Skip to main content
. 2020 Sep 11;15(9):e0238872. doi: 10.1371/journal.pone.0238872

Table 3. Comparison with other studies.

Author Electrodes Task Classified feature(s) Classifier Accuracy (%)
Ong et al. [50] 32 VEP Power spectral density (PSD) kNN 83
Alyasseri et al. [51] 6 Mental task (counting) Multi-objective flower pollination algorithm with wavelet transform (MOFPA-WT) ANN 85.12
Falzon et al. [42] 32 VEP Frequency components up to 5th harmonic kNN 91.7
Koutras et al. [52] 56 Sleep Time-Domain Descriptors (10), Frequency-Domain Descriptors (17), Wavelet Domain Descriptors (4) kNN 95
Fukami et al. [43] 4 VEP 5 frequency components Mahalanobis distance 95
Yang et al. [53] 4 Motor movement, imagery Wavelet log-DCT (WLD) Fisher’s Linear Discriminant 98.5
Kaewwit et al. [54] 4 Resting state Combined ICA and AR kNN 98.51
Arnau et al. [55] 32 Video stimulation PSD ANN 99
Thomas et al. [56] 19 Resting state PSD Mean correlation coefficients 99
Schetinin et al. [57] 64 Motor movement, imagery Group Method of Data Handling (GMDH) SVM 100
Proposed approach 4 Relaxation before stimulation IHAR QDA, SVM, kNN 100
4 Visual stimulation IHAR kNN 98.8 ± 0.9
4 Mental recall IHAR QDA, SVM, kNN 100