Table 17.
Oil | Bitcoin | US dollar | Corn | ||
---|---|---|---|---|---|
P1: July 1, 2019 – November 16, 2019 | |||||
Volatility spillover | 1.541⁎⁎⁎ | 4.584⁎⁎⁎ | −0.160⁎⁎ | 0.425⁎⁎⁎ | |
Wald-test | 23.992 | 31.392 | 6.177 | 64.652 | |
Skewness spillover | −4.420⁎⁎⁎ | −1.050⁎⁎⁎ | 0.123⁎⁎ | 0.065 | |
Wald-test | 388.58 | 114.975 | 4.65 | 0.181 | |
Kurtosis spillover | 0.112⁎⁎⁎ | −0.023⁎⁎⁎ | −0.004 | 0.065 | |
Wald-test | 89.843 | 71.805 | 0.485 | 0.181 | |
P2: November 17, 2019 – December 30, 2019 | |||||
Volatility spillover | 0.037 | 3.337⁎⁎⁎ | −0.674⁎⁎⁎ | −0.121 | |
Wald-test | 0.115 | 35.338 | 16.117 | 1.337 | |
Skewness spillover | −3.018⁎⁎⁎ | −0.691⁎⁎⁎ | 0.124⁎ | 0.078 | |
Wald-test | 101.339 | 37.774 | 3.065 | 0.193 | |
Kurtosis spillover | 0.016 | −0.134⁎⁎⁎ | −0.005 | 0.078 | |
Wald-test | 2.129 | 980.367 | 1.523 | 0.193 | |
P3: December 31, 2019 – April 10, 2020 | |||||
Volatility spillover | 0.439⁎⁎⁎ | 0.901⁎⁎⁎ | −0.894⁎⁎⁎ | 0.035 | |
Wald-test | 39.664 | 14.088 | 24.962 | 2.087 | |
Skewness spillover | −1.998⁎⁎⁎ | −0.027 | −0.207⁎⁎⁎ | 0.255 | |
Wald-test | 16.223 | 0.037 | 7.253 | 0.98 | |
Kurtosis spillover | 0.230⁎⁎⁎ | 0.055 | −0.018⁎⁎⁎ | 0.255 | |
Wald-test | 246.946 | 271.941⁎⁎⁎ | 24.566 | 0.98 | |
Changes in spillovers between sub-periods | |||||
Spillovers in P2 minus Spillovers in P1 | |||||
Volatility spillover | Diff. | −1.504⁎⁎⁎ | −1.247⁎⁎⁎ | −0.513⁎⁎⁎ | −0.546⁎⁎⁎ |
Wald-test | 44.257 | 8.458 | 18.72 | 43.766 | |
Skewness spillover | Diff. | 1.402⁎⁎⁎ | 0.359⁎⁎⁎ | 0.001 | 0.013 |
Wald-test | 21.45 | 6.84 | 8.16E-05 | 0.012 | |
Kurtosis spillover | Diff. | −0.096⁎⁎⁎ | −0.111⁎⁎⁎ | −0.001 | 0.013 |
Wald-test | 555.434 | 2422.113 | 0.44 | 0.012 | |
Spillovers in P3 minus Spillovers in P2 | |||||
Volatility spillover | Diff. | 0.402⁎⁎⁎ | −2.436⁎⁎⁎ | −0.221⁎⁎⁎ | 0.157 |
Wald-test | 33.461 | 32.365 | 7.835 | 2.295 | |
Skewness spillover | Diff. | 1.020⁎⁎ | 0.664⁎⁎⁎ | −0.330⁎⁎⁎ | 0.177 |
Wald-test | 4.309 | 12.593 | 12.021 | 0.991 | |
Kurtosis spillover | Diff. | 0.213⁎⁎⁎ | 0.189⁎⁎⁎ | −0.013⁎⁎ | 0.177 |
Wald-test | 466.64 | 2132.291 | 3.853 | 0.991 |
Note: Net spillovers from the Shanghai Stock Exchange A- and B-share indices to other assets are calculated as the differences between absolute values of spillovers from A- and B-share indices to other assets and absolute values of spillovers of the other way around. Static spillovers are derived from estimates of an extended VAR(1) model. Time varying higher moments are obtained via a two-state regime switching model. SSEA index is the Shanghai Stock Exchange A-share index; SSEB index is the Shanghai Stock Exchange B-share index. Diff. represents the result of subtraction in spillovers. Wald-test denotes the Wald test statistic for the hypothesis testing of zero spillovers or differences. E stands for scientific notation. ⁎⁎⁎, ⁎⁎ and ⁎ denote significance at the 1%, 5% and 10% levels.