
Data Augmentation Based on Substituting Regional MRIs 
Volume Scores

Tuo Leng1,2, Qingyu Zhao2, Chao Yang1, Zhufu Lu1, Ehsan Adeli2, Kilian M. Pohl2,3

1School of Computer Engineering and Sciences, Shanghai University, Shanghai, China

2School of Medicine, Stanford University, Stanford, CA, USA

3SRI International, Center for Health Sciences, Menlo Park, CA, USA

Abstract

Due to difficulties in collecting sufficient training data, recent advances in neural-network-based 

methods have not been fully explored in the analysis of brain Magnetic Resonance Imaging 

(MRI). A possible solution to the limited-data issue is to augment the training set with 

synthetically generated data. In this paper, we propose a data augmentation strategy based on 

regional feature substitution. We demonstrate the advantages of this strategy with respect to 

training a simple neural-network-based classifier in predicting when individual youth transition 

from no-to-low to medium-to-heavy alcohol drinkers solely based on their volumetric MRI 

measurements. Based on 20-fold cross-validation, we generate more than one million synthetic 

samples from less than 500 subjects for each training run. The classifier achieves an accuracy of 

74.1% in correctly distinguishing non-drinkers from drinkers at baseline and a 43.2% weighted 

accuracy in predicting the transition over a three year period (5-group classification task). Both 

accuracy scores are significantly better than training the classifier on the original dataset.

1 Introduction

In neuroimaging studies, structural Magnetic Resonance Imaging (MRI) is often used to 

examine the influence of neuropsychological diseases and disorders on brain structures 

[1-3]. These neuroscience studies frequently first extract morphometric measurements 

associated with regions-of-interest (ROI) from the brain MRI of each subject. Then 

statistical group analysis aims to identify disease-specific biomarkers by comparing these 

measurements between healthy and diseased subjects [4,5]. An alternative group analysis is 

to first train a classifier to accurately differentiate healthy subjects from diseased ones based 

on the measurements [6-8]. Then the subset of measurements highly influencing the 

classification outcome are identified as disease-specific imaging biomarkers.

The most advanced classification frameworks nowadays are arguably based on neural 

networks [7,8]. Despite their successful use in the computer vision community, it is well-

known that the training of neural networks on medical imaging data suffers from the “high-
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dimension low-sample-size” problem [9]; that is, the number of subjects in each group is 

significantly lower than the dimension of measurements rendering the network easily 

overfitted. One way of alleviating this issue is to perform data augmentation, i.e., generating 

synthetic training data using information only from the existing training set, thereby 

reducing overfitting during training.

While affine transformations (including translation, flipping, and rotation) are commonly 

used for creating synthetic 3D MR images from existing ones [10], these operations are not 

meaningful for ROI-based measurements. Another commonly used augmentation strategy is 

based on adding Gaussian noise to the training data [10]. However, the noise level has to be 

manually chosen, which is not an intuitive procedure. For non-image data augmentation, 

approaches based on feature-space warping [11] have been proposed. These approaches aim 

to create synthetic data by warping the measurements of existing samples. For example, the 

Synthetic Minority Over-Sampling Technique (SMOTE) [12] computes the weighted 

average of measurements of two existing training subjects. Instead of synthesizing all 

measurements of a subject, we propose here a regional-feature-substitution strategy to 

incorporate the assumption commonly used in many neuroimaging studies [13] that brain 

morphometric measurements are only locally dependent and the fact that many neurological 

disorders only affect local brain regions [14]. Specifically, to create a new training sample, 

we substitute regional ROI measurements of an existing sample by those from another 

sample of the same cohort. We do so by arranging the ROI measurements as a matrix and 

substituting within sub-matrices, which we call “kernel” matrices. The kernel is constructed 

in compliance with the cortical parcellation of the brain to ensure that the warping only 

affects nearby brain regions.

In this study, we tested the augmentation strategy on the National Consortium on Alcohol 

and Neurodevelopment in Adolescence (NCANDA) dataset [15], which consists of 

longitudinal structural MRI scans of 505 subjects. The subjects were categorized into 5 

groups according to their drinking behavior in the 4-year study period. We built a neural-

network classifier to predict the group label based on the longitudinal measures of ROI 

cortical thickness. We show that by performing augmentation within each group separately 

to produce a well-balanced augmented dataset, our neural-network achieved a significant 

improvement on classification accuracy. Finally, we identify ROIs that highly influence the 

decision of the classifier through a visualization technique named layer-wise relevance 

propagation (LPR) [16].

2 Data Augmentation via Local Feature Warping

Suppose we have structural MRI images from S subjects that can be categorized into C 
groups. We further assume that morphometric measurements (e.g., gray-matter thickness) 

associated with V brain regions-of-interest (ROI) can be derived from each MRI image. We 

generalize the scenario to a longitudinal design, where these measurements are repeatedly 

measured T times, such that the measurements of each subject form a T × V matrix. Now, 

the V brain regions can be grouped into L major lobes, which we encode in the T × V matrix 
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by arranging the columns so that neighboring ones are associated with ROIs belonging to the 

same lobe (see Fig. 1)

To augment the training set, our approach is to “substitute” selective entries in the 

measurement matrices across subjects. To achieve this, we construct lobe-specific kernel 

matrices Kl ∈ ℝαl × βl, where l ∈ {1, 2, ⋯ , L} indicates the lobe and (αl, βl) indicates the 

size of the kernel. For instance, in the example of Fig. 1, α1 = 4, β1 = 4 for K1, and α2 = 2, 

β2 = 2 for K2. We then create a new synthetic subject by first randomly selecting a kernel 

and substituting the measurements inside the kernel of an existing subject by the ones from a 

different randomly-chosen subject in the same group (Fig. 2). As suggested by Fig. 1, the 

location of a kernel is confined within its specific lobe, so that the warping does not affect 

measurements of distant regions that are unlikely to correlate. Note that instead of using the 

weighted average strategy as in SMOTE that would generate unseen (thereby potentially 

unrealistic) measurements, our substitution strategy always uses existing measurements to 

synthesize new subjects.

Now let Sc denote the number of subjects in the cth group and Vl the number of ROIs in the 

lth lobe. Given the sizes {αl, βl} of the L kernels, the maximum number of subjects N that 

can be generated for a group is the product of the number of subject pairs (i.e., (Sc − 1) · Sc) 

and the number of possible kernel matrices in all lobess:

N ≔ ∑
c = 1

C
Sc(Sc − 1) ∑

l = 1

L
(T − αl + 1)(V l − βl + 1) (1)

3 Experimental Setup

3.1 Dataset

The experiments were based on data from the NCANDA study [15] comprised of 4-visit 

longitudinal data of 505 adolescents (S = 505, ages 12–22, 250 boys/255 girls; the data 

release NCANDA_PUBLIC_Y3_STRUCTURAL_V01 is made public according to the 

NCANDA Data Distribution agreement1). Each subject had T1-weighted MRI scans (T = 4) 

that were acquired annually. They were categorized into 5 groups according to the specific 

year the subject transitioned from a no-to-low to medium-to-heavy alcohol drinker [15]. As 

shown in our previous studies [17], initiation of binge drinking alters normal development of 

brain morphometric patterns, so we hypothesize that subjects from different groups can be 

classified based on their brain morphometric measurements. In doing so, we have S1 = 265 

subjects who met the no-to-low drinking criteria of the NCANDA study [15] at baseline and 

throughout the study, S2 = 49 subjects who met the criteria for the first 3 visits but 

transitioned to exceed-criteria drinkers at visit 4, S3 = 56 transitioned at visit 3, S4 = 58 

transitioned at visit 2, S5 = 77 subjects who remained exceeds-criteria drinkers throughout 

the study. Structural MRIs were processed using the publicly available NCANDA pipeline 

1https://www.niaaa.nih.gov/research/major-initiatives/national-consortium-alcohol-and-neurodevelopment-adolescence.
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[17]. FreeSurfer (V 5.3.0) was applied to the skull-stripped MR images yielding the 

measurements of average thickness associated with 34 bilateral cortical ROIs (V = 34). Then 

confounders including age, sex, race and supratentorial volume were removed from the raw 

thickness measurements by general linear model analysis [14], which resulted in a 4 × 34 

residual score matrix for each subject. Based on these score matrices, our goal was to apply 

data augmentation to train a classifier that could accurately predict the group label of each 

subject.

3.2 Data Augmentation for Classification

We tested whether the proposed data augmentation strategy could boost classification 

accuracy in two scenarios: 5-group classification and binary classification between Group 1 

and 5 (subjects remained non-heavy or heavy drinking through the 4-year study period) as 

these two groups were most distinguishable with respect to their drinking history across the 

5 groups. For either scenario, the accuracy of classifiers in correctly labelling individuals 

was derived based on a 20-fold cross validation. The training data was enriched with the 

synthetic samples produced by our augmentation strategy, and the normalized classification 

accuracy (i.e., the accuracy of correctly labeling samples while accounting for differences in 

sample size among groups) was measured on the testing fold. Next, we detail the setup of 

kernel matrices used in our augmentation strategy and describe the up-sampling strategy as a 

benchmark approach in our experiments.

Kernel Setup.—Kernels were constructed with respect to the lobe parcellation of the 

brain. Adopting the Freesurfer parcellation, the brain was segmented into 6 major lobes: 

temporal lobe (9 ROIs), frontal lobe (11 ROIs), occipital lobe (4 ROIs), parietal lobe (5 

ROIs), cingulate (4 ROIs) and insula. Given these dimensions, we set up kernel sizes ({αl, 

βl}) such that the resulting augmented training set was as balanced as possible for the 5-

group and binary classification (Table 1). Based on Eq. 1 and our kernel settings, the 

maximum number of synthetic samples generated from the training folds was 1,655,888, 

which was the sum of

N1 = 260 ∗ (1 + 1 + 1 + 1 + 1 + 1) ∗ 259 = 404040,
N2 = 44 ∗ (36 + 44 + 16 + 20 + 16 + 4) ∗ 43 = 257312,
N3 = 51 ∗ (24 + 44 + 16 + 20 + 16 + 4) ∗ 50 = 316200,
N4 = 53 ∗ (20 + 44 + 16 + 20 + 16 + 4) ∗ 52 = 330720,
N5 = 72 ∗ (8 + 18 + 12 + 15 + 12 + 3) ∗ 71 = 347616 .

(2)

Similarly, the maximum size of augmentation for the binary classification task was N = 

344160 + 276060 = 620220.

To relate the accuracy of classification with the size of the augmented training set, we also 

performed classification on subsets of the augmented dataset with different sizes (500, 2.5k, 

50k, 250k, 500k). For each setting, the subset was randomly selected from the maximumly 

augmented training set while keeping the size of each group balanced.

Up-sampling.—We also measured the classification accuracy when training was 

performed on balanced datasets generated by up-sampling (sample with replacement). 
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Specifically, the raw training set was up-sampled to 2500 for 5-group and 430 for binary 

classification. Note that the size of these up-sampled datasets was determined to create a 

balanced training set rather than to perform data augmentation; Extensive up-sampling will 

only produce repeated training samples, so it does not improve the accuracy of the classifier.

3.3 Classifiers

The above data augmentation was independent of the choice of the classifier. Here, we tested 

the data-augmentation strategies on three different approaches: a simple, fully connected 

neural network called SmallNet as well as Random Forest (RF) and Supporting Vector 

Machine (SVM), two approaches that have been shown to be able to work reasonably on 

small training datasets. SmallNet only contained 3 hidden layers with each layer having 50 

neurons. The activation function of each hidden layers was Relu, and the final output was 

the softmax functional for a general multi-group classification. To train our SmallNet 

classifier, the Kaiming’s method [18] was used and initialized with a batch size of 128. 

Learning strategy of SmallNet was SGD with momentum of 0.1. All experiments were ran 

for 10 epochs at 0.0001 learning rate. During training, batch normalization and early 

stopping method were used for lowering the impact of overfitting. Note, we used SmallNet 

for simplification to illustrate the power of our augmentation strategy, and more 

sophisticated network structures might produce more accurate results. Our implementation 

of RF consisted of 100 decision trees. Each decision tree had the depth of up to 5, and the 

feature number for each split was 10. The weighted accuracy was obtained by averaging 100 

training sessions. SVM was setup with a relaxation coefficient of 2.0, a maximum number of 

iterations of 5000, and an average of 50 out of 5000 cross-training. After 100 cross-training, 

the average was taken as the final results.

4 Results

Here we analyze the accuracy of the 3 classifiers trained with and without data 

augmentation. We can see from Table 2 that all 3 classifiers performed poorly on the raw 

datasets for both 5-group and binary classification. When trained on the up-sampled dataset, 

the accuracy of RF and SVM slightly improved in the 5-group classification setting to 

approximately 28% (randomly labeling samples would produce an accuracy of 20%). 

However, these two methods showed little further improvement when the training set was 

augmented by the proposed strategy. On the other hand, even though SmallNet was often 

less accurate than RF and SVM on small training sets, it achieved significantly more 

accurate 5-group and binary classification results when trained on the augmented set. These 

results support the fact that RF and SVM are suitable for small to moderate datasets, so 

extensive data augmentation provides little merit. On the other hand, the implementation of 

neural networks requires a large-scale training dataset. In our specific application, training 

SmallNet benefited from the proposed data augmentation strategy resulting in the most 

accurate prediction for both classification settings. The above claims are further supported 

by Fig. 3. As the size of the augmented set increased, the accuracy of RF and SVM only 

increased marginally, whereas SmallNet showed a significant improvement. The 
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performance of SmallNet converged approximately at 250k training samples for 5-group and 

50k for the binary classification task.

Visualization via LRP.

As mentioned, another critical goal of most neuroimaging studies is to identify critical ROI 

biomarkers associated with specific cohorts, so we analyzed the subset of measurements that 

highly impacted the classification decision based on the Layer-wise relevance propagation 

(LRP) technique [16]. Given a feature matrix and a classifier, the aim of LRP is to assign 

each entry of the measurement matrix a relevance score such that negative scores contain 

evidence against the presence of a class, while positive scores contain evidence for the 

presence of a class. These pixel-wise relevance scores can be visualized as an image called 

heatmap. Here we focused the analysis on the binary classification as it highlighted the 

difference between normal adolescents (Group 1) and youth that had already initiated 

medium-to-heavy drinking at baseline (Group 5). Figure 4-left shows the heatmaps 

(relevance scores) associated with the input matrix. Yellow blocks in the upper figure 

correspond to the matrix entries that strongly indicate the presence of Group 1, whereas the 

yellow blocks below correspond to Group 5. The general agreement between the two 

heatmaps suggests that the binary classification was mainly based on several key 

measurements (in yellow). To relate those measurements to specific brain regions, these 

scores were averaged in the longitudinal dimension and then averaged between the two 

groups. The resulting 34-D vector was then color-coded on the cortical surface (Fig. 4 right). 

Yellow regions correspond to ROIs that contributed more to the prediction. We can see that 

brain regions in the temporal lobe (specifically superior temporal, fusiform, and inferior 

temporal regions) are more salient than others. The impact of alcoholism that leads to 

significant volume deficits in cortical gray/white matter in the temporal lobe has been 

frequently suggested in the alcohol literature [19].

5 Conclusion

While data augmentation has been shown to be effective in increasing the performance of 

many image-based classifiers, our proposed augmentation strategy designed for ROI-

measurements not only provided us sufficient data for training simple neural networks, but 

also showed a significant improvement on prediction results when applied to the NCANDA 

dataset. We showed that progression of drinking behaviors could be differentiated based on 

longitudinal brain morphometric measurements. Furthermore, by applying the LRP method, 

we were able to derive the relevance scores for the input measurement matrix, from which 

we could interpret and visualize the importance of ROIs in the decision process of the 

classifier.

In this work, however, we only explored kernel construction with respect to the spatial 

properties of the brain. We will further consider temporal correlation of the longitudinal 

measurements in constructing kernels. Moreover, we aim to extend the usage of our 

augmentation strategy in the context of image-based classification by applying regional 

warping to either raw images or intermediate features. This could potentially complement 

current image augmentation strategies based on global affine/deformable transformation.
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Fig. 1. 
Exemplar dynamic kernels within a toy measurement matrix. Columns are ordered such that 

ROIs of the same lobe (indicated by color) are adjacent. The location of a kernel is confined 

within a specific lobe.
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Fig. 2. 
Measurements of subject i within the kernel (blue) are substituted by the ones of subject j 
(green) to yield the measurements a new synthetic subject.

Leng et al. Page 9

Large Scale Annot Biomed Data Export Label Synth Hardw Aware Learn Med Imaging Comput Assist Interv (2019). Author manuscript; available in 

PMC 2020 September 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Accuracy of RF, SVM and SmallNet based on different sizes of training dataset.
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Fig. 4. 
Heat-map of relevance scores on the binary classification task
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Table 1.

Kernel dimension setup of 5-group (upper) and binary (lower) classification

Group Temporal Frontal Occipital Parietal Cingulate Insula

1 (4,9) (4,11) (4,4) (4,5) (4,4) (4,1)

2 (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

3 (1,4) (1,1) (1,1) (1,1) (1,1) (1,1)

4 (1,5) (1,1) (1,1) (1,1) (1,1) (1,1)

5 (1,8) (2,6) (2,1) (2,1) (2,1) (2,1)

Group Temporal Frontal Occipital Parietal Cingulate Insula

1 (4,9) (4,11) (4,4) (4,5) (4,4) (4,1)

2 (4,9) (4,11) (4,4) (4,5) (4,4) (4,1)
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Table 2.

Accuracy of 5-group and binary classification produced by random forest (RF), support vector machine 

(SVM) and SmallNet on different training sets.

Task Training set Size RF SVM SmallNet

5-group classification Raw data 405 19.9% 23.3% 19.2%

Up-sampling 2500 27.5% 28.7% 23.1%

Augmentation 1.6M 27.9% 29.3% 44.1%

Binary classification Raw data 405 54.7% 57.7% 53.7%

Up-sampling 430 55.6% 58.1% 56.1%

Augmentation 600K 55.5% 58.2% 73.8%
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