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Brain responses vary considerably from moment to moment, even to identical sensory stimuli. This has been attributed to
changes in instantaneous neuronal states determining the system’s excitability. Yet the spatiotemporal organization of these
dynamics remains poorly understood. Here we test whether variability in stimulus-evoked activity can be interpreted within
the framework of criticality, which postulates dynamics of neural systems to be tuned toward the phase transition between
stability and instability as is reflected in scale-free fluctuations in spontaneous neural activity. Using a novel noninvasive
approach in 33 male human participants, we tracked instantaneous cortical excitability by inferring the magnitude of excita-
tory postsynaptic currents from the N20 component of the somatosensory evoked potential. Fluctuations of cortical excitabil-
ity demonstrated long-range temporal dependencies decaying according to a power law across trials, a hallmark of systems at
critical states. As these dynamics covaried with changes in prestimulus oscillatory activity in the alpha band (8-13 Hz), we es-
tablish a mechanistic link between ongoing and evoked activity through cortical excitability and argue that the co-emergence
of common temporal power laws may indeed originate from neural networks poised close to a critical state. In contrast, no
signatures of criticality were found in subcortical or peripheral nerve activity. Thus, criticality may represent a parsimonious
organizing principle of variability in stimulus-related brain processes on a cortical level, possibly reflecting a delicate equilib-
rium between robustness and flexibility of neural responses to external stimuli.
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Significance Statement

Variability of neural responses in primary sensory areas is puzzling, as it is detrimental to the exact mapping between stimu-
lus features and neural activity. However, such variability can be beneficial for information processing in neural networks if it
is of a specific nature, namely, if dynamics are poised at a so-called critical state characterized by a scale-free spatiotemporal
structure. Here, we demonstrate the existence of a link between signatures of criticality in ongoing and evoked activity
through cortical excitability, which fills the long-standing gap between two major directions of research on neural variability:
the impact of instantaneous brain states on stimulus processing on the one hand and the scale-free organization of spatiotem-
poral network dynamics of spontaneous activity on the other.

Introduction
Neural responses are characterized by remarkable variability,
even to identical physical stimuli. This well-known phenomenon
has been attributed to fluctuations of the neuronal network’s
state (Arieli et al., 1996; Sadaghiani et al., 2010), observable via
diverse neuronal measures, such as EEG (Rahn and Baş ar, 1993;
Romei et al., 2008; Vanrullen et al., 2011; Forschack et al., 2017;
Iemi et al., 2019), BOLD signal (Fox and Raichle, 2007; Becker et
al., 2011), local field potentials (Arieli et al., 1996), and single-cell
recordings (Azouz and Gray, 1999; Churchland et al., 2010). So
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far, studies on neuronal variability have mainly focused on the
strength of variability (Churchland et al., 2010; Garrett et al.,
2013; Dinstein et al., 2015). However, the dynamics of network
states over time may provide even further insights into the
underlying spatiotemporal organization principles.

In this context, a certain type of fluctuation pattern known as
power-law dynamics, which indicates that a signal possesses
scale-free properties, is of particular interest. Such power-law
relationships represent a hallmark of the (self-)organization of
complex systems at a critical state (Sethna et al., 2001; Muñoz,
2018), the point of a phase transition between two distinct sys-
tem regimens, such as order and disorder (Bak et al., 1987,
1988; Beggs and Plenz, 2003), at which the dynamic range, in-
formation processing, and capacity of a system are maximized
(Kinouchi and Copelli, 2006; Shew and Plenz, 2013). Figure
1A visualizes these system configurations using the Ising model
of ferromagnetism (Ising, 1925).

Empirically, power-law dynamics have
been found in the size and duration of neu-
ronal avalanches of various species, such as
rats (Beggs and Plenz, 2003; Friedman et
al., 2012), monkeys (Petermann et al., 2009;
Yu et al., 2017), zebrafish larvae (Ponce-
Alvarez et al., 2018), and humans (Priese-
mann et al., 2013; Shriki et al., 2013; Arviv
et al., 2015). In the temporal domain,
power-law dynamics can be observed
in human resting state fMRI networks
(Tagliazucchi et al., 2013), as well as in am-
plitude fluctuations of alpha and beta band
activity by way of MEG/EEG (Linkenkaer-
Hansen et al., 2001; Palva et al., 2013),
associated with long-range temporal de-
pendencies. Thus, criticality may represent
a general and appealingly parsimonious
explanation of neuronal variability in
the brain. However, the functional link
between critical dynamics, fluctuations of
ongoing neural activity, and cortical excit-
ability remains elusive, particularly for the
human brain.

To establish this link, we developed an
approach to probe instantaneous cortical
excitability on a single-trial level using
somatosensory evoked potentials (SEPs) in
EEGs on humans in response to electrical
median nerve stimuli (Fig. 1B). Specifically,
the N20 component of the SEP is thought
to solely reflect excitatory post-synaptic
potentials (EPSPs) of the first thalamocorti-
cal volley (Peterson et al., 1995; Wikström
et al., 1996; Bruyns-Haylett et al., 2017),
generated in the anterior wall of the post-
central gyrus, Brodmann area 3b (Allison
et al., 1991). Therefore, the amplitude of
this early part of the SEP represents a direct
measure of the instantaneous excitability of
a well-defined neuronal population in the
primary somatosensory cortex. Additionally,
to bridge the gap between evoked and
ongoing neuronal activity, we evaluated pres-
timulus oscillations in the alpha band
(8-13Hz) of the same neuronal sources, a
classical index of cortical excitability in

ongoing neural activity (Klimesch et al., 2007; Romei et al., 2008).
Here we show that fluctuations of cortical excitability are

likely to be governed by the same near-critical network dynamics
both in ongoing and evoked neural activity.

Materials and Methods
Participants. EEG data were recorded from 33 male human subjects.

Two subjects were excluded because no clear SEPs were visible in the
single-trial analysis, probably because of suboptimal placement of the
stimulation electrodes and a low signal-to-noise ratio (SNR) of the EEG.
The remaining sample of 31 subjects had a mean6 SD age of 26.96 5.0
years. All participants were right-handed (lateralization score, mean 6
SD, 92.9 6 11.7), as assessed using the Edinburgh Handedness
Inventory (Oldfield, 1971), and did not report any neurologic or psychi-
atric disease. All participants gave informed consent and were reim-
bursed monetarily. The study was approved by the local ethics
committee.

Stability
(ordered system)

Instability
(disordered system)

Critical state
(phase transition)

A

B

Figure 1. Types of system dynamics and how to probe them. A, Ising model at different system states: ordered, critical,
disordered (from left to right). Transferred to a grid of neurons, black and white shades represent firing and nonfiring neu-
rons, or, as in the context of our study, neurons that can or cannot be recruited by the stimulus. Here, snapshots of the sys-
tem at a given point in time are shown. In an ordered system, local interactions dominate and lead to highly stable neural
activity. In contrast, firing patterns in a disordered system are highly unstable and quickly change from moment to
moment in a stochastically independent manner (i.e., white noise). At the critical state, the system resides at the border
between the tendencies either toward an ordered or toward a disordered system. This is reflected by the spatiotemporal
dynamics (i.e., scale invariance or power-law dynamics). Scale invariance is visible from the middle panel since similar clus-
ters of black pixels occur on all scales. B, Experimental paradigm. The instantaneous state of the neuronal system (illus-
trated here with snapshots of the Ising model at the critical state) is probed by somatosensory stimuli. The amplitude of
the N20 component of the SEP (negative peaks of the red curves at the bottom) is expected to be proportional to the num-
ber of neurons that can be recruited by the stimulus at a given moment (black pixels in the probed area, which is marked
by the red circles), therefore reflecting a measure of instantaneous cortical excitability. In a stable system, the number of
neurons that can be excited would barely change over time; whereas in an unstable system, this would vary randomly.
However, at the critical state, configurations would show the largest range of variation over time with fluctuations follow-
ing a temporal power law.
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Stimuli. Somatosensory stimuli were applied using electrical stimula-
tion of the median nerve. A noninvasive bipolar stimulation electrode
was positioned on the left wrist (cathode proximal). The electrical stim-
uli were designed as squared pulses of a 20 ms duration. The stimulus in-
tensity was set to 1.2 �motor threshold, leading to clearly visible thumb
twitches for every stimulus, as individually determined by a staircase
procedure before the experiment. Stimuli were applied using a DS-7
constant-current stimulator (Digitimer).

Procedure. During the experiment, participants were seated comfort-
ably in a chair their hands extended in front of them in the supinate
position on a pillow. Electrical stimuli were presented in a continuous
sequence with interstimulus intervals ranging from 663 to 763ms (ran-
domly drawn from a uniform distribution; ISIaverage = 713ms). In total,
1000 stimuli were applied, divided into two blocks of 500 stimuli each
with a short break in between. Participants were instructed to relax and
fixate their gaze on a cross on a computer screen in front of them while
receiving the stimuli.

Data acquisition. EEG data were recorded from 60 Ag/AgCl electro-
des at a sampling rate of 5000Hz using an 80-channel EEG system
(NeurOne, Bittium) with a bandwidth of 0.16-1250Hz. Electrodes were
mounted in an elastic cap (EasyCap) at the international 10-10 system
positions FP1, FPz, FP2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz,
F2, F4, F6, F8, FT9, FT7, FT8, FT10, FC5, FC3, FC1, FC2, FC4, FC6, C5,
C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, T7, T8,
TP7, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, PO4, PO8, O1,
and O2. Four additional electrodes were placed at the outer canthus and
the infraorbital ridge of each eye to record the electro-oculogram.
During recording, the EEG signal was referenced to FCz, and POz served
as ground. All impedances were kept to,10 kV. For source reconstruc-
tion, EEG electrode positions were measured in 3D space individually
for each subject using the Patriot motion tracker (Polhemus).
Additionally, the compound nerve action potential (CNAP) of the me-
dian nerve was measured using two bipolar electrodes, positioned at the
inner side of the left upper arm.

Structural T1-weighted MRI scans (MPRAGE) of all participants but
two were obtained during a different testing date (within the same year
of the experiment or up to 3 years earlier), on a 3T Verio, Skyra, or
Prisma scanner (Siemens).

EEG preprocessing. Stimulation artifacts were cut out and interpo-
lated between �2 and 4ms relative to stimulus onset using Piecewise
Cubic Hermite Interpolating Polynomials. The EEG data were bandpass
filtered between 30 and 200Hz, sliding a fourth-order Butterworth filter
forward and backward over the data to prevent phase shift. With this fil-
ter, we specifically focused on the N20-P35 complex of the SEP, which
emerged from frequencies of .35Hz as indicated by time-frequency
analyses on pilot data, and omitted contributions of later (slower) SEP
potentials of no interest. Furthermore, this filter effectively served as
baseline correction of the SEP since it removed slow trends in the data,
reaching an attenuation of 30dB at 14Hz, thus ensuring that fluctua-
tions in the SEP did not arise from fluctuations with slower frequencies
(e.g., alpha band activity). (The relationship between decibels [dB] and
magnitude is defined as dB ¼ 20 p log10½magnitude�). Bad segments of
the data were removed by visual inspection, resulting in 989 trials on av-
erage per participant. The data were then rereferenced to an average ref-
erence. Eye artifacts were removed using Independent Component
Analysis. For analysis of SEPs, the data were segmented into epochs
from �100 to 600ms relative to stimulus onset. EEG preprocessing was
performed using EEGLAB (Delorme and Makeig, 2004), and custom-
written scripts in MATLAB (The MathWorks).

Single-trial extraction using canonical correlation analysis (CCA).
Single-trial SEPs were extracted by applying a variant of CCA, as previ-
ously proposed by Waterstraat et al. (2015). CCA is used for finding
weights wx and wy that mutually maximize the correlation between two
signals X and Y, so that:

X pwx
max corr$Y pwy

For extracting single-trial SEPs, we constructed X as a two-dimen-
sional matrix (time � channel) containing all single-trial epochs

(concatenated in the time domain), whereas Y contained the average
SEP, concatenated as often as there were epochs (also concatenated in
the time domain). The resulting weight matrix wx represents spatial fil-
ters that, in combination with wy, maximize the correlation between sin-
gle-trial activity (X) and the average SEP (Y). By considering all
concatenated single trials at once, latent spatial components are identi-
fied which are shared across single trials and best approximate the spa-
tiotemporal profile of the overall SEP. This approach, however, does not
require a match in the amplitude between averaged and single-trial
SEPs, but only the temporal profile of the spatially projected single trials
being similar (i.e., maximally correlated) to the average SEP. To particu-
larly focus on the early portion of the SEP, the spatial filters wx were
trained using shorter segments from 5 to 80ms after stimulus but
applied to the entire epochs from�100 to 600ms. We derived a number
of spatially distinct components by applying the spatial filters to the sin-
gle-trial matrix, here denoted as CCA components as follows:

XCCA ¼ X pwx:

To characterize the CCA components in more detail, their spatial
patterns were computed as follows:

ACCA ¼ cov Xð Þ pwx;

and components were visually identified that showed a tangential spatial
pattern over the central sulcus as is typical for the N20-P35 complex
(referred to as tangential CCA components). Furthermore, components
were identified that showed a peak in the activity time course at 15ms
(referred to as thalamic CCA components; only in a subset of the sam-
ple). This procedure was performed individually for every subject for the
first four CCA components, as sorted by their canonical correlation coef-
ficients. Since CCA is insensitive to the polarity of the signal, the result-
ing tangential CCA components were standardized so that the N20
always appeared as a negative peak in the SEP (i.e., by inverting their
spatial filters wx, if necessary). Furthermore, CCA is insensitive to the
order of trials. Thus, the same spatial filters wx are obtained when per-
muting the order of single-trial SEPs, and it is therefore not possible that
CCA influences the temporal structure of SEP amplitudes across trials.

SEP peak amplitudes and prestimulus oscillatory activity. N20 peak
amplitudes were defined as the minimum value in single-trial SEPs of
the tangential CCA components62ms around the latency of the N20 in
the within-subject average SEP. P35 peak amplitudes were defined
accordingly as the maximum around the latency of the P35 in the
within-subject average SEP.

To extract prestimulus alpha band activity, the data were first cut
into segments from �500 to �5ms relative to stimulus onset. Next, the
data segments were mirrored to both sides (symmetric padding) and
bandpass filtered between 8 and 13Hz (fourth-order Butterworth filter
forward and backward applied). By segmenting the data before filtering,
we ensured that there was no contamination by poststimulus activity.
Mirroring the data segments served to minimize filter-related artifacts at
the edges of the prestimulus segments. To make a direct comparison
with the SEP possible, we applied the spatial filter corresponding to the
tangential CCA component to the prestimulus data. Subsequently, the
prestimulus alpha envelope was measured by taking the absolute values
of the signals processed with the Hilbert transform. To derive one presti-
mulus alpha metric for every trial, amplitudes of the alpha envelope
were averaged in the prestimulus time window of interest between �200
and�10ms.

EEG source reconstruction. To reconstruct the sources of the EEG
signal, we estimated lead field matrices based on individual brain anato-
mies and individually measured electrode positions. The structural T1-
weighted MRI images (MPRAGEs) were segmented using the Freesurfer
software (http://surfer.nmr.mgh.harvard.edu/), and a 3-shell boundary
element model was constructed which was used to compute the lead
field matrix with OpenMEEG (Kybic et al., 2005; Gramfort et al., 2010).
For 2 subjects, a template brain anatomy (ICBM152; Fonov et al., 2009)
was used as no individual MRI scans were available. For 1 subject,
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standard electrode positions were used instead of individually measured
positions. The lead field matrices were inverted using eLORETA
(Pascual-Marqui, 2007), and sources were reconstructed for the spatial
patterns of the tangential CCA component of every subject. Next, indi-
vidual source spaces were transformed into a common source space
based on the ICBM152 template using the spherical coregistration with
the FSAverage atlas (Fischl et al., 1999) derived from Freesurfer, to aver-
age the obtained sources of the CCA components across subjects. The
calculation of the individual head models and visualization of the sour-
ces were performed using Brainstorm (version 3.4; Tadel et al., 2011).
The MATLAB implementation of the eLORETA algorithm was derived
from the MEG/EEG Toolbox of Hamburg (METH).

Processing of peripheral electrophysiological data (median nerve
CNAP). Analogously to the EEG data, stimulation artifacts were cut out
and interpolated between �2 and 4ms relative to stimulus-onset using
Piecewise Cubic Hermite Interpolating Polynomials. Next, the data were
high-pass filtered at 70Hz to extract the short-latency CNAP peak of
only a few milliseconds duration, applying a fourth-order Butterworth
filter forward and backward to prevent phase shift. Additionally, notch
filters (fourth-order Butterworth) were applied from 48 to 52Hz and
148 to 152Hz, respectively. Epochs were extracted from �100 to 600ms
relative to stimulus onset.

Detrended fluctuation analysis (DFA). Power-law dynamics in the
fluctuations of early SEPs as well as of prestimulus alpha band activity
were quantified using DFA (Peng et al., 1994; Kantelhardt et al., 2001;
Hardstone et al., 2012). DFA calculates the fluctuation (i.e., SD) of a cu-
mulative signal on different time scales and tests whether its distribution
follows a power law: F tð Þ;ta, where F denotes the fluctuation function,
t the signal length (or window size), and a the power-law exponent.
The DFA exponent a quantifies the extent of power-law dynamics of a
signal, with a . 0.5 indicating persistent auto-correlations; whereas a =
0.5 is expected for a signal without a correlated temporal structure (i.e.,
white noise).

DFA was chosen since it requires less strict assumptions about the
stationarity of the signal than the classical auto-correlation function or
power spectral density (Linkenkaer-Hansen et al., 2001; Hardstone et al.,
2012; Sangiuliano Intra et al., 2018), and its power-law exponent esti-
mates are robust even when removing large portions of the data or when
analyzing data that have been stitched together (Chen et al., 2002).
Furthermore, the choice of DFA allowed direct comparisons with the
existing literature on scale-free behavior in neuronal data.

We analyzed power-law dynamics in the fluctuation of SEP and pres-
timulus alpha amplitudes across trials with window sizes ranging from 7
to 70 trials, which correspond to time windows of;5 to 50 s. The same
temporal window sizes were selected for the DFA of continuous alpha
band activity. To examine whether a power-law distribution was an
appropriate model for the observed dynamics, we performed model
comparisons as described by Ton and Daffertshofer (2016), similarly to
suggestions by Botcharova et al. (2014) and Clauset et al. (2009). In case
of the existence of a power law, the relation between the log-transformed
amplitude fluctuation and the log-transformed window size should be
linear. This linear log-log model was compared with a number of alter-
native models, comprising higher-order polynomial, exponential, and
logarithmic functions, as well as splines with two or three linear sections
(for more details see Ton and Daffertshofer, 2016). These comparisons
were performed at every latency of the early SEP, fitting the models by
maximum likelihood estimation and evaluating the model fit by the
Bayesian Information Criterion.

Evaluation of SNR. The SNR of the single-trial SEP, as measured by
the tangential CCA component, was quantified as the quotient of the
root-mean-square signal in the time range of the SEP (10-50ms) and a

prestimulus baseline (�50 to�10ms), so that SNR ¼ rmsðsignalÞ
rmsðnoiseÞ .

The same procedure was applied to estimate the SNR of the CNAP
and of the thalamic CCA component. For the CNAP, we chose time
windows from 5 to 8ms and�8 to�5ms, and for thalamic activity 12 to
18ms and�18 to�12ms, to estimate signal and noise, respectively.

Simulation of the relationship between SNR and DFA exponent.
Signals with DFA exponents systematically varying in the range from

a = 0.5 to a = 0.8 were generated by filtering white noise with IIR filters
whose coefficients depended on the desired DFA exponents as described
by Schaworonkow et al. (2015) according to the algorithm of Kasdin
(1995). The length of these time series was set to 1000 data points corre-
sponding to our empirical data from the SEP fluctuation across trials.
These time series were mixed with white noise, that is, stochastically in-
dependent time series with DFA exponents of a = 0.5. The time series
with varying DFA exponents were mixed with the noise at varying SNRs

ranging from 0.001 to 6, defined as SNR ¼ rmsðsignalÞ
rmsðnoiseÞ . This procedure

was repeated 100 times to account for the variance in the generation
of random time series. Subsequently, DFA exponents of the mixed
time series were measured, and the average DFA exponent of the
simulated signal was identified for which the SNR and DFA exponent
of the mixed time series corresponded to our empirical analysis of
SEP fluctuations.

Simulation of the influence of temporal filtering on DFA exponents.
To confirm that our temporal filtering did not cause the DFA exponent
increases in the early SEP, we applied the same filtering to surrogate data
with stochastically independent SEP fluctuations. SEP fluctuations across
trials were simulated by decreasing or increasing an average SEP time
course by a randomly generated factor for every trial. These signals were
superimposed on continuous pink noise, which was bandpass filtered
between 30 and 200Hz (fourth-order Butterworth filter applied forward
and backward), using a SNR of 2, a typical value for empirical data.
Subsequently, DFA was applied across trials for every time sample of the
simulated SEP, corresponding to above-described DFA analyses of the
empirical SEPs.

Statistical analyses. We compared the empirical DFA exponent time
courses with surrogate data and applied cluster-based permutation tests
to assess whether, and at which latencies, DFA exponents were signifi-
cantly higher than it would be expected for stochastically independent
fluctuation (i.e., white noise). First, we determined the expected DFA
exponents for stochastically independent fluctuation by shuffling the
trial order of our data and applying DFA to it. To account for variability
because of random shuffling, this step was repeated 1000 times, and
DFA exponents of these iterations were averaged, yielding an average
surrogate DFA exponent time course for every subject. (Averaged across
all samples and subjects, the mean DFA exponent was a = 0.512, thus
slightly increased compared with the theoretical DFA exponent of white
noise of a = 0.5. This small empirical deviation may have been caused by
the asymptotic behavior of DFA for small window sizes.) Next, the DFA
exponents of the data with intact trial order were compared with the av-
erage DFA exponents of the surrogate data, using a two-sample t test,
resulting in a t value for every comparison over the time course of the
SEP. To obtain clusters of increased DFA exponents, t values were
thresholded at ppre = 0.001. Within clusters, t values were summed up to
cluster t values tcluster,empirical. The same procedure was repeated 1000
times for the surrogate data, always comparing one surrogate dataset
with the average surrogate data, which provided us with the distribution
of cluster t values under the null hypothesis. Next, a cutoff value tcluster,crit
was defined at the 99.9th percentile corresponding to a cluster threshold
of pcluster = 0.001. Finally, tcluster,empirical of all clusters in the empirical DFA
exponent time course was compared with tcluster,crit to identify clusters of
significantly increased DFA exponents. With this procedure, we con-
trolled for the number of samples over the SEP time course, intersubject
variability, and the distribution of amplitude values of the SEP from which
DFA exponents were derived.

Analogously, DFA exponents of prestimulus alpha band activity
were statistically tested using a t test on group level, comparing them
with the average DFA exponents of the subject-specific null distribu-
tions, which were calculated from 1000 surrogate datasets with shuffled
trial order each. The statistical significance of the DFA exponents of con-
tinuous alpha band activity was compared with a t test to the average
DFA exponent of 1000 surrogate datasets that were derived from gener-
ating white-noise signals of comparable length as the EEG recordings
(3,600,000 data points), filtering them in the alpha band range and
extracting alpha amplitudes in the same way as for the empirical data
(corresponding to the procedure suggested by Nikulin and Brismar,
2004).
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To test the relationship of SNR and DFA expo-
nents, we correlated the average SNR of single-trial
SEPs with the average DFA exponents between 10
and 50ms after stimulus, across participants using
Spearman correlation.

Furthermore, we assessed the relationship
between single-trial N20 peak amplitudes and
prestimulus alpha amplitudes using a linear-
mixed-effects model of the following form:

N20 peak amplitude ; 11 prestimulus alpha 1

ð11 prestimulus alpha j subjectÞ

with subject as random factor, estimating
the fixed effect as well as the random slope of
the predictor prestimulus alpha amplitude with
the dependent variable N20 peak amplitude
(intercepts were included both for the fixed and
random effects). Additionally, the relationship
between N20 peak amplitudes and prestimulus
alpha amplitudes was assessed with a permuta-
tion-based approach in which we compared
their Spearman correlation coefficients with
those from surrogate prestimulus alpha ampli-
tudes with the same auto-correlated structure
but shuffled phases generated by Adjusted
Amplitude Fourier Transform (Theiler et al.,
1992), as suggested by Schaworonkow et al.
(2015). Empirical correlation coefficients were
averaged across subjects after Fisher’s z trans-
formation and compared with the null distribution of 10,000 aver-
aged correlation coefficients from the surrogate analyses to obtain the
corresponding p value.

The covariation of N20 and P35 peak amplitudes was tested using a
random-slope linear-mixed-effects model with P35 peak amplitude as
dependent variable, N20 peak amplitude as independent variable, and
subject as random factor.

Finally, we correlated DFA exponents of alpha activity (both
prestimulus and continuous) and DFA exponents of the SEP. To
account for the variability of the DFA exponent time course in the
early SEP, we calculated the arithmetic mean of DFA exponents in
four subsequent time windows, 20–25, 25–30, 30–35, and 35-40ms,
and computed their Spearman correlation coefficients with the DFA
exponents of alpha activity (prestimulus and continuous), respec-
tively. To control for the multiple testing across subsequent time
windows, we applied Bonferroni correction.

For all statistical analyses, the significance level was set to p= 0.05.
Correlation analyses as well as permutation-based statistics were per-
formed in MATLAB (version 2017b, The MathWorks). For all correla-
tional relationships between different parameters, we used Spearman’s
correlation coefficient as a measure robust to deviations of the data from
the normal distribution. The DFA model comparisons were performed
using publicly available code provided by Ton and Daffertshofer (2016).
The linear-mixed-effects models were calculated in R (version 3.5.1, R
Core Team, 2018) using the lmer function of the lme4 package (version
1.1-21; Bates et al., 2015) with the default options (including Restricted
Maximum Likelihood estimation of unstandardized fixed-effect coeffi-
cients). To derive a p value for the fixed-effect coefficients, the denomi-
nator degrees of freedom were adjusted using Satterthwaite’s method
(Satterthwaite, 1946) as implemented in the R package lmerTest (version
3.1-1; Kuznetsova et al., 2017).

Data and code availability. The data that support the findings of this
study are available on request from the corresponding author (T.S.). The
data cannot be made publicly available because of the privacy policies for
human biometric data according to the European General Data Protection
Regulation.

The custom-written code that was used for data processing and statisti-
cal analyses is publicly available at https://osf.io/jzqdt/?view_only=
dcb94617841445859adc5496d33c3cee.

Results
SEPs and neuronal generators
The SEPs, averaged across all participants and trials, are shown
in Figure 2A. The N20 component is visible as a negative peak at
;20ms at electrodes contralateral to the stimulation site and
posterior to the central sulcus. Furthermore, the scalp topogra-
phy at 20ms shows a tangential dipole centered over the central
sulcus (Fig. 2B), consistent with the assumption of neuronal gen-
erators located in the anterior wall of the postcentral gyrus.

To extract single-trial SEPs, we used a variant of CCA in
which spatial filters were trained based on a pattern matching
between average SEP and single trials (Fedele et al., 2013;
Waterstraat et al., 2015). With this method, we obtained a set of
spatially distinct CCA components for every individual subject.
In all subjects, a prominent CCA component was identified that
displayed the pattern of the typical N20 tangential dipole (Fig.
2C) and showed a clear peak at ;20ms after stimulus (Fig. 2A).
Furthermore, subsequent source reconstruction of the spatial
pattern revealed that the strongest generators were located in the
anterior wall of the postcentral gyrus (Fig. 2D,E). We focus on
this CCA component in the following analyses and refer to it as
the tangential CCA component.

Single-trial SEPs retrieved from the tangential CCA compo-
nent are displayed in Figure 3A for an exemplary subject. It is
apparent that the amplitude of the early SEP fluctuates over tri-
als, however without a clear trend (Fig. 3B).

Temporal dynamics in single-trial SEP amplitude
fluctuations
To evaluate the characteristics of SEP fluctuations across trials,
we applied DFA (Kantelhardt et al., 2001; Hardstone et al.,
2012). The DFA exponent a quantifies the extent of power-law
dynamics of a signal, with a. 0.5 indicating persistent auto-cor-
relations, whereas a = 0.5 would suggest a signal without a tem-
poral structure (i.e., white noise). DFA was performed on the
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amplitudes at every latency relative to the stimulus onset, across
time windows of 7–70 trials (i.e., equivalent to ;5–50 s; exem-
plarily illustrated in Fig. 3B,C). Applying DFA at all latencies
provided a DFA exponent time course for every subject (Fig. 3D)
that indicates which portions of the early SEP show power-law
dynamics (i.e., DFA exponents. 0.5). Subsequently, DFA expo-
nent time courses were averaged across participants (Fig. 3E).
The average explained variance of the power-law relationships at
all latencies of the time range between 10 and 50ms was R2 .
0.99, indicating a near-perfect fit of the DFA method for these
data.

Increased DFA exponents were observed particularly in the
early part of the SEP with an onset around the latency of the N20
component, whereas surrogate data generated by shuffling the
trial order yielded DFA exponents close to a = 0.5. Two

prominent peaks in the DFA exponent time course are visible
from Figure 3E, with DFA exponents of a = 0.575 and a = 0.577,
at latencies of 25 and 33ms after stimulus, respectively.
However, the absolute value of DFA exponents highly depends
on the SNR of the signal, as is further examined in simulations
below, which suggest DFA exponents of at least a = 0.63 when
the SNR bias is taken into account. The observation of two
prominent DFA exponent peaks was statistically confirmed as
two main clusters were found around these two peaks by cluster-
based permutation tests (pscluster , 0.001). The DFA exponents
were characterized by a similar, yet not identical, time course
compared with the magnitude of the SEP (Fig. 3E). Although the
first significant DFA exponent cluster emerged together with the
peak of the N20 component, the first DFA exponent peak
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appeared slightly later. This suggests that long-range temporal
dependencies were not most pronounced at the N20 peak but
rather while the potential returned back to baseline. Yet, this is
not contradicting the notion of power-law dynamics in fluctua-
tions of cortical excitability since recent evidence from pharma-
cological studies suggests that excitatory processes of the N20
component dominate even until the rising flank of the P35, the
next component after the N20 in the SEP (Bruyns-Haylett et al.,
2017).

The second DFA time course peak co-occurred with the sec-
ond prominent peak of the SEP, the P35 component. This sec-
ond DFA peak most likely reflects activity propagated from the
N20 component to the P35 as these two components moderately
covaried in our data, b fixed = –0.378, t(29.800) = �9.342, p,
0.001, as tested by a random-slope linear-mixed-effects model
with P35 peak amplitude as dependent variable, N20 peak ampli-
tude as independent variable, and subject as random factor.
Similarly, the two smaller clusters of increased DFA exponents at
;44 and 68ms (Fig. 3E) may reflect the propagation of dynam-
ics in earlier SEP components to later processing stages.

Temporal filtering in the preprocessing of the data cannot
have caused these long-range temporal dependencies since (1)
no DFA exponent increases were observed during the prestimu-
lus baseline of the SEP and (2) additional control analyses did
not show increased DFA exponents when applying the same pre-
processing to stochastically independent SEP fluctuations (as
tested with simulated data).

Furthermore, model comparisons based on maximum likeli-
hood estimation (Ton and Daffertshofer, 2016) indicated that a
linear model best fitted the log-log relationship between ampli-
tude fluctuation and window size at 81.59% of the latencies
in the time range from 10 to 50ms after stimulus, as indicated
by the median Bayesian Information Criterion on group
level. Taking into account that the finite data length and mea-
surement noise in single-trial amplitudes have presumably
degraded the fit of the linear log-log model for the underlying
neural signals (Botcharova et al., 2014), we therefore conclude
that our data are largely consistent with the hypothesis that
amplitude fluctuations across time are distributed according
to a power law.

Do power-law dynamics originate from the neuronal
fluctuations in the periphery or at the thalamic level?
To investigate whether the observed temporal dynamics in corti-
cal SEPs may arise from fluctuations in peripheral nerve excit-
ability, we applied the same procedure as described above to the
CNAP of the median nerve measured at the inner side of the
upper arm. As expected, the nerve potential peaked at;6ms af-
ter stimulus and fluctuated over trials (Fig. 4A). However, no
increased DFA exponents were observed (Fig. 4B).

In addition, a CCA component was identified in 13 of the 31
participants that contained SEP activity already at 15ms (Fig. 4C,
D), most likely reflecting the P15 component of the SEP, which
is thought to represent thalamus-related activity (Albe-Fessard et
al., 1986). Also, the spatial pattern of this CCA component sug-
gested a deeper and more medial source than the tangential CCA
component (Fig. 4E). Importantly, the DFA exponents of this
subcortical activity did not show any increase in the range of the
P15 component (Fig. 4D), thus being in contrast with the DFA
exponent increase for early cortical potentials.

DFA exponents and SNR
Since it is known from previous studies that the SNR highly affects
the measurement of power-law dynamics (Blythe et al., 2014), we
investigated the relationship between DFA exponents and SNR in
single-trial SEPs. On average, across all participants, the SNR of the

tangential CCA component was
rmsðsignalÞ
rmsðnoiseÞ ¼ 1:68 SD ¼ 0:42ð Þ,

and showed a positive rank correlation with average DFA expo-
nents in the time range from 10 to 50ms after stimulus (r=0.358,
p=0.048).

Additionally, we further clarified this relationship with simu-
lations: We mixed signals expressing different DFA exponents
with white noise (DFA exponent a = 0.5), for a range of SNRs,
and measured the DFA exponent of these mixed signals. As is
visible from Figure 4F, DFA exponents of the mixed signals are
attenuated toward a = 0.5 when lowering the SNR. Given an
SNR of 1.68 and an empirical DFA exponent of a = 0.575, as was
the case for the tangential CCA component in the present study,
our simulations suggest an underlying source with a DFA expo-
nent of a � 0.63. Yet this value most likely still underestimates
the “true” power-law dynamics of the system as the signal term
contained in the empirical estimate of the SNR is not noise-free
but a mixture of both signal and noise. This leads to an overesti-
mation of the SNR and in turn to an underestimation of the
degrading impact of noise on the scaling exponent.

To relate this simulation also to the other measures for which
we calculated DFA exponents, we calculated the SNR of the
CNAP at the upper arm and thalamic CCA components. Here,
we found SNRs of 2.20 (SD= 0.85) and 1.33 (SD=0.11), respec-
tively, suggesting that our signal quality was sufficient to detect
DFA exponent increases if they had been there since the SNR of
the CNAP was even higher than that of the SEP and the SNR of
the thalamic CCA component was just slightly lower.

Power-law dynamics in alpha band activity and its relation to
the SEP
Since previous studies on cortical excitability in MEG/EEG
focused on oscillatory activity in the alpha band, we investigated
both its correspondence to the early part of the SEP as well as its
DFA exponents.

To test the relationship between alpha oscillatory activity and
SEP amplitude, we performed a regression analysis between the
mean alpha amplitude in a prestimulus window from �200 to
�10ms and the peak amplitude of the N20 component. Alpha
activity was extracted from the same neuronal sources as the SEP
by applying the spatial filter of the tangential CCA component.
A significant negative relationship was found on group level
using a random-slope linear-mixed-effects model (b fixed =
�0.034, t(25.095) = �4.895, p, 0.001). Thus, higher prestimulus
alpha activity was associated with more negative N20 peak
amplitudes (Fig. 5A).

To control for spurious covariation caused by the auto-corre-
lated structure of both signals, we additionally ran permutation
tests using surrogate data with comparable temporal structure as
suggested by Schaworonkow et al. (2015). Aggregated on group
level, these tests confirmed the negative relationship between
prestimulus alpha activity and N20 peak amplitude (rgroup-level =
�0.035, p, 0.001).

Next, we investigated the DFA exponents of mean prestimu-
lus alpha amplitude across trials. Averaged across subjects, we
observed a mean DFA exponent of a = 0.60, which significantly
differed from DFA exponents for shuffled trial order (t(30) =
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6.627, p, 0.001). Also, DFA exponents in continuous, ongoing
alpha activity were significantly higher than chance level across
subjects (a = 0.66, t(30) = 9.5327, p, 0.001).

To further test the relationship between the fluctuation pat-
terns of prestimulus activity and of the SEP, we correlated DFA
exponents of prestimulus alpha amplitude and DFA exponents
of the SEP across participants (using Spearman correlation).
DFA exponents of the SEP time series were averaged across data
samples in four consecutive time windows of 5ms each, between
20 and 40ms after stimulus. DFA exponents of prestimulus alpha
activity were correlated with the DFA exponents of the first time
window from 20 to 25ms (r=0.486, p=0.025, Bonferroni-cor-
rected; Fig. 5B). However, this relationship did not emerge for
any other time window between 25 and 40ms (all p. 0.3).

Similarly, DFA exponents of continuous alpha activity were cor-
related with DFA exponents of the SEP in the first time window
from 20 to 25ms after stimulus (r= 0.500, p=0.019, Bonferroni-
corrected), but not with DFA exponents in the subsequent 5 ms
time windows between 25 and 40ms (all p. 0.3).

Notably, the SNR of the SEP cannot explain the relation between
DFA exponents of alpha activity and DFA exponents of the SEP, as
no relationship was found between SNR of the SEP and DFA expo-
nents of prestimulus alpha activity (r=0.208, p=0.261).

Together, both amplitude and temporal structure of oscilla-
tory activity in the alpha band thus relate to the correspo-
nding characteristics of the early SEP responses, establishing a
link between these two measures of instantaneous cortical
excitability.
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Discussion
In the present study, we investigated the temporal dynamics of
neuronal excitability in the human primary somatosensory cor-
tex by short-latency SEPs. Fluctuations of excitability demon-
strated power-law dynamics across trials, extending the previous
notion that neuronal systems operate close to a critical state
(Linkenkaer-Hansen et al., 2001; Beggs and Plenz, 2003; Poil et
al., 2012; Palva et al., 2013; Priesemann et al., 2013) to variability
in stimulus-evoked responses in the human sensory system. In
addition, fluctuations in prestimulus alpha band activity and ini-
tial cortical excitation were related through their amplitudes as
well as their temporal structure. For the first time, these findings
thus link critical dynamics in ongoing and evoked activity as
measured noninvasively in the human EEG, and directly associ-
ate the observed power-law dynamics with variability in cortical
excitability.

What do temporal dynamics in SEPs tell about the
functioning of the neural system?
Given that the SEP in the time range of the N20 component
reflects initial excitatory cortical processes (Peterson et al., 1995;
Wikström et al., 1996; Bruyns-Haylett et al., 2017), the observed
power-law dynamics indicate that instantaneous excitability does
not vary stochastically independently over time (i.e., like white
noise) but is characterized by long-range temporal dependencies.
This means that cortical excitability at a given moment is related
to its fluctuation history and contains information about subse-
quent dynamics up to 50 s later.

Such power-law dynamics have often been interpreted within
the hypothesis that the underlying system is poised near a critical
state (Bak et al., 1987, 1988; Sethna et al., 2001; Beggs and Plenz,
2003; Kitzbichler et al., 2009), at which the dynamic range, infor-
mation processing, and memory capacity of a system are maxi-
mized (Kinouchi and Copelli, 2006; Shew and Plenz, 2013).
Hence, it may be beneficial for neural systems to be tuned to this
close-to-critical state, although the variability inherent to it may
impair an exact mapping of stimulus features and neuronal activ-
ity in sensory processing.

Although well corresponding to previous reports of power-
law dynamics in oscillatory activity (Linkenkaer-Hansen et al.,
2001; Palva et al., 2013), our SNR-adjusted power-law exponents
of a � 0.63 deviated from a = 1, the expected DFA exponent for

the critical state (Poil et al., 2012). This may be explained by neu-
ronal dynamics not always being poised exactly at the critical
state but rather residing in a near-critical regime (Priesemann et
al., 2013), resulting from transient rebalancing of order and dis-
order in neural dynamics to meet environment-imposed
demands (Ponce-Alvarez et al., 2018).

Typically, the power-law relationships in models of complex
systems as well as in empirical neuronal avalanche recordings
have been measured in the spatial domain, such as the distribu-
tion of size and duration of neuronal avalanches. Yet, critical sys-
tems should also express power-law dynamics in the temporal
domain as shown for the Ising model (Zhao et al., 2017). Thus,
the observed long-range temporal dependencies in cortical excit-
ability in our data might indeed correspond to near-critical dy-
namics in the spatial domain as observed by Beggs and Plenz
(2003) in their seminal study on the scale-free behavior of spon-
taneous neuronal avalanches in slices of the rat somatosensory
cortex.

Specifically, the temporal power-law dynamics in our data
could reflect that neuronal excitability spatially differs across the
network, in agreement with the notion of scale-free neuronal
avalanches, which in turn leads to the observed amplitude fluctu-
ations in the early SEP over time. Whereas a recent approach to
measure neuronal avalanches from thresholded broadband EEG
data supported the notion of critical dynamics also after stimulus
presentation (Arviv et al., 2015), our findings of power-law dy-
namics in early SEPs demonstrate near-critical dynamics, for the
first time, in primarily stimulus-related processes in the human
brain and suggest fluctuations of cortical excitability to be the
driving underlying mechanism.

Dissociation of temporal dynamics in the cortex from
peripheral and subcortical variability
To corroborate the notion of the observed power-law dynamics
being a cortical phenomenon, we examined their origin in more
detail.

First, we measured power-law dynamics at the onset of the
N20 component (not earlier), giving no cause to assume genera-
tors of power-law dynamics in stimulus processing upstream of
the primary somatosensory cortex. Second, source reconstruc-
tion confirmed that the strongest generators of the N20 lay in the
anterior wall of the postcentral gyrus (Fig. 2E) as is expected
from the literature for the N20 component (Allison et al., 1991).
Third, no power-law dynamics were present in peripheral
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variability as measured from the CNAP of the median nerve.
Fourth, thalamus-related activity reflected in the P15 component
of the SEP in a subsample of 13 subjects did not show any
power-law dynamics either, suggesting that neuronal variability
is stochastically independent, even at final subcortical processing
stages.

Hence, we conclude that the observed power-law dynamics
most likely are of cortical origin.

Relationship between prestimulus alpha activity and initial
cortex excitation
Following the idea that oscillatory activity in the alpha band reflects
cortical excitability (Klimesch et al., 2007; Romei et al., 2008;
Sauseng et al., 2009; Zrenner et al., 2018), we tested whether this
measure in a prestimulus window was related to the initial cortex
excitation as assessed by the N20 amplitude. In our data, lower
amplitudes of alpha band activity, hypothesized to reflect a state of
increased excitability, were associated with smaller (less negative)
N20 amplitudes. Although at a first glance this finding seems to
contradict the hypothesis of low alpha activity being associated with
higher excitability (Klimesch et al., 2007; Jensen and Mazaheri,
2010), it may be explained in a straightforward manner by the neu-
rophysiological basis of EEG generation.

The scalp EEG reflects relative changes in collective charge
distributions resulting from neuronal activation manifested in
primary post-synaptic currents (PSCs; Kandel et al., 2000; Lopes
da Silva, 2004; Ilmoniemi and Sarvas, 2019). The magnitude of
an EEG potential U emerging through synchronous activity of a
well-specified neuron population, as is assumed for the N20
component of the SEP, should adhere to the following general
relationship:

U; I pNneurons p LF

where I denotes the sum of local primary PSCs,Nneurons the num-
ber of involved neurons, and LF the lead field coefficient projec-
ting source activity to the electrodes on the scalp. Since Nneurons

and LF can be assumed to be constant for the N20 component in
a sequence of unchanging median nerve stimuli, we believe that
primarily I, reflecting excitatory PSCs, contributed to the ampli-
tude variability of the early part of the SEP.

Now, assuming that states of higher neuronal excitability are
associated with membrane depolarization on a cellular level, the
electrical driving force for further depolarizing inward trans-
membrane currents is decreased and less current is needed to
reach the threshold potential for excitatory responses (Castro-
Alamancos, 2009). This leads to decreased PSCs at high excitabil-
ity states (Deisz et al., 1991) and would result in lower ampli-
tudes in the EEG. Hence, one should rather expect decreased
N20 components following low prestimulus alpha activity, as
was the case in our data.

The relationship between prestimulus alpha activity and early
SEP amplitudes is further corroborated by their corresponding
degree of power-law dynamics in the time range of the SEP from
20 to 25ms after stimulus (Fig. 5B). Intriguingly, the idea that
this link is established via cortical excitability manifested in pres-
timulus membrane potentials is consistent with a recent study,
which indeed demonstrated near-critical dynamics in membrane
potential fluctuations in the turtle visual cortex (Johnson et al.,
2019).

Although this notion should be treated with some caution as
it is based on the strong assumption that mechanisms observed
in single-cell recordings (in animals) can be generalized to cell

populations in the human cortex, the present findings could rep-
resent the missing link between power-law dynamics on micro
(single-cell) and macro (cell population) scale and would relate
findings of criticality in neuronal avalanches to noninvasively
measured EEG potentials in humans.

Implications for the perspective on neural variability
Why neuronal systems express large variability, particularly in
perceptual processes, has been an enduring question for many
years. In this study, we show that the temporal structure of such
variability provides further insights into organizing principles of
large-scale neuronal dynamics in the somatosensory system. Not
only is stimulus-evoked activity dependent on prestimulus neu-
ronal states, but even the instantaneous network states them-
selves seem to fluctuate in a systematic manner, in our data
manifested in near-critical dynamics of instantaneous cortical
excitability.

This fluctuation pattern of cortical excitability corroborates
the notion of a delicate equilibrium between robustness and flex-
ibility to external stimuli (Muñoz, 2018), which is maintained
through balancing excitatory and inhibitory driving forces
(Beggs and Plenz, 2003; Poil et al., 2012). In line with this, neuro-
transmitters affecting the excitation/inhibition ratio of cortical
neurons may tune these near-critical dynamics, as has been
shown for alpha band activity (Pfeffer et al., 2018). This may in
turn enable neural networks to adaptively adjust their excitability
during stimulus processing by shifting their dynamics closer to
or further away from the critical state.

In conclusion, proximity to criticality may represent a compel-
lingly parsimonious explanation of moment-to-moment fluctua-
tions in neural responses with potential benefits for information
processing in the brain.
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