accuracy of the models cannot be

guaranteed when increasing the number of subjects. Fig 12 shows the general degradation of

accuracy while increasing the number of subjects. Average accuracy was calculated for 10 ran-

dom combinations of subjects with FC5-FC6 electrode pair, which showed highest accuracy

among other pairs. QDA classifier did not show rapid change of testing accuracy over increase

of number of subjects. Therefore, it might be usable with more subjects without compromising

accuracy significantly. In this study, 15 trials were conducted, but when increasing the number

of subjects, number of trials also should be increased to maintain consistent accuracy.

Table 2. Comparison of performances for different number of electrodes.

ML algorithm FC5-FC6 AF3-AF4, FC5-FC6 AF3-AF4, F7-F8 F7-F8, FC5-FC6

ACC SP SE ACC SP SE ACC SP SE ACC SP SE

LDA 87.4 100 78 93.3 100 98 98.1 100 98 98.1 100 98

QDA 94.7 100 98 92.0 100 96 98.3 100 100 100 100 100

Linear SVM 86.3 100 76 90.8 100 95 98.3 100 100 100 100 100

Quadratic SVM 83.1 100 96 91.5 100 98 98.3 100 99 100 100 100

Gaussian SVM 87.2 100 80 93.3 100 97 98.3 100 98 100 100 100

KNN 85.6 100 84 93.3 100 100 99.3 100 100 100 100 100

ACC: Accuracy, SP: Specificity, and SE: Sensitivity

AF: Anterior Frontal, F: Frontal, FC: Fronto-Central

https://doi.org/10.1371/journal.pone.0238872.t002
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Comparing the trial phases considered here, relaxation and mental recall showed higher

accuracy. Selecting the simplest task among these three phases is complicated because there

are merits and demerits for each. It is harder to concentrate or be relaxed in noisy environ-

ments, but visual stimulation would be easy. To stimulate the brain externally, some physical

resource is needed, but other tasks can be performed spontaneously. In our approach, the

relaxation phase showed highest accuracy for the minimal (four) electrode setup.

Mental recall of a number can be realized in many ways, including visualization (imagining

an image of the number), audiation or silent verbalization (thinking of a sound, such as a voice

reciting the number), synesthetic association (such as association of digits or numbers with

colors, flavors, musical notes, etc.) [58] or cross-modal correspondences, cardinal correspon-

dences (such as thinking of sets enumerated by a number’s digits), and spatial analogy (such as

clock hour directions).

For an n-digit integer, n� 2, the likelihood of a repeated digit is

pðnÞ ¼ 1 �
Yn� 1

i¼1

ð10 � iÞ
10

: ð15Þ

For a random four-digit integer, the probability is almost half that at least one digit is repeated,

Table 3. Comparison with other studies.

Author Electrodes Task Classified feature(s) Classifier Accuracy

(%)

Ong et al.

[50]

32 VEP Power spectral density (PSD) kNN 83

Alyasseri

et al. [51]

6 Mental task

(counting)

Multi-objective flower pollination

algorithm with wavelet transform

(MOFPA-WT)

ANN 85.12

Falzon et al.

[42]

32 VEP Frequency components up to 5th

harmonic

kNN 91.7

Koutras

et al. [52]

56 Sleep Time-Domain Descriptors (10),

Frequency-Domain Descriptors (17),

Wavelet Domain Descriptors (4)

kNN 95

Fukami

et al. [43]

4 VEP 5 frequency components Mahalanobis

distance

95

Yang et al.

[53]

4 Motor

movement,

imagery

Wavelet log-DCT (WLD) Fisher’s Linear

Discriminant

98.5

Kaewwit

et al. [54]

4 Resting state Combined ICA and AR kNN 98.51

Arnau et al.

[55]

32 Video

stimulation

PSD ANN 99

Thomas

et al. [56]

19 Resting state PSD Mean correlation

coefficients

99

Schetinin

et al. [57]

64 Motor

movement,

imagery

Group Method of Data Handling

(GMDH)

SVM 100

Proposed

approach

4 Relaxation

before

stimulation

IHAR QDA, SVM,

kNN

100

4 Visual

stimulation

IHAR kNN 98.8 ± 0.9

4 Mental recall IHAR QDA, SVM,

kNN

100

https://doi.org/10.1371/journal.pone.0238872.t003
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and such a pattern could anchor its recall. All of these recall styles are possible practices, and

the actual technique was left up to each subject. This vagueness could explain apparent useless-

ness of data from the mental recall phase.

A major problem in EEG-based biometric systems is instability of signal patterns over time.

EEG patterns can change with environment, maturity, and psychological disorders [59]. This

issue has not been addressed in the proposed approach. Therefore, accuracy can be degraded

over considerable time period due to changing daily mental states. Even though relaxation

phase has been used as refactory period in this study, merits and demerits of taking off headset

cannot be addressed with this experimental setup. In addition, results can be changed with dif-

ferent headsets because of hardware characteristics (resolution, sampling rate, common-mode

rejection ratio) and type of electrodes.

Fig 12. Variation of validation and testing accuracy for FC5-FC6 electrode pair of relaxation phase when

increasing number of subjects using IHAR. (a) Validation accuracies. (b) Testing accuracies.

https://doi.org/10.1371/journal.pone.0238872.g012
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IHAR was tested with different MA windows sizes (L) No substantial differences were found

for different parameter values, but comparatively better results were obtained for L = 32. As L
decreases, the size of ripples in the frequency response increases. As shown in Fig 7, even when

L = 32, a series of ripples is produced, although the height of the ripples is not considerable.

3 Conclusion

In this research, we successfully deployed a novel feature, Inter-Hemispheric Amplitude Ratio

(IHAR), to reveal personally unique information and distinguish people using EEG signals.

With the proposed feature, highest accuracy could be achieved with a lower number of elec-

trodes for a relatively simple task. Furthermore, this approach outperforms similar approaches

with less computational power, suggesting deployment in portable devices with embedded

low-power microprocessors. These promising results show that this approach has practical

real-world applications. Also, this approach provides more convenience when training the sys-

tem because there is no need of collecting large number of training trials. In the proposed

approach, highest accuracy was achieved for the two frontal pairs of electrodes—FC5-FC6 and

F7-F8. As a task phase to collect EEG data, relaxation is the best according to the results. Anal-

ysis showed the most suitable ML algorithms for classification are QDA, linear SVM, quatratic

SVM, Gaussian SVM, and kNN. Moreover, AF3, AF4, F7, and F8 selective electrode arrange-

ment can be used to develop tighter hardware design with high performance. However, accu-

racy would be affected if number of subjects increases. Also, brain signal patterns can

significantly change over time, which would affect performance. For continued study, this

approach can be further examined with a clinical-grade EEG system, and should be investi-

gated to check whether the number of electrodes can be further reduced.
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