Table 3. Comparison with other studies.
Author | Electrodes | Task | Classified feature(s) | Classifier | Accuracy (%) |
---|---|---|---|---|---|
Ong et al. [50] | 32 | VEP | Power spectral density (PSD) | kNN | 83 |
Alyasseri et al. [51] | 6 | Mental task (counting) | Multi-objective flower pollination algorithm with wavelet transform (MOFPA-WT) | ANN | 85.12 |
Falzon et al. [42] | 32 | VEP | Frequency components up to 5th harmonic | kNN | 91.7 |
Koutras et al. [52] | 56 | Sleep | Time-Domain Descriptors (10), Frequency-Domain Descriptors (17), Wavelet Domain Descriptors (4) | kNN | 95 |
Fukami et al. [43] | 4 | VEP | 5 frequency components | Mahalanobis distance | 95 |
Yang et al. [53] | 4 | Motor movement, imagery | Wavelet log-DCT (WLD) | Fisher’s Linear Discriminant | 98.5 |
Kaewwit et al. [54] | 4 | Resting state | Combined ICA and AR | kNN | 98.51 |
Arnau et al. [55] | 32 | Video stimulation | PSD | ANN | 99 |
Thomas et al. [56] | 19 | Resting state | PSD | Mean correlation coefficients | 99 |
Schetinin et al. [57] | 64 | Motor movement, imagery | Group Method of Data Handling (GMDH) | SVM | 100 |
Proposed approach | 4 | Relaxation before stimulation | IHAR | QDA, SVM, kNN | 100 |
4 | Visual stimulation | IHAR | kNN | 98.8 ± 0.9 | |
4 | Mental recall | IHAR | QDA, SVM, kNN | 100 |