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Spontaneous Retinal Waves Can Generate Long-Range
Horizontal Connectivity in Visual Cortex
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In the primary visual cortex (V1) of higher mammals, long-range horizontal connections (LHCs) are observed to develop,
linking iso-orientation domains of cortical tuning. It is unknown how this feature-specific wiring of circuitry develops before
eye-opening. Here, we suggest that LHCs in V1 may originate from spatiotemporally structured feedforward activities gener-
ated from spontaneous retinal waves. Using model simulations based on the anatomy and observed activity patterns of the
retina, we show that waves propagating in retinal mosaics can initialize the wiring of LHCs by coactivating neurons of similar
tuning, whereas equivalent random activities cannot induce such organizations. Simulations showed that emerged LHCs can
produce the patterned activities observed in V1, matching the topography of the underlying orientation map. The model can
also reproduce feature-specific microcircuits in the salt-and-pepper organizations found in rodents. Our results imply that
early peripheral activities contribute significantly to cortical development of functional circuits.
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Significance Statement

Long-range horizontal connections (LHCs) in the primary visual cortex (V1) are observed to emerge before the onset of visual
experience, thereby selectively connecting iso-domains of orientation map. However, it is unknown how such feature-specific
wirings develop before eye-opening. Here, we show that LHCs in V1 may originate from the feature-specific activation of cort-
ical neurons by spontaneous retinal waves during early developmental stages. Our simulations of a visual cortex model show
that feedforward activities from the retina initialize the spatial organization of activity patterns in V1, which induces visual
feature-specific wirings in the V1 neurons. Our model also explains the origin of cortical microcircuits observed in rodents,
suggesting that the proposed developmental mechanism is universally applicable to circuits of various mammalian species.

Introduction
In the primary visual cortex (V1) of higher mammals, neurons
are observed to respond selectively to the orientations of visual
stimuli, and their preferred orientations are organized into co-
lumnar orientation maps (Blasdel and Salama, 1986) (Fig. 1A).
In addition, iso-domains of the same orientation preference in
the map are linked together by long-range horizontal connections
(LHCs) (Bosking et al., 1997) (Fig. 1B). The clustering of V1 by

LHCs is observed prior to eye-opening (Weliky and Katz, 1994;
Ruthazer and Stryker, 1996), suggesting that LHCs emerge prior
to visual experience. Despite extensive studies on LHCs, it is still
unknown what their functional role is (Gilbert and Wiesel, 1989;
Stettler et al., 2002), and how they emerge before eye-opening.

In previous studies, it has been suggested that the feedforward
afferents from the retina may play a critical role in the develop-
ment of cortical circuitry (Callaway and Katz, 1991). Sharma et
al. (2000) reported that rewiring retinal afferents to the primary
auditory cortex (A1) in ferrets at early developmental stages
results in development of orientation maps in A1 (Sharma et al.,
2000) (Fig. 1C). Notably, LHCs, not observed in normal A1, are
observed to emerge in the rewired A1. These results suggest that
retinal afferents initiate development of the cortical orientation
tuning and LHCs during early developmental stages. This sce-
nario was further supported by observations that orientation
tuning of cortical neurons originates from the local ON and OFF
feedforward afferents (Jin et al., 2011; Kremkow et al., 2016).
Moreover, the theoretical framework of the statistical wiring
model indicates that the orientation tuning in V1 is constrained
by the local structure of ON and OFF mosaics of retinal ganglion
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cells (RGCs) (Ringach, 2007; Paik and Ringach, 2011; Jang and
Paik, 2017; Jang et al., 2020) (Fig. 1D). These findings inspired
our hypothesis that the structure of retinal afferents may induce
feature-specific wirings of LHCs in V1.

Herein, from the model simulations of early visual pathways, we
show that spontaneous retinal activity before eye-opening, which is
spatiotemporally constrained by retinal mosaics circuitry, may selec-
tively activate V1 neurons of similar orientation tuning and lead to
development of LHCs via activity-dependent cortical plasticity. Our
model is based on the observed data of spontaneous retinal activity
(Meister et al., 1991; Wong et al., 1993) and their coincidence with
the development of the visual circuits (Wong, 1999; Firth et al.,
2005) (Fig. 2). It was reported that Stage II retinal activity induces
development of the retinogeniculate and geniculocortical pathways
(Ackman et al., 2012; Kirkby et al., 2013), and then the Stage III reti-
nal activity that is observed until eye-opening (Liets et al., 2003;
Akrouh and Kerschensteiner, 2013), coincides with the period of

LHC development (Davis et al., 2015).
Considering that the retinocortical projec-
tions are developed by the Stage II retinal
activity, we hypothesized that the Stage III
retinal activity is transmitted to the cortex
and that this may play a crucial role in the
development of LHCs.

From the simulations based on the
anatomy of retinal circuits, we demon-
strate that temporally asynchronous reti-
nal waves from ON and OFF RGCs can
drive V1 neurons selectively by their
orientation tuning, which drives feature-
specific wirings of neurons with activity-
dependent plasticity (Park et al., 2017; Lee
et al., 2020) of horizontal wirings in the
cortex. We also show that the developed
LHCs can induce patterned cortical activ-
ities, matching the topography of under-
lying orientation maps as observed in
ferrets before eye-opening (Smith et al.,
2018). Finally, we demonstrate that LHCs
can develop in the salt-and-pepper orga-
nization as observed in rodents (Van
Hooser, 2005). These findings suggest
that spontaneous retinal waves contribute
significantly to organization of the func-
tional architectures in the cortex during
early developmental periods before sen-
sory experience.

Materials and Methods
Model simulations
Model simulations were designed based on the
statistical wiring model from the retina to V1
pathway (Ringach, 2007; Paik and Ringach,
2011; Song et al., 2018), and we performed the
following: (1) generation of spontaneous reti-
nal waves, (2) generation of orientation tuning
of V1 neurons from statistical projections of
RGC mosaics, (3) development of horizontal
circuits in V1 by retinal waves, and (4) genera-
tion of spontaneous cortical activity from the
developed V1 circuitry. Details of the algo-
rithms, analysis methods, and parameters used
in the simulations are presented in the follow-
ing sections. All model simulations and data
analyses were implemented and performed
using MATLAB R2018a.

RGC mosaics. For the simulation of our retina-V1 model, we used
ON/OFF-type RGC mosaics data from mammals. Simulations
shown in the main results are based on cell body mosaics of the cat
(Zhan and Troy, 2000) and mouse (Bleckert et al., 2014). We also pro-
vided simulation results based on monkey receptive field mosaics
(Gauthier et al., 2009). Considering that differences in cortical tuning or-
ganization, modeling, and simulation schemes differ between higher
mammals (cat, monkey) and rodents (mouse), from here, we describe the
framework for simulating higher mammalian visual cortex and later
describe specifications for the rodent cortex model.

For an RGC mosaic, we denote positional vectors of ON/OFF-type
cells as pONi ; pOFFj , where i and j denote the cell index. We also measured
the density of OFF RGC, and from that, we defined a representative
spacing dOFF so that an ideal hexagonal RGC lattice with spacing dOFF
would have the same cell density as the data OFF mosaic. We computed
dON in the same manner.

Figure 1. Feature-specific horizontal connections in V1 can be developed by retinal waves. A, Orientation map in normal
V1 (Bosking et al., 1997). Scale bar, 500 mm. B, Distribution of horizontal connections over the cortical space of A, and its
density with respect to orientation difference. Scale bar, 500 mm. C, Left, Orientation map in rewired A1 (Sharma et al.,
2000). Middle, Distribution of horizontal connections in normal A1 and in rewired A1 showing that retinal afferent input induces
the development of LHC-like long-range connections. Scale bar, 500 mm. Right, Cluster index of horizontal connections. D,
Illustration of the developmental model of orientation-specific connectivity by retinal waves. Following the statistical wiring
model, local ON/OFF dipoles in an RGC mosaic are retinotopically wired to the V1, seeding cortical neuron anisotropic receptive
fields and orientation tuning. The V1 contains a fully connected horizontal connection network, initialized with random synaptic
strength. As a propagating retinal wave over the retinal mosaic coactivates cortical neurons with aligned ON/OFF subregions,
connections between neurons with the same orientation preference are selectively enforced by the Hebbian learning rule.
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Extending a data mosaic. To simulate spontaneous retinal waves
before eye-opening, we modeled the retinal circuitry as a coupled network
between ON RGC, OFF RGC, and amacrine cells (ACs) (Akrouh and
Kerschensteiner, 2013). Because the data mosaic represents a limited
region of the retina (several hundred micrometers) and lacks AC posi-
tional information, we first augmented the data RGC mosaic with sur-
round RGC padding and an AC lattice. Added cells were only used to aid
wave propagation, and we did not consider them in further simulations.

First, to provide a retinal region sufficient for the wave to propagate,
we padded the data RGC mosaic with synthesized hexagonal lattices of
ON and OFF RGCs, each with spacing dON and dOFF . With this spacing,
a synthesized lattice has the same cell density as the data mosaic. We
gave the padded lattice a circular boundary of radius 3000 mm to reduce
potential propagation direction bias.

Then, a hexagonal AC lattice of (ON density1 OFF density) was synthe-
sized and overlaid on the augmented RGC mosaic. The resulting extended
mosaic is an overlap of large ON/OFF/AC lattices with circular boundary,
and we denote positional vectors of each type of cell as p̂ONi ; p̂OFFj ; p̂ACk ,
where i, j, and k denote the cell index.When referring to an extendedmosaic,
we use hat notation p̂ instead of the term p used for a data mosaic.

Network model generating retinal waves. In previous studies, it was
reported that at least five cell types (including cone bipolar cells, ACs,
and RGCs) and several different transduction mechanisms contribute to
retinal waves. Based on the circuit mechanism reported by Akrouh and
Kerschensteiner (2013) and the Stage II wave model proposed by Butts
et al. (1999), we designed a simplified retinal circuitry model involving
ON/OFF/AC cells, where three types of local connectivity drove retinal
wave propagation: ON!ON excitatory, ON!AC excitatory, and
AC!OFF inhibitory (Butts et al., 1999; Akrouh and Kerschensteiner,
2013). Below we provide a conceptual description of our model network.

In our model, wave propagation happens within the ON mosaic
layer, and AC/OFF layers serve as readout. We define the connectivity
and activation rules among the layers as follows: (1) ON RGCs are recip-
rocally coupled with nearby active ON RGCs within the dendritic inter-
action radius, RON , and becomes active for 1 s when the summed input
passes some threshold. (2) ACs receive input from nearby ON cells
within RON and become active when the input passes a threshold. (3)
Then, ACs provide inhibitory input to OFF RGCs within the dendritic
radius, RAC. An OFF RGC becomes inhibited with AC input and

becomes active for 1 s upon reduction of such inhibitory input. The
described connectivity is modeled as follows:

wON!ON
ji ¼ 1 if jp̂ON

i � p̂ON
j j � RON

0 if jp̂ON
i � p̂ON

j j.RON

(

wON!AC
ji ¼ 1 if jp̂AC

i � p̂ON
j j � RON

0 if jp̂AC
i � p̂ON

j j.RON

(

wAC!OFF
ji ¼ 1 if jp̂OFF

i � p̂AC
j j � RAC

0 if jp̂OFF
i � p̂AC

j j.RAC

(

We chose the dendritic radius of ON RGC and AC considering the size
of the cell dendritic arbors experimentally measured by Akrouh and
Kerschensteiner (2013), but with some flexibility regarding the effect of
diffuse neurotransmitters. Parameter details are provided in Table 1.

Propagation mechanism of retinal waves. We designed our model
based on a cellular automaton, in which each cell (at a specific time) is
assigned a discrete cell state, and the cell states at time t1Dt are deter-
mined by updating the cell states at time t according to a set of cell type-
specific rules. We describe the cell type-specific states, input rules, and
state update rules of our model below (Butts et al., 1999).

The state of an ON RGC SON tð Þ at a given time t can be waiting,
active, or inactive. If an ON RGC is in a waiting state, it can switch to an
active state at the next time step by receiving input exceeding the threshold
HON from nearby coupled ON RGCs in an active state. For realistic simu-
lation, the amount of h c, which is the input that an active cell provides to
other coupled cells, is drawn from a normal distribution of mean 1 and
SD DC ¼ 0:2. After an ON RGC becomes active, it remains active for
Ta ¼ 1s, after which it becomes inactive for the rest of the simulation.

The state of an AC SAC tð Þ can be either waiting or active at a given
time. When a waiting AC receives input exceeding threshold HAC from
connected ON RGCs, it becomes active in the next time step. Different
from RGCs, an AC switches back to waiting state whenever it receives
input that does not exceed HAC, thereby retaining the ability to become
active again.

Figure 2. Development of long-range horizontal connections in V1 coincides with Stage III retinal waves. A developmental timeline illustrates a coincidence between the emergence of LHCs
and the spontaneous Stage III retinal waves. A retinocortical pathway is already developing at P10 when geniculocortical afferents reach layer 4 (Sengpiel and Kind, 2002), and Stage III retinal
waves are observed from P10 until eye-opening (P30) (Davis et al., 2015). This suggests that V1 neurons can be activated by these waves from P10. Clusters of LHCs are observed at P27,
regardless of binocular enucleation at P21 (Ruthazer and Stryker, 1996). This implies that feature-specific LHCs can start emerging before then (orange shaded area).
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The state of an OFF RGC SOFF tð Þ can be waiting, inhibited, active, or
inactive at a given time. When a waiting OFF RGC receives inhibitory
(negative sign) input not exceeding the threshold,HOFF, from connected
ACs, it becomes inhibited in the next time step. When inhibitory input
declines and allows the threshold to be exceeded, the OFF RGC state
rebounds to active, which it maintains for Ta ¼ 1s before going inactive
for the rest of the simulation. The parameter details are listed in Table 1.

Wave initiation, control, and postprocessing. For waveform and dy-
namics control, we initially assigned waiting state to only a portion
(80%) of randomly selected ON RGCs and assigned inactive state to the
remainder (20%) (Feller et al., 1997). We then initiated a wave at t ¼ 0
near the boundary of the extended mosaic by assigning active state to
waiting ON RGCs within a circular region of radius Rinit ¼ 400mm. The
wave was subsequently allowed to propagate freely, while indices of
active ON/OFF RGCs were recorded over time. For each mosaic, we
simulated a set of 500-1000 retinal waves, each with different initial con-
ditions and wave initiation positions.

Because the cells initially assigned inactive status cannot participate
in the wave until the end (leaving “holes” in the propagating waves), we
conducted a postprocessing process that ensured that all RGCs inside a
propagating wave were densely active. At each time step, we spatially
smoothed active state profiles of ON and OFF RGC layers using a 2D

Gaussian filter of width swave ¼ 0:85dOFF . Then, we normalized the
resulting activation values so that the maximum activation of each RGC
layer was always 1 over time.

Finally, to ensure a uniform direction distribution, we classified the
waves into 12 directional categories and sampled an equal number of
waves from each category to construct a final, direction-unbiased wave
dataset. From that, we imported random waves when needed.

Apart from patterned waves, we constructed a random retinal activ-
ity, permuted version of retinal waves as a control case for our horizontal
network developmental model. The permutation was done simply by
shuffling the RGC activation values over the RGC indices, thus preserv-
ing the overall activation level while removing correlated wave patterns.

Initialization of the RGC-V1 statistical wiring model. At the initial
time of development, we assumed that RGCs are retinotopically wired to
cortical neurons in the corresponding V1 space (Paik and Ringach,
2011; Song et al., 2018), on the basis of the retinocortical mapping ratio
reported in previous experimental observations (Jang et al., 2020). To
determine cortical sampling locations, we looked for every pair of data
ON/OFF RGCs with a distance less than 1:5dOFF and set their center
locations as cortical sampling sites. We did not consider padded RGCs
in the extended mosaic as follows:

pV1k ¼ 1
2

pOFF 1 pON
� �

for every pOFF; pON with pOFF � pON j, 1:5d
��

wFF
ik ¼ WFF

init exp � jpV1k � pRGCi j
dFF

� �

Here, wFF
ik represents the feedforward connection weight from the ith

RGC to kth cortical site, where WFF
init is the initial connection weight

(Sailamul et al., 2017). Parameter details are provided in Table 1.
Nonlinear response curve of V1 neurons. The response curve of V1

neurons was modeled as a nonlinear sigmoid kernel with parameters
d V1 andHV1 as follows:

Rk;V1 tð Þ ¼ 11 exp � I tð Þ �HV1

d V1

� �� ��1

; I tð Þ ¼
X

i

wFF
ik Ri;RGC tð Þ

Here, Rk;V1 tð Þ is the response of the kth cortical neuron at wave time t,
where activation of ith RGC by the retinal wave is given by Ri;RGC tð Þ.
Input to a cortical cell is solely determined by retinal feedforward input
here, but horizontal input or direct cortical stimulus is allowed in later
simulations. Parameter details are provided in Table 1.

V1 receptive field formation by retinal waves. After initialization with
exponential pooling function, each ON/OFF subregion of the V1 “recep-
tive field” is contributed by;1 RGC. To enlarge further the V1 receptive
field before simulating the horizontal connection network, we followed
the V1 receptive field developmental model of Song et al. (2018) to de-
velop further the feedforward connections between the RGCs and V1
neurons. For each feedforward connection, a weight update was done
once per retinal wave, following the rule below.

For a given V1 neuron receiving input from a retinal wave, we
sampled the peak response of the V1 neuron and related RGC activity
levels at the same time. Then, we used profiles of the sampled responses
from many retinal waves for an update of the covariance rule-based
weights (Sejnowski, 1977), following the formulation below.

DwFF
ik ¼ e FF Rsampled

k;V1 � Rsampled
k;V1

� �
Rsampled
i;RGC � Rsampled

i;RGC

� �
if wFF

ik ,WFF
limit

0 if wFF
ik � WFF

limit

(

Rsampled
k;V1 ¼ Rk;V1 tsampledð Þ

Rsampled
i;RGC ¼ Ri;RGC tsampledð Þ ;where t

sampled ¼ argmaxt Rk;V1 tð Þ� �(

Rsmpled ¼ 1
t FF

ðstep
0

Rsampledexp
s� step
t FF

� �
ds

Here, we define the learning threshold Rpeak as the running average of
the sampled responses of a cell during the learning steps. The term tFF

Table 1. Parameters used in model simulation

Parameters Letter Value

Retinal wave
Retinal wave evolution time step Dt 100 ms
ON RGC dendritic radius RON 400 mm
AC dendritic radius RAC 40 mm
ON RGC bursting threshold HON 14 unit
AII AC activation threshold HAC 0.5 unit
OFF RGC inhibition threshold HOFF �0.2 unit
Wave filtering width swave 0:85dOFF

RGC-V1 learning
Retina-V1 size ratio g 1.98 (monkey) (Jang et al.,

2020)
0.75 (cat) (Jang et al., 2020)
0.20 (mouse) (Jang et al.,
2020)

Spatial decay parameter of RGC to V1
connection

dFF 18 mm (cat mosaics)
24 mm (monkey mosaics)
18 mm (mouse mosaics)

Initial weight of RGC to V1 connection WFF
init 0.05

Nonlinearity of V1 sigmoidal response curve HV1 0.5
Nonlinearity of V1 sigmoidal response curve d V1 0.15
Time constant of firing rate average t FF 15 learning steps
Learning rate in Hebbian learning e FF 0.005
Learning epochs — 15 epochs
Resource limit of single connection WFF

limit 0.14
Image filter size s img 36 mm (cat mosaics)

56 mm (monkey mosaics)
V1 horizontal connection network learning

Initial weight of V1 horizontal connection WV1
init 0.01

Time constant of firing rate average t V1 10 learning steps
Learning rate in Hebbian learning e V1 2 � 10�7 (cat/monkey

models)
2 � 10�5 (mouse model)

Learning epochs — 30 epochs (cat/monkey
models)

10 epochs (mouse model)
Resource limit of single connection WV1

limit 5 � 10�4

V1 spontaneous activity
Normalization weight of V1 horizontal
connection

WV1
final 3

Amplitude of local random stimulus Ilocal 10
Spatial scale of local random stimulus s local 20 mm
Amplitude of background noise stimulus Ibackground 0.01
Spatial scale of background noise stimulus s background 30 mm
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represents how fast the threshold changes during the learning steps, and the
term e FF , the learning rate, denotes how quickly the weight update is done.
We assumed that the resource for a single connection is limited byWFF

limit.
We simulated the development of RGC-V1 feedforward connections

using a postprocessed retinal wave dataset, 15 epochs in total. At each
epoch, we shuffled wave order and iterated over all waves one by 1, applying
the learning rule. All the parameter details are provided in Table 1.

Initialization of the V1 horizontal network model. After the RGC-V1
feedforward development was complete, we froze the feedforward con-
nection weights and simulated development of the V1 horizontal con-
nection network by retinal waves. Initially, we horizontally wired V1
cells with random weights as follows:

wV1
ij ¼ max 0; hV1

� �
; hV1 ;N 1; 0:1ð Þ

Here, wV1
ij represents the synaptic connection weight from the ith to jth

cortical site i 6¼ jð Þ, and hV1 is drawn randomly from a normal distribu-
tion N 1; 0:1ð Þ. After setting the random connections, we normalized
each V1 cell’s outgoing connection weight sum byWV1

init and finished the
initialization step. Parameter details are provided in Table 1.

V1 horizontal network development by retinal waves. For each V1
horizontal connection, a weight update was done once per retinal wave.
For a given retinal wave, responses of the V1 neurons over time were
determined by the sum of feedforward input from RGCs and horizontal
input from other V1 neurons as follows:

Rk;V1 tð Þ ¼ 11 exp � I tð Þ �HV1

d V1

� �� ��1

;

I tð Þ ¼
X

i

wFF
ik Ri;RGC tð Þ1

X
j

wV1
jk Rj;V1 t � 1ð Þ

Then, peak responses of V1 neurons were sampled and used as a
response profile for a covariance rule-based weight update of the V1 hor-
izontal network as follows:

DwV1
ij ¼ eV1 Rpeak

i;V1 � Rpeak
i;V1

� �
Rpeak
j;V1 � Rpeak

j;V1

� �
if wV1

ij ,wV1
limit

0 if wV1
ij � WV1

limit

8<
:

9=
;

Rpeak
k;V1 ¼ max Rk;V1 tð Þ� �

Rpeak ¼ 1
tV1

ðstep
0

Rpeakexp
s� step
tV1

� �
ds

Here, we define the learning threshold Rpeak as the running average of peak
responses of a V1 neuron over learning steps. Here, tV1 represents how fast
the threshold changes during the learning steps, and eV1, the learning rate,
denotes how quickly the weight update is done. We assumed that resource
for a single connection is limited byWV1

limit as follows:
We simulated development of the horizontal connection network

using a postprocessed retinal wave dataset (permuted dataset as control
case), 30 epochs in total; at each epoch, we shuffled the wave order and
iterated all the waves one by one, applying the learning rule. All the pa-
rameter details are provided in Table 1.

V1 horizontal network-driven spontaneous activity. After horizontal
connection development was complete, we froze the horizontal connec-
tion weight and simulated spontaneous patterned activity induced by
horizontal connectivity. We normalized each V1 cell’s incoming connec-
tion weight sum to WV1

final and modeled driving input Istim for V1 net-
work as a sum of local stimulus and global background noise, denoted
by the following:

Istim ¼ Ilocal pGlocal 1 Ibackground pGbackground

where Glocal is the local dominant 2D Gaussian input of width of s local

given at a random location in the cortical space with peak value 1, and

Gbackground is background random noise drawn at each cortical neuron
from U 0;1ð Þ, smoothed by 2D Gaussian filter of a width of sbackground,
and normalized to have a maximum value of 1. The terms Ilocal and
Ibackground denote the intensities of local stimulus and global background
noise.

Then, in the absence of feedforward input (all wFF ¼ 0), we provided
driving input, Istim, to neurons in the V1 horizontal network and integrated
their responses recurrently until the network activity diverged as follows:

Rk;V1 tð Þ ¼ 11 exp � I tð Þ �HV1

d V1

� �� ��1

;

I tð Þ ¼ Istim1
X

j

wV1
jk Rj;V1 t � 1ð Þ

! integrate until t ¼ tf inal;whereRk;V1 tfinal11ð Þ. 0:9

We then spatially filtered the cortical response profile of V1 neurons using a
2D Gaussian filter of width, s img, to obtain a response image A xð Þ where x
denotes pixel position. Next, we normalized the image pixel intensities to be
zero-centered and to have an SD of 1. Repeating the entire procedure, we
modeled N ¼ 200 spontaneous activity images, each indexed as Ai xð Þ.
Parameter details are provided in Table 1.

V1 spontaneous correlation patterns. Using the simulated spontane-
ous activity images Ai xð Þ, we computed spontaneous correlation pat-
terns as the pairwise Pearson’s correlation between activity at a reference
pixel s and activity at all other pixels x, given by the following:

C s; xð Þ ¼ 1
N

XN
i¼1

Ai sð Þ � A sð Þ
� �

Ai xð Þ � A xð Þ
� �

s ss x

Here, the horizontal bar denotes averaging over all spontaneous activity
images, and s x denotes the SD of activity over all images at location x
(Smith et al., 2018).

Measurement of the cortical orientation map.We calculated the pre-
ferred orientation, u k;OP, at cortical site k from the angle between the
center-of-mass positions of ON/OFF RGCs as follows:

u k;OP ¼ arg

P
iw

FF
ik pOFFiP
iw

FF
ik

�
P

jw
FF
jk pONjP
jw

FF
jk

 !
1

p

2
adjusted onto �p

2
;
p

2

	 
� �

Then, we filtered the orientation preferences of cortical neurons using a
2D Gaussian filter of width, s img, obtaining an orientation map image
OP xð Þ where x denotes pixel position. With the calculated orientation
map and a given reference point s, we also computed an orientation sim-
ilarity map as orientation preference similarity of all pixels x to s, given
by the following:

OPdiff s; xð Þ ¼ jOP sð Þ � OP xð Þj adjusted onto 0;
p

2

	 
� �

! OPsim s; xð Þ ¼ 1� OPdiff s; xð Þ
p

2

To estimate the spatial frequency of the orientation map, the local orien-
tation tuning was estimated at each retinal location, after which the
resulting organization was smoothed by 2D Gaussian filters of different
sizes to find a consistent spatial period. The peak frequency calculated
from an FFT analysis of the maps was measured for various filter sizes,
and the spatial frequency at a stable plateau was selected.

Simulation in salt-and-pepper organization. To show that patterned
retinal waves can drive emergence of feature-specific connections in the
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salt-and-pepper organization of rodent V1, we performed additional
modeling and developmental simulations of a cortical horizontal net-
work using a mouse-data RGCmosaic (Bleckert et al., 2014).

Following the notion of Jang et al. (2020), we modeled the rodent V1
by allocating sparse cortical sampling locations over the measured RGC
mosaics of a mouse (Paik and Ringach, 2011; Garrett et al., 2014; Jang et
al., 2020). All other simulation settings were identical: the retinal waves
were simulated over the RGC mosaic; the RGC-V1 feedforward wiring
was further updated by retinal waves; and the horizontal connections
were assigned and updated by retinal waves. For this model network, we
only analyzed the orientation specificity of developed connections
because clustering index (CI) analysis and spontaneous activity simula-
tion assume the presence of a columnar orientation map. The simulation
parameter details are provided in Table 1.

Simulation of synchronous Stage II retinal waves. For Stage II retinal
waves, it was reported from in vivo experiments that a cholinergic trans-
mission network among ACs drives synchronous wave-like responses of
ON and OFF RGCs. We modeled this synchronous wave by introducing
a minimally modified version of the ON/OFF asynchronous model of
Stage III waves. In the modified version, the cross-inhibitory behavior of
AC is suppressed, so that an ON RGC is directly coupled to nearby OFF
RGCs as follows:

wON!ON
ji ¼ 1 if jp̂ON

i � p̂ON
j j � RON

0 if jp̂ON
i � p̂ON

j j.RON

(

wON!OFF
ji ¼ 1if jp̂OFF

i � p̂ON
j j � RON

0 if jp̂OFF
i � p̂ON

j j.RON

(

The state of an OFF RGC SOFFðtÞ at a given time t is defined as waiting,
active, or inactive. If an OFF RGC is in a waiting state, it can switch to
an active state at the next time step by receiving input exceeding the
modified threshold HOFF ¼ HON from nearby coupled ON RGCs in an
active state. After an OFF RGC becomes active, it remains active for
Ta ¼ 1s, after which it becomes inactive for the rest of the simulation.
Other than these modifications, all parameter details were the same as
for the Stage III wave model.

Measurement of presynaptic to postsynaptic RGC-V1 activity correla-
tion. To assess the degree of retina-V1 activity correlation during wave
propagation, we measured the Pearson correlation coefficient between
activity of a V1 cell and activity of an RGC connected to it. Specifically,
for a given V1 cell, an ON and an OFF RGC that was very strongly con-
nected to the given V1 cell were selected. Then, for each retinal wave, the
response correlation between the V1 cell and connected ON/OFF RGC
was measured around the peak timing tmax of response of the V1 cell.
The procedure was repeated for all V1 cells for 100 waves, producing a
sampled set of retina-V1 correlation coefficients.

Frequency modulation of retinal waves. To modulate the occurrence
frequency f of waves, we changed the number of waves tV1 that occurs
within the averaging window, using the modulated frequency factor g
given as follows:

g ¼ fmodulated

f0

! tV1
modulated ¼ tV1

0 p g

Where f0 and tV10 represent the unmodulated values of the wave occur-
rence frequency and the number of waves, respectively.To simulate the
condition that the occurrence of retinal waves during a unit time period
increased, we modulated the frequency modulation factors g 2 1; 2½ �.
For each g , simulations of V1 network were repeated 5 times. The sig-
nificance of changes in developmental time was tested using one-way
ANOVA over different values of g .

Modulation of retinal wave direction. To modulate the directional
bias of wave propagation, we sampled a training set of waves biased to a

specific angle, u . In the simulation of biased waves, the waves of tilting
angle within the range u � p

12 ; u1
p
12

� �
were used. To avoid biases from

the selection of u , the above procedure was repeated 12 times for each
angle u ¼ 0; p6 ;

2p
6 ; ::: 11p6 . The significance of difference in connection

strength was estimated using a two-sample t test for the average values of
the LHC weight between V1 cells with orientation tuning parallel to u and
cells with orientation tuning orthogonal to u . As a control, the procedure
was done identically for a V1 network with an unbiased wave dataset.

Quantification and statistical analysis
Trend of developed V1 horizontal connection weights with respect to

orientation preference. To assess how the newly developed V1 horizontal
connections are related to the preferred orientations of the connected
neurons, we first classified the weights of all nonzero horizontal connec-
tions into six groups according to the preferred orientation difference
between the connected neuron pairs, as described below:

DOP i; jð Þ ¼ ju i;OP � u j;OPj adjusted onto 0;
p

2

	 


0 � DOP i; jð Þ, p

12
; wij 6¼ 0 ! wij 2 group 1

p

12
� DOP i; jð Þ, 2p

12
; wij 6¼ 0 ! wij 2 group 2

:::

5p
12

� DOP i; jð Þ, p

2
; wij 6¼ 0 ! wij 2 group 6

8>>>>>>><
>>>>>>>:

Then, we assessed the group trends using nonparametric Cuzick’s test for
the trend of categorical data, under the null hypothesis that there was no
trend across the groups. The p value was calculated from the z statistics
given by the test. To rule out the effect of local connections, neural connec-
tions shorter than one period of the orientation map were excluded in our
analysis.

For the mouse V1 model, we conducted an additional test for com-
parison with the experimental results of Ko et al. (2014). First, every cell
pair (including pairs with zero connection weights) was categorized into
one of three groups according to their orientation difference. Then, we
converted all the connection weight values to Boolean coupling relations
by thresholding with Hw ¼ 1� 10�5ð ÞWV1

limit. From that, we tested the
trend of connection probability (the number of connected cell pairs/the
number of cell pairs in a group) across three groups using the Cochran-
Armitage test for trend of categorical proportion, under the null hypoth-
esis that there is no trend across the groups. The p value was calculated
from the z statistics given by the test. Considering the small size of V1 in
mice, all connections within the cortex were included in our analysis.

Spatial clustering of developed V1 horizontal connections. To quan-
tify how much the developed cortical connections were spatially clustered
in cortical domains, for a given V1 neuron, we selected the top 20% of the
strongest connected postsynaptic cortical locations. Then, for the selected
locations, we sought to test whether the horizontal connection network
was significantly clustered. Ruthazer and Stryker (1996) used Hopkins’
statistic with a sliding window to quantify clustering in the cell plots under
the null hypothesis of spatial randomness. Here we summarize how we
replicated their methodology.For a set of points in a given window, two
basic measurements were done: (1) A 10% random subset was taken from
the point set, and nearest neighbor distances from each member in the
random subset to the whole set were measured (denoted w). (2) A set of
random locations (with set size same as in the first measure) within the
window was selected, and nearest neighbor distances from the random
locations to the whole point set were measured (denoted x). For the given

window, a Hopkin’s statistic was computed as ln
P

x2P
w2

� �
.

Given a V1 neuron and the top 20% of the strongest connected post-
synaptic locations in the cortical space, we moved a circular sliding win-
dow of radius 2dOFF and collected H-statistic values at each sliding
window position. Then, we took the median value of the H-statistics over
every window as the CI of the presynaptic neuron’s cortical connectivity.
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We excluded the surrounding region of radius 2dOFF from our analysis to
check only for clustering in the remote postsynaptic area, considering the
shape of the long-range connections in the V1 layer 2/3 of higher
mammals.

For a developed V1 network, we obtained CI values from 50 ran-
domly selected presynaptic neurons, following the above procedure. The
same procedure was repeated for the initial random network and for the
network developed from randomly permuted retinal activities as well.
Moreover, the significance of long-range clustering relative to the initial
network was assessed using a two-sample t test of CI values.

Similarity of developed V1 horizontal connectivity across different
random initial conditions. To investigate whether horizontal networks
developed from random initial conditions have a similar connectivity
pattern, we repeated the developmental simulation of horizontal connec-
tions for 20 different random initial networks. We then measured the
Pearson correlation coefficient between the connection weight matrices
of all possible network pairs (n = 190). The significance of the correlation
between the networks was then assessed using a t test for the obtained
correlation values.

Matching between the spontaneous activity correlation map and ori-
entation map. To quantify the alignment between the cortical activity
correlation pattern and the orientation map, for a given reference point
s, we measured the Pearson’s correlation coefficient between the orienta-
tion similarity map, OPsim xð Þ, and the activity correlation map, C xð Þ, of
reference, s (x denotes pixel locations) as follows:

r OPsim;Cð Þ ¼ 1
N

XN
x¼1

OPsim xð Þ � OPsim xð Þ
� �

C xð Þ � C xð Þ
� �

sOPsC

Here, N is the number of pixels. To test for statistical significance of the
spatial correlation between the two maps, we made a control version of
the correlation pattern, C

0
xð Þ, by randomly rotating the original, C xð Þ.

Then, for the overlapping region, xo, of rotated C
0
and original OPsim,

r OPsim xoð Þ;C xoð Þ� �
and r OPsim xoð Þ;C0

xoð Þ
� �

were measured. The

same analysis was done 100 times with different control maps, and the
values of r OPsim;Cð Þ and r OPsim;C

0� �
were compared by paired t test to

generate p value.
The above procedure assesses the significance of the correlation map

and orientation map matching given a single, selected reference point.
To test the global coherence of activity-orientation matching as well, we
obtained r OPsim;Cð Þ values from all locations of the V1 neurons as refer-
ence points and tested for significance using a two-sided t test.

Data and code availability
All the data supporting the findings of this study, model simulations,
and data analysis codes are available on GitHub (https://github.com/
vsnnlab/rwave).

Results
Spontaneous retinal waves induced feature-specific long-
range horizontal connections
We first implemented simulations of spontaneous retinal activ-
ity. We modeled retinal waves based on the propagation-readout
model of the Stage II waves by Butts et al. (1999) with necessary
modifications for a model of the Stage III waves. The actual reti-
nal circuitry involving bipolar cells, diffusing glutamate and
many more components, was simplified to a network containing
ON/OFF RGCs and cross-inhibitory ACs (Fig. 3A). Based on the
experimental observation that inhibitory transduction of ACs
induces temporal delay between the bursting activity of ON and
OFF RGCs (Akrouh and Kerschensteiner, 2013; Firl et al., 2015),
our retinal wave model (Fig. 3B) simulates spontaneous activity
as follows: an ON wavefront is formed by local excitatory net-
works of ON RGCs. Then local ACs are excited by surrounding
ON RGCs, which cross-inhibits neighboring OFF RGCs. The

OFF RGCs are activated when local inhibition declines, forming
an OFF wavefront. As a result, the simulated Stage III wave at a
given time appears as one of separate activities of local ON/OFF
RGCs. We then simulated retinal waves using experimentally
measured ON/OFF RGC cell body mosaics of a cat (Zhan and
Troy, 2000) and a monkey (Gauthier et al., 2009) (Fig. 3C,D; see
also Movie 1). Because the RGC mosaic data lacked information
about AC locations, we made a hexagonal AC lattice from the
experimentally measured density.

Next, following the statistical wiring model of the retinocorti-
cal pathway (Ringach, 2007; Paik and Ringach, 2011; Song et al.,
2018), we developed a model circuit of the neurons in V1. In this
model, the receptive field of each V1 neuron is developed by reti-
notopic inputs from local ON/OFF RGC mosaics (Fig. 3E). The
anisotropic alignment of ON and OFF receptive fields generates
the orientation preference of each V1 neuron. In the current sim-
ulation, to mimic wirings of unrefined early cortical circuits, hor-
izontal connections between V1 neurons were added with
randomly initialized synaptic strengths (Fig. 3F; for details, see
Materials and Methods). Using this model, we simulated sponta-
neous generation of retinal waves and found that propagation of
the ON and OFF retinal waves could provide a correlated activa-
tion of V1 neurons of similar orientation tuning (Fig. 3G). We
confirmed that this correlated activation of V1 neurons was suffi-
cient to strengthen their cortical wiring by a simple Hebbian
plasticity implemented in horizontal connections (Fig. 3H).

After repeated propagations of spontaneously generated retinal
waves in arbitrary directions, the initial random horizontal wirings
turned to selective connections between neurons of similar orien-
tation tuning (Fig. 4A,B). After training with ;500 waves of ran-
dom directions, the statistics of LHCs developed by retinal waves
showed significant bias of feature specificity as observed in ferrets
(Ruthazer and Stryker, 1996), whereas such biases are not
observed in those developed by randomly permuted activities (Fig.
4C; cat, Cuzick’s test for trend; p = 0.26, for n = 68,554 random
initial synapses; p, 4.94 � 10�327, for n = 64,101 synapses devel-
oped by retinal waves; p = 0.11, for n = 68,554 synapses developed
by randomly permuted retinal activities; monkey, p = 0.43, for n =
65,032 random initial synapses; p = 4.94 � 10�327, for n = 50,188
synapses developed by retinal waves; p = 0.1, for n = 65,032 synap-
ses developed by randomly permuted retinal activities). We
observed that the cluster indices of developed LHCs in both cat
and monkey models were comparable with those observed in
Ruthazer and Stryker (1996), and were significantly higher than
those developed by randomly permuted activities (Fig. 4D; devel-
oped (cat), two-tailed paired t test, n = 50, *p = 2.43 � 10�41;
developed (monkey), n = 50, *p = 5.08� 10�6).

Next, to examine whether initial conditions of horizontal con-
nectivity affect the developed structure of the feature-specific
LHCs, we repeated the simulation with different initial random
horizontal networks (N = 20). As a result, we found that the hori-
zontal connections develop in similar forms regardless of initial
conditions before development (Fig. 4E). To analyze this result
quantitatively, we estimated the correlation among the connec-
tion strength matrix (20C2 = 190 pairs) of initial and networks
developed across different initial conditions (Fig. 4F). We con-
firmed that the correlation among the connectivity matrices of
developed networks was significant (cat, initial, r = –7.26� 10�5 6
2.23 � 10�3 for n = 190, two-tailed paired t test, for n = 190, p =
0.67; developed, r = 0.996 3.46� 10�5, two-tailed paired t test, for
n = 190, p , 4.94 � 10�327; monkey, initial, r = –1.59 � 10�4 6
1.46 � 10�3, two-tailed paired t test, for n = 190, p = 0.14; devel-
oped, r = 0.98 6 1.95 � 10�4, two-tailed paired t test, for n = 190,
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Figure 3. Feature-specific horizontal connections develop by retinal waves. A, Simplified model of cross-inhibitory circuitry (Kerschensteiner, 2016) engaged during retinal waves. B,
Simplified network model that simulates the cross-inhibitory behavior of ACs and an illustration of waveform formation and propagation on overlaid hexagonal lattices of ON/OFF RGC and AC.
C, The wave model was simulated using data RGC mosaics measured in cats (Zhan and Troy, 2000) and monkeys (Gauthier et al., 2009). Scale bar, 100 mm. D, A simulated example of propa-
gating retinal wave for a 3 s period. Separation of ON/OFF activation regions is achieved by cross-inhibition by AC. E, Left, Middle, The statistical wiring model in which orientation tuning is
determined by retinal mosaics. Right, Yellow shaded area represents iso-orientation domains. F, Layout of the initial horizontal connections in V1. G, Simulation of the developmental model of
feature-specific connectivity by retinal waves. As propagating retinal waves provide a correlated activation of cortical neurons with aligned ON/OFF receptive fields, horizontal connections
between neurons with the same orientation preference are selectively enforced by the Hebbian learning rule. H, Layout of the V1 horizontal connections developed by retinal waves.
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p , 4.94 � 10�327). Notably, averaged correlation between devel-
oped networks was close to 1, indicating convergence to a similar
connectivity pattern. These results suggest that the structure of fea-
ture-specific LHCs in the cortex develops under constraint by the
retinal structure, regardless of the initial condition of connectivity.

Spontaneous cortical activity induced by feature-specific
long-range horizontal connections
Next, we examined whether the developed circuits of feature-
specific LHC could reproduce patterns characteristic of the spon-
taneous cortical activity observed in early developmental periods.
It has been reported that clustered cortical activity, topographi-
cally correlated with the underlying orientation map, is observed
in developing visual cortex (Chiu and Weliky, 2001; Kenet et al.,
2003; Smith et al., 2018) (Fig. 5A-C). A recent study on female
ferrets reported that the spontaneous cortical activity patterns
before eye-opening predict the correlated organization of the ori-
entation map in adults (Smith et al., 2018) (Fig. 5D), suggesting
that spontaneous activities in V1 may initialize the topographic
maps in the cortex. However, this scenario could not explain
clearly how spontaneously generated cortical activity organizes
into systematic columnar patterns.

Here, contrary to the above scenario that the spontaneously
generated cortical activity pattern initially determines organiza-
tion of the orientation map in V1, our model suggests that spon-
taneous retinal activity determines the patterns of both the
orientation map and the activity pattern in V1, by generating
horizontal wirings that connect iso-domains of the underly-
ing orientation map. In this simple scenario, topographies of
spontaneous V1 activity and underlying orientation maps
must be correlated. Further, once LHCs develop, silencing
the feedforward activity in a retina or LGN (Smith et al.,
2018) cannot eliminate the correlated activity in V1, as
observed in ferrets.

To validate this model, we removed all feedforward drive
from the retina in our model and simulated activities by ran-
domly driving the V1 network with developed LHCs. Following
the analysis in a previous study (Smith et al., 2018), we selected
reference points at arbitrary locations in V1 and computed the
Pearson coefficient of correlation for spontaneous activities
between the reference and other locations across cortical space
(Fig. 5E, left; see also Movies 2, 3). We observed strong matching
between the activity correlation map and underlying orientation
map, even though the V1 circuit does not receive inputs from
the feedforward pathway. As observed in ferrets (Smith et al.,
2018), correlation between the activity correlation map and

orientation map was significantly higher than in the controls
where two maps were randomly rotated (Fig. 5F; two-tailed
paired t test with randomly aligned controls; data maps: n = 100,
p = 1.1 � 10�35, cat model: n = 100, p = 2.23 � 10�308; mon-
key model: n = 100, p = 1.90 � 10�240). We also repeated this
for randomly chosen reference points and confirmed the sta-
tistical significance of the correlation (Fig. 5G; two-tailed t
test; data maps: n = 8, p = 0.02, cat model: n = 367, p = 1.17 �
10�41; monkey model: n = 318, p = 4.94 � 10�47). These
results suggest that the observed correlation between sponta-
neous V1 activity and orientation maps can readily be
explained by our model.

Development of feature-specific horizontal connections
without a periodic map
So far, we have shown that our model provides an explanation
for how feature-specific LHCs develop spontaneously in V1 of
higher mammals with columnar orientation maps. Next, we
show that our model further explains how feature-specific micro-
circuits also develop in rodents V1 with salt-and-pepper organi-
zations (Ko et al., 2011) (Fig. 6A). It is notable that the key
assumption of our model is that retinal waves coactivate V1 neu-
rons of similar tuning to develop microcircuits between them,
and that this mechanism works regardless of the spatial organiza-
tion of orientation preference in V1 (Fig. 6B).

To validate our prediction in salt-and-pepper type organiza-
tions of V1, we implemented a model V1 circuit with salt-and-
pepper organization. Using mouse retinal-mosaic data (Bleckert
et al., 2014) and the same developmental model for cats and
monkeys, we confirmed that cortical neurons of similar orienta-
tion tuning tend to fire in correlated patterns. As a result, similar
to the V1 model with a periodic orientation map, our model
showed that microcircuits with significant feature specificity
developed (Fig. 6C; Cuzick’s test for trend; initial: n = 1122, p =
0.21; developed by retinal waves: n = 911, p , 4.94 � 10�327;
developed by randomly permuted activity: n = 1122, p = 0.14).
This result demonstrates that feature-specific LHCs can also
emerge from the correlated activity induced by retinal waves,
even in salt-and-pepper type organizations (Van Hooser, 2005),
as observed in layer 2/3 horizontal microcircuits of rodent V1
(Ko et al., 2011). Notably, observations that feature-specific
microcircuits appear to develop, even in dark rearing conditions
with no visual experience, may also support our model. Our
model predicts that these microcircuits can develop in dark rear-
ing conditions, because spontaneous retinal waves can contribute
under this condition (Hooks and Chen, 2007; Ko et al., 2014)

Movie 1. Sample retinal wave simulated on an extended mosaic of cats from Zhan and Troy (2000). [View online]
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(Fig. 6D,E; Cochran-Armitage test; model: n = 551, p = 9.87 �
10�13; data (dark reared): n = 6, p = 0.028). These results imply
that our model can provide a universal principle for the develop-
mental mechanism of LHCs in both higher mammals and
rodents.

Experimental predictions for retinal wave modulation
Our model provides experimental predictions that can be con-
firmed by existing data or could be validated by future studies.
First, our model predicts that Stage II retinal waves (ON and
OFF synchronous) and Stage III waves (asynchronous) would

Figure 4. Organization of LHCs constrained by the structure of retinal afferents. A, Analysis of horizontal connection strengths in the initial random LHCs (left), LHCs developed by retinal
waves (middle), and LHCs developed by randomly permuted activity (right). For each network, the locations of the top 10% of the strongest postsynaptic connections for a presynaptic location
are shown over the orientation difference map. B, The average connection strength between neurons within the networks is summarized as connectivity matrices. Cells were batched into 10
subsets according to their orientation. Each pixel value denotes the average connection strength of LHCs between neurons in a pair of subsets. Connections of strength are normalized so that
the average value in a network becomes unity. C, Feature-specific LHCs developed by the model. Average connection strength was plotted as a function of orientation difference. Shaded area
represents SE. D, Postsynaptic clustering in developing pre-EO ferret V1 (Ruthazer and Stryker, 1996) and clustering in model V1 network developed from retinal mosaics in a cat and a monkey.
Error bars indicate SD. E, Repeated developmental simulations from random initial connections. The horizontal connections develop in similar forms regardless of the initial conditions. F,
Pairwise correlations between initial networks and between developed networks, across different initialization conditions (N = 20). Correlations between developed networks are close to 1,
indicating convergence to a similar connectivity pattern. *p, 0.05, n.s., not significant.
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drive V1 cells differentially, and that the correlation between reti-
nal activity and cortical activity would weaken during the transi-
tion of the retinal wave from Stage II to Stage III (Fig. 7A,B). The
model predicts that cortical activity patterns in Stage II would be
strongly correlated to retinal activity (Fig. 7A), because both ON
and OFF waves drive V1 neurons simultaneously, regardless of
the organization of the ON-OFF receptive fields of target neu-
rons. On the other hand, in Stage III, ON and OFF waves would
be asynchronous (with a noticeable time delay between them),
and thus drive cortical neurons selectively depending on the spa-
tial organization of their ON and OFF receptive fields (Fig. 7B).
As a result, a smaller portion of the V1 neurons would be acti-
vated by instantaneous retinal waves in Stage III than in Stage II,
and the correlation between the retinal and cortical activities
would appear weaker.

To quantify the predicted modulation of retina-V1 correlation
in the model, we performed simulations of a model network with
synchronous Stage II waves achieved by silencing AC in the
model, so that ON RGCs could directly drive the OFF RGCs.
Using these synchronous model Stage II waves with asynchronous
Stage III waves, we investigated a change in the retina-V1 activity
correlation (presynaptic to postsynaptic correlations between
model RGCs and connected V1 cells). We confirmed that retina-
V1 correlation induced by Stage II waves is significantly reduced
by the transition to Stage III waves, as previously observed in
experiments of both full-field and presynaptic to postsynaptic
activities (Gribizis et al., 2019) (Fig. 7C; two-sample t test; model:
p = 4.28 � 10�6 for nStage II = 10, nStage III = 10; mouse data: p ,
0.001 for nStage II = 5, nStage III = 9). These results imply that Stage
II and III waves may stimulate V1 neurons in distinct ways due to
their different temporal dynamics, as predicted by our model.

Next, our model suggests three additional experimental pre-
dictions for further validation of the model. That is, our model
predicts that the orientation-specific LHC might not develop, or
significantly weaken, if the Stage III retinal waves are suppressed
or modulated in various ways (Fig. 7D). For example, treatment
of ACs with inhibitory antagonists would revert Stage III waves
to waves like those of Stage II (Gribizis et al., 2019). This may
prevent the emergence of the orientation-specific LHCs or signif-
icantly weaken their connection selectivity for similar orientation
tuning. We specifically proposed an experiment to manipulate
Stage III waves to become waves like those in Stage II just before
eye opening (;P13) in mice, when orientation selectivity of V1
neurons is observed but LHCs are not. Our simulations show
that, even if the LHCs can develop, their orientation specificity
will not be observed under this condition (Fig. 7E; Cuzick’s test
for trend; Sync wave, n = 1336, p = 0.30; Async wave, mouse
model: n = 911, p, 4.94� 10�327).

Next, the model suggests another prediction that orientation-
specific LHC might be observed earlier, if additional Stage III
waves are evoked artificially. Recently, it was reported that Stage
III waves could be modulated by light stimulation, which

Figure 5. Feature-specific connectivity developed by retinal waves can underlie correlated
activity in early V1. A, Spontaneous events in early ferret V1 has an underlying correlation
over cortical space. z-scored images of spontaneous events observed in ferret V1 before eye-
opening. Colored points indicate cortical locations of interest (orange represents reference;
red/blue represents points to be compared with reference). B, Sample cortical activity corre-
lations with respect to the reference point. Cortical activity at the red point has a higher cor-
relation to the reference than the blue point does. C, Activity correlation map underlying
early V1. Pearson correlation over the entire cortical space to the reference point is computed
using complete activity images. D, Activity correlation map matched to orientation map in
ferret V1. Left, Activity correlation map. Orange line indicates zero-correlation contour.

/

Middle, Measured orientation map. Dark line indicates iso-orientation domain contours.
Right, Alignment between positively correlated cortical regions and iso-orientation domains
for a given reference point. E, Activity correlation map matched to orientation map in model
V1 developed by retinal mosaic in cats and monkeys. F, Correlation between activity correla-
tion map and orientation similarity map in the data and model, as tested using Pearson cor-
relation for a given reference point. Tested map pairs in E. G, Correlation between activity
correlation map and orientation similarity map in data and model tested for entire reference
points (data: n = 8; cat model: n = 367; monkey model: n = 318). Data adapted with per-
mission from Smith et al. (2018). *p, 0.05.
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increases the frequency of those waves (Tiriac et al., 2018). Our
model predicts that this would expedite the emergence of LHCs
and that orientation-specific LHCs would be observed earlier
than in a normal condition (Fig. 7F). Our quantitative analysis of
the model simulation results shows that the occurrence of orien-
tation-specific LHCs can be modulated, depending on the fre-
quency of the artificially evoked waves (Fig. 7G; one-way
ANOVA, n = 5 samples per a wave frequency; p = 0.0014).

Last, the model predicts that the spatial organization of LHCs
would be biased to specific orientations by controlled artificial light
simulations (Fig. 7H). Retinal waves biased to a specific angle (u ), if
evoked artificially by light stimulations, would reproduce more or
stronger LHCs between neurons tuned to that particular orienta-
tion. This prediction can be tested by comparing the number of
LHCs connecting neurons with the preferred angle in the biased
wave direction (u ) and that in the orthogonal orientation (u 1
90°). Experimentally, the number of LHCs in an orientation domain
could be obtained by injection of extracellular biocytin at that local
position, and then counting the number of terminal boutons
(Bosking et al., 1997). Our model simulations predict a higher
chance of observing LHCs between neurons with the preferred
angle in the biased wave direction than that in the orthogonal orien-
tation (Fig. 7I; two-tailed t test; biased: n = 12, p = 0.02; unbiased:
n = 12, p = 0.57).

Discussion
Results from a number of studies have suggested that retinal
waves may play an important role in the development of early
visual circuits, such as retinogeniculate pathways, geniculate

receptive fields, and geniculocortical pro-
jections (Kaneko et al., 2005; Davis et al.,
2015; Arroyo and Feller, 2016). However,
before now, it was not known whether
retinal waves could also contribute to the
early organization of functional circuits
in V1. In the current study, we demon-
strated that spontaneous retinal waves
can drive the development of feature-spe-
cific intracortical circuits in V1.

Regarding the initialization of LHCs
in V1, the underlying mechanism of how
cotuned cortical neurons fire together,
even before there is visual experience, has
remained unclear and needed to be inves-
tigated further (Ko et al., 2014). Our theo-
retical model suggests a scenario in which
the development of LHCs is based on
observations of the temporal asynchrony
between ON/OFF activations of Stage III
waves in experiments (Kerschensteiner
and Wong, 2008). The idea that asyn-
chrony of the retinal waves could contrib-
ute to the segregation of ON/OFF
afferents was previously suggested by
Kerschensteiner and Wong (2008) and
Gjorgjieva et al. (2009), but how the seg-
regated ON/OFF afferents contribute to
the development of orientation-specific
LHCs was not addressed. Extending the
scenario, our model suggests that a key
mechanism is that the spatial organization
of the retinal mosaics can be projected
onto V1 via segregated ON/OFF afferents,

and this can initialize orientation-selective activation of V1 neu-
rons, leading to the development of LHCs.

It is also possible that correlated activity among clusters of
cotuned V1 neurons could be initiated by other factors, such as
spontaneous activity generated by V1 neurons or the feedback
input from higher visual areas. In particular, some of the previ-
ous studies suggested that spontaneous interactions within V1
could establish spontaneous modular activities, and lead to the
development of LHCs (Grabska-Barwinska and von der
Malsburg, 2008; Smith et al., 2018). It was proposed that local
circuits in V1 might generate patterned activities spontaneously,
which would serve as a scaffold for orientation columns to de-
velop (Shouval et al., 2000; Grabska-Barwinska and von der
Malsburg, 2008; Smith et al., 2018). Such cortical activity might
explain how the activity of multiple clustered regions in the cor-
tex is correlated; however, this scenario lacks explanation of a
mechanism by which orientation-selective cortical receptive
fields arise initially. Moreover, this model could not account for
the strong and precise relationship between the retinal and corti-
cal receptive field structures reported recently (Kremkow et al.,
2016; Lee et al., 2016). Importantly, these models could not pro-
vide explanation of how LHCs could be developed in auditory
cortex when retinal afferents are provided (Sharma et al., 2000).
Thus, the contribution of the endogenous cortical network alone
does not explain how the feature-specific horizontal connections
develop and become correlated with the orientation tuning in
V1.

Despite that several model studies have suggested that retinal
afferents might not seed V1 orientation preference (Hore et al.,

Movie 2. Change of activity correlation pattern as reference point slides over cortical space. Simulation based on cell body
mosaics in cats from Zhan and Troy (2000). [View online]

Movie 3. Change of activity correlation pattern as reference point slides over cortical space. Simulation based on cell body
mosaics in monkeys from Gauthier et al. (2009) . [View online]
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2012; Schottdorf et al., 2014, 2015), evidence from experimental
studies indicates that the orientation tuning of V1 neurons origi-
nates from the local ON and OFF feedforward afferents (Jin et
al., 2011; Kremkow et al., 2016). This provides a possible scenario
for the development of both the initial layout of the orientation
map and the organization of LHCs between iso-orientation
domains. Our model suggests that the organization of ON and
OFF retinal mosaics provides a blueprint for the development of
the orientation map and clustered LHCs, which was not solely
explained by the spontaneous activation in V1. It is also notable
that the results from another experimental study support the pri-
mary role of the retinal activity in the development of LHCs. A
study by Sharma et al. (2000) showed that orientation-specific
LHCs can develop in the primary auditory cortex (A1), when the
retinal inputs are wired to A1, whereas LHCs are rarely observed
in a normal condition. Overall, these results imply that retinal ac-
tivity is the strongest candidate as the source of the activity that
drives the development of LHCs. This retinal origin model
explains the emergence of correlated activity patterns in V1,
topographic matching to the orientation map, and how these
processes are performed before the onset of any visual experi-
ence. Our results suggest a simple, but powerful, model of the de-
velopmental mechanism underlying the origin of spontaneous
activity patterns in V1, and its correlation to the orientation tun-
ing maps to complete the scenario.

Observations that support our developmental model were
also reported in previous studies. Durack et al. (1996) found that
initial clustering of LHCs in ferret V1 coincides with, but does
not precede, the development of orientation preference. This

implies that the development of LHCs may “reflect,” rather than
“seed,” the structure of orientation maps. In addition, feature-
specific microcircuits of V1 in mice appear to emerge after devel-
opment of retinocortical projections and orientation tuning of
V1 neurons (Ko et al., 2013). These results also suggest that, after
the feedforward pathway has been developed to induce cortical
orientation tuning, retinal waves drive the development of fea-
ture-specific horizontal connections.

The previous study reported that clustered horizontal connec-
tions are observed even after binocular enucleation (Ruthazer
and Stryker, 1996). However, this result cannot invalidate the
role of the patterned retinal activity for cortical development of
LHCs. It should be noted that the enucleation of the retinae was
performed late in development (P21), after early orientation tun-
ing and related spatial organization were already established in
V1. At that time, feature-specific LHCs are expected to exist al-
ready, and might be refined by cortical activities (Sharma et al.,
2000). Furthermore, another study reported a counterexample
that the clustering of LHCs was not observed in cats with earlier
binocular deprivation in the developmental stage (Callaway and
Katz, 1991). These results are readily explained by our model:
Once orientation tuning and LHCs in V1 are established by early
retinal afferents (probably early Stage III), they develop without
further contribution from the feedforward retinal activity in later
stages.

Consistent with previous observations, our model proposes
that Stage II and III retinal waves may have distinct roles in de-
velopment of LHCs. That is, the Stage II retinal activity first
induces development of the retinogeniculate and geniculocortical

Figure 6. Retinal waves can drive the emergence of feature-specific cortical connections in rodent V1. A, Orientation-specific microcircuits observed in mouse V1 of salt-and-pepper organiza-
tion of orientation tuning (Ko et al., 2013). B, Emergence of feature-specific horizontal connections by retinal waves in salt-and-pepper organization simulated with mouse retinal mosaics
(Bleckert et al., 2014). The model predicts that feature-specific connections develop, regardless of the spatial distribution of orientation preference in V1. C, Feature-specific microcircuits devel-
oped by a simple orientation-correlated activation model. Shaded area represents SE. D, Developmental timeline of mouse V1 horizontal microcircuits. Feature-specific horizontal microcircuits
emerge when the retinal wave is present and the retinocortical pathway has developed. E, Feature-specific connection developed in model mouse V1 and data (Ko et al., 2014). In both model
and data, the feature-specific microcircuit is observed, even if no visual experience is given during development. Data adapted with permission from Ko et al. (2014). *p, 0.05.
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Figure 7. Experimental predictions for retinal wave modulation. A–C, Prediction 1: Correlation between retinal activity and cortical activity will weaken during the transition of the retinal
wave from Stage II to Stage III. A, An ON/OFF synchronous retinal wave in Developmental Stage II. The ON and OFF retinal afferents induce V1 cell activities of similar amplitude, regardless of
the spatial organization of the receptive field. This causes high average correlation between retinal and cortical activities. B, An ON/OFF asynchronous retinal wave in Developmental Stage III.
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pathways (Ackman et al., 2012; Kirkby et al., 2013); then the
Stage III retinal activity drives the development of LHCs (Davis
et al., 2015) until eye-opening (Liets et al., 2003; Akrouh and
Kerschensteiner, 2013). Another recent study on the Stage II and
III retinal activities in mice also provides supporting evidence for
our model (Gribizis et al., 2019). In this paper, it was reported
that the global correlation between cortical activity across the
cortical surface and the presynaptic retinal activity is significantly
higher during Stage II than during Stage III. These results are
consistent with the scenario that our model predicts: (1) Retinal
activity during the Stage II period develops retinocortical path-
ways with a retinotopic organization and activates all the cortical
neurons. This generates a global correlation of cortical activity.
(2) Then, asynchronous retinal waves during Stage III selectively
activate cortical neurons of similar orientation tuning by propa-
gating in the direction of the wave. This leads to relatively lower
global correlation than in the previous stage. Together, these
results imply that Stage II and III retinal activities stimulate the
cortical neurons in a distinct way and contribute differently to
the development of LHCs.

There exist conflicting results on whether the ON/OFF asyn-
chrony of Stage III retinal waves is significant in higher mam-
mals. Wong et al. (1996) and Lee et al. (2002) reported that there
was no noticeable temporal delay between ON and OFF RGC ac-
tivity in ferret Stage III waves, whereas Liets et al. (2003) reported
the existence of clear asynchrony up to ;1 s, similar to the ON/
OFF asynchrony in mouse. In the case of ferrets, it is possible
that asynchrony of activity between RGC types might originate
from a different mechanism, such as dendrite morphology or
other neuronal dynamics, which eventually works similar to ON/
OFF asynchrony in mice. Future studies are needed to observe
detailed dynamics for retinal waves to drive cortical organization
in each species of various structures in feedforward projections.

Our model explains how visual cortical networks develop
before experience, but experimental results suggest that sensory
experience is essential for the maintenance and maturation of
cortical network structures. Immediately after eye-opening, an
explosive increase in the synaptic density of cortical layer 2/3
(including LHCs) is observed. Ferrets dark-reared at this devel-
opmental stage appear to have much weaker orientation tuning,
and their LHC clusters do not form properly (White and
Fitzpatrick, 2007). Similar observations were reported in rodent
V1 as well; although feature-specific cortical microcircuits are

observed to develop in dark-rearing environments, they require
visual experience for appropriate pruning and maturation later
(Ko et al., 2014). These observations suggest that early feedfor-
ward projections are able to guide organization of the functional
circuits in the cortex initially, but also that visual experience is
required to drive further development of circuits for complete
visual function in adult animals.

In conclusion, our results suggest that the structure of retinal
mosaics and the spontaneous wave activity from them can
induce early tuning maps and the feature-specific LHC circuits
in V1. Our model provides further understanding of how func-
tional architectures in the cortex can originate from the spatial
organization of the periphery, without sensory inputs during
early developmental periods.
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