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Mechano-sensory hair cells within the inner ear cochlea are
essential for the detection of sound. In mammals, cochlear hair
cells are only produced during development and their loss, due to
disease or trauma, is a leading cause of deafness. In the immature
cochlea, prior to the onset of hearing, hair cell loss stimulates
neighboring supporting cells to act as hair cell progenitors and
produce new hair cells. However, for reasons unknown, such
regenerative capacity (plasticity) is lost once supporting cells
undergo maturation. Here, we demonstrate that the RNA binding
protein LIN28B plays an important role in the production of hair
cells by supporting cells and provide evidence that the develop-
mental drop in supporting cell plasticity in the mammalian cochlea
is, at least in part, a product of declining LIN28B-mammalian target
of rapamycin (mTOR) activity. Employing murine cochlear organoid
and explant cultures to model mitotic and nonmitotic mechanisms
of hair cell generation, we show that loss of LIN28B function, due to
its conditional deletion, or due to overexpression of the antagonistic
miRNA let-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity
and renders young, immature supporting cells incapable of gener-
ating hair cells. Conversely, we found that LIN28B overexpression
increased Akt-mTORC1 activity and allowed supporting cells that
were undergoing maturation to de-differentiate into progenitor-like
cells and to produce hair cells via mitotic and nonmitotic mechanisms.
Finally, using the mTORC1 inhibitor rapamycin, we demonstrate
that LIN28B promotes supporting cell plasticity in an mTORC1-
dependent manner.
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The cochlea, located in the inner ear, contains highly specialized
mechano-receptor cells, termed hair cells, which are critical

for our ability to detect sound. In mammals, auditory hair cells are
only produced during embryonic development and hair cell loss
due to aging, disease, or trauma is a leading cause for hearing
impairment and deafness in humans. Nonmammalian vertebrates,
such as birds, are capable of regenerating hair cells within their
auditory and vestibular sensory organs throughout their lifetime
(reviewed in ref. 1). The source of the newly generated (regen-
erated) hair cells are glia-like supporting cells. Sharing a close
lineage relationship, hair cells and supporting cells originate from
a common pool of progenitor cells, termed prosensory cells (2, 3).
The transcription factor SOX2 is essential for the establishment
and maintenance of prosensory cells (4) and plays a critical role in
the induction of Atoh1 during hair cell formation (5, 6). The
transcriptional activator ATOH1 is required for hair cell forma-
tion in the developing inner ear (7) and its reactivation in sup-
porting cells is an essential step in the process of hair cell
regeneration (8, 9).
In birds, loss of auditory hair cells induces adjacent supporting

cells to either directly convert (transdifferentiate) into hair cells
(10, 11), or alternatively, to reenter the cell cycle and after
rounds of cell division to produce both hair cells and supporting
cells (12, 13). In response to hair cell death, cochlear supporting

cells in newborn mice have been recently shown to reenter the
cell cycle and produce new hair cells (14, 15). The injury-induced
regenerative response in the neonatal/early postnatal cochlea
can be greatly enhanced by genetic or pharmacologic inhibition
of Notch signaling (16–18) and overactivation of the Wnt/
β-catenin signaling (19–22). However, mice are born deaf and
their cochlear hair cells and supporting cells are not functional
(mature) until the onset of hearing at postnatal days 12 to 13
(P12–P13) (23–25). Recent studies uncovered that as early as P5/P6
murine cochlear supporting cells fail to regenerate hair cells in re-
sponse to injury (14), inhibition of Notch signaling (26), or over-
activation of Wnt/β-catenin signaling (27). What causes the rapid
decline in supporting cell plasticity during the first postnatal week is
currently unknown.
We previously demonstrated that a regulatory circuit consisting

of LIN28B protein and let-7miRNAs modulates the production of
new hair cells in stage P2 murine cochlear explants, with LIN28B
promoting new hair cell production and let-7 miRNAs suppressing
it (28). The closely related RNA binding proteins LIN28A and
LIN28B (LIN28A/B) and members of the let-7 family of miRNAs
belong to an evolutionarily conserved network of genes, initially
identified in Caenorhabditis elegans for their role in developmental
timing (heterochrony) (29, 30). Let-7 miRNAs and LIN28A/B are
mutual antagonists that repress each other’s expression. LIN28A/
B inhibit the biogenesis of let-7 miRNAs through direct binding to
primary and precursor let-7 transcripts. In turn, let-7 miRNAs in-
terfere with the translation of Lin28a and Lin28b mRNAs by
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binding to their 3′UTR (reviewed in ref. 31). While let-7 miRNAs
are linked to a postmitotic, terminal differentiated state, LIN28A/B
proteins are positive regulators of stemness, organismal growth,
and metabolism (reviewed in ref. 32). How LIN28B/let-7 influence
the postnatal production of hair cells by supporting cells and
whether the LIN28B/let-7 circuit plays a role in the developmental
decline of supporting cell plasticity is currently unknown.
Here, we provide evidence that the decline in supporting cell

plasticity in the murine cochlea is, at least in part, due to diminished
LIN28B-mammalian target of rapamycin complex 1 (mTORC1)
activity. Using organoid and explant cultures to model mitotic and
nonmitotic hair cell production by supporting cells, we found that
diminished LIN28B-mTOR activity, due to let-7g overexpression or
targeted deletion of Lin28a/b, accelerated the developmental de-
cline in supporting cell plasticity and rendered, otherwise plastic,
immature supporting cells incapable of producing new hair cells.
Conversely, we found that reexpression of LIN28B reinstated the
ability of maturing supporting cells to generate hair cells and found
that rapamycin, a selective inhibitor of the mTORC1 kinase com-
plex, blocked such LIN28B-induced hair cell production.

Results
The Ability of Murine Cochlear Epithelial Cells to Form and Grow Hair
Cell Containing Organoids Sharply Declines within the First Postnatal
Week. Cochlear supporting cells, isolated from neonatal mice,
reenter the cell cycle and produce hair cells when cultured on a
feeder layer of periotic mesenchymal cells in the presence of
mitogens. However, mature cochlear supporting cells isolated
from stage P14 mice fail to proliferate and produce only few
scattered hair cells when cultured under identical conditions
(33). A similar decline in the potential to proliferate and self-
renew is observed when cochlear epithelial cells, including sup-
porting cells, are propagated using neurosphere culture conditions
(34). To address the underlying molecular mechanisms that cause
the decline in supporting cell plasticity, we employed a recently
developed organoid culture system, which allows Wnt-responsive
cochlear epithelial cells (supporting cells) to propagate and dif-
ferentiate into large hair cell-containing organoids (35).
Employing this organoid culture system (Expansion in Fig. 1A),

we found that cochlear epithelial cells from stage P2 mice (P2
organoid culture) readily formed large organoids (P2 in Fig. 1B). In
contrast, cochlear epithelial cells obtained from stage P5 mice (P5
organoid culture) showed a greatly diminished capacity to form
and grow organoids (P5 in Fig. 1B). After 5 d of expansion, P5
organoid cultures contained three times fewer organoids than P2
organoid cultures (Fig. 1 B and C) and were only a quarter the size
of organoids in P2 organoid cultures (Fig. 1 B and D). To address
potential defects in cell proliferation, P2 and P5 organoid cultures
received a 1-h pulse of EdU (5-ethynyl-2′-deoxyuridine), after
which organoids were harvested and costained for SOX2. Prior to
cochlear differentiation, SOX2 expression identifies prosensory
cells and later marks supporting cells and Kölliker’s cells, a tran-
sient population of supporting-like cells located at the medial
border of the sensory epithelium. In addition, SOX2 is transiently
expressed in nascent hair cells (6, 36). We found that SOX2+ cells
in P5 organoids proliferated at a 25% lower rate (percent of
EdU+ cells) than SOX2+ cells in P2 organoids (Fig. 1 E and F),
indicating that the observed defects in P5 organoid formation and
growth were the product of reduced cell proliferation.
Next, we analyzed the ability of P2 and P5 organoids to produce

hair cells (Differentiation in Fig. 1A). Hair cell formation in P2
and P5 organoid cultures was monitored using Atoh1-nGFP re-
porter expression (37). Atoh1 (Atoh1-nGFP) expression is high in
nascent hair cells, but is absent in hair cells that already underwent
maturation, which allows to distinguish between existing and na-
scent hair cells (37, 38). After 10 d of differentiation, ∼25% of
organoids in P2 organoid cultures contained Atoh1-nGFP+ cells
(P2 in Fig. 1 G and H), which formed large clusters and coexpressed

the hair cell-specific protein myosin VIIa (MYO7A) (P2 in Fig. 1 I
and J). In contrast, less than 2% of organoids in P5 organoid cul-
tures contained few, scattered Atoh1-nGFP+ cells and largely
lacked myosinVIIa expression (P5 in Fig. 1 G–J). The observed
decline in supporting cell plasticity between P2 and P5 corre-
lated with a drop in Lin28b mRNA and LIN28B protein ex-
pression within cochlear epithelial cells in vivo (SI Appendix,
Fig. S1 A and B).
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Fig. 1. Cochlear epithelial cells from stage P5 mice fail to expand and
produce hair cells in organoid culture. Organoid cultures were established
from cochlear epithelia cells obtained from Atoh1-nGFP transgenic mice,
stages P2 and P5. Atoh1-nGFP marks nascent hair cells. (A) Experimental
design. (B) Brightfield (BF) images of P2 and P5 cochlear organoid cultures
after 5 d of expansion. (C ) Organoid forming efficiency in P2 (blue) and P5
(red) cultures in B (n = 8). (D) Organoid diameters in P2 (blue) and P5 (red)
cultures in B (n = 8). (E ) Cell proliferation in P2 and P5 organoids. A single
EdU pulse was given at 5 d of expansion and EdU incorporation (red) was
analyzed 1 h later. SOX2 (green) marks supporting cells/prosensory cells
and Hoechst (blue) labels cell nuclei. (F ) Percentage of EdU+ cells in P2 and
P5 organoids in E (n = 8). (G) BF and green fluorescent images (Atoh1-
nGFP) of P2 and P5 organoid cultures after 10 d of differentiation. (H)
Percentage of Atoh1-nGFP+ organoids in G (n = 6). (I) Confocal images of
P2 and P5 organoid cultures after 10 d of differentiation. Newly formed
hair cells express Atoh1-nGFP (green) and MYO7A (magenta). (J) Per-
centage of MYO7A+ hair cells per organoid in I (n = 6). Graphed are in-
dividual data points and mean ± SD. Individual data points in D, F, and J
represent the average value per animal. n = animals analyzed per group.
All data are from two independent experiments. Two-tailed, unpaired
Student’s t tests were used to calculate P values.

22226 | www.pnas.org/cgi/doi/10.1073/pnas.2000417117 Li and Doetzlhofer

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000417117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000417117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2000417117


LIN28B Reactivation Reinstates Cochlear Supporting Cell Plasticity. In
order to address whether there is a link between LIN28B protein
levels and supporting cell plasticity, we reexpressed LIN28B in
stage P5 cochlear organoids using iLIN28B transgenic mice. In this
double-transgenic mouse model, a flag-tagged human LIN28B
transgene is expressed under the control of a TRE promoter
(Col1a-TRE-LIN28B) (39), which in the presence of an ubiqui-
tously expressed reverse tetracycline transactivator transgene
(R26-rtTA-M2) (40) and doxycycline (dox) allows for robust induction
of LIN28B protein (28, 39). First, we expanded cochlear epithelia
cells from P5 iLIN28B transgenic mice and control littermates (lack
LIN28B transgene) in the presence of dox for 13 d (Fig. 2A). We
found that LIN28B overexpression increased the efficiency of
organoid formation by more than fivefold, as well as doubled the
average organoid size (diameter) compared to control (Fig. 2
B–D). The increase in organoid size in response to LIN28B over-
expression was accompanied by a twofold higher rate of cell pro-
liferation during the early phase of expansion (Fig. 2 F and G).
Coinciding with the peak of cell proliferation, Sox2 transcript levels
in LIN28B overexpressing organoids transiently decreased more
than threefold compared to control organoids (Fig. 2E) and the
majority of proliferating cells (EdU+) in LIN28B overexpressing
organoids expressed SOX2 at a low level (SOX2low, EdU+ in
Fig. 2H).
Next, we analyzed the capacity of control and LIN28B

overexpressing organoids to produce hair cells. We found that
after 3 d of differentiation, about 40% of LIN28B overexpressing
organoids contained Atoh1-nGFP+ cell clusters, which increased
to nearly 60% after 8 d of differentiation (iLIN28B in Fig. 2 I and

J). In contrast, less than 5% of control organoids contained Atoh1-
nGFP+ cells after 8 d of differentiation (“Ctl” [control] in Fig. 2 I
and J). Confirming the presence of hair cells in LIN28B over-
expressing organoids, we found that hair cell-specific transcripts
(Atoh1, Pou4f3) were more than 10-fold up-regulated in LIN28B
overexpressing organoids compared to control organoids (Fig.
2K). Mimicking hair cell development in vivo, nascent Atoh1-
nGFP+ hair cells first up-regulated myosin VIIa (MYO7A) (SI
Appendix, Fig. S2B), followed by the up-regulation of calretinin, a
protein enriched in the inner hair cells (41) (SI Appendix, Fig. S2
A, C, and D). After 7 d of differentiation, Atoh1-nGFP+ hair cells
also started to up-regulate prestin, a protein selectively expressed in
outer hair cells (SI Appendix, Fig. S2F) and LIN28B overexpressing
organoids up-regulated the expression of oncomodulin (Ocm), an
outer hair cell-specific gene (42) and Fgf8, an inner hair cell-specific
gene (43) (SI Appendix, Fig. S2G). In vivo, cochlear hair cells only
transiently express Atoh1 (Atoh1-nGFP) and SOX2 and their ex-
pression is lost once cochlear hair cells undergo maturation (6, 44).
Similarly, we found that MYO7A+ hair cells initially coexpressed
Atoh1-nGFP and SOX2 in LIN28B overexpressing organoids
(“Diff. 5 days” in SI Appendix, Fig. S2E). However, at later stages of
culture MYO7A+ hair cells often lacked Atoh1-nGFP and SOX2
expression (“Diff. 10 days” in SI Appendix, Fig. S2E). Together,
these findings indicate that the newly formed hair cells in LIN28B
overexpressing organoids acquired mature characteristics and spe-
cialized into inner and outer hair cell-like cells.
To be able to monitor the behavior of supporting cells within

control and LIN28B overexpressing organoids, we generated
control and iLIN28B transgenic mice that carried the p27-GFP
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Fig. 2. LIN28B overexpression promotes cochlear epithelial cell expansion and hair cell production. Cochlear organoid cultures were established from stage
P5 Atoh1-nGFP;iLIN28B transgenic mice and control littermates that lacked the LIN28B transgene. Atoh1-nGFP marks nascent hair cells. (A) Experimental
strategy. (B) BF images of control and LIN28B overexpressing (iLIN28B) organoid cultures at 7 and 13 d of expansion. (C) Organoid forming efficiency in
control (Ctrl, blue) and LIN28B (iLIN28B, red) overexpressing cultures (n = 6, two independent experiments). (D) Organoid diameters in control (Ctrl, blue) and
LIN28B (iLIN28B, red) overexpressing cultures after 7 and 13 d of expansion (n = 12, two independent experiments). (E) qRT-PCR analyzing Sox2 mRNA
expression in control (Ctrl, blue bar) and LIN28B overexpressing (iLIN28B, red bar) organoids at 7 and 13 d of expansion (n = 3, from one representative
experiment, three independent experiments). (F) Cell proliferation in control and LIN28B overexpressing organoids. An EdU pulse was given at 7 d (shown) or
13 d of expansion and EdU incorporation (red) was analyzed 2 h later. SOX2 (green) marks supporting cells/prosensory cells, Hoechst labels cell nuclei (blue).
(G) Percentage of EdU+ cells in control (Ctrl, blue) and LIN28B overexpressing (iLIN28B, red) organoids at 7 and 13 d of expansion (n = 6, two independent
experiments, n.s. not significant). (H) EdU incorporation in SOX2-high and SOX2-low expressing cells (n = 4, two independent experiments). Note that the
majority of EdU+ cells in LIN28B overexpressing organoids expressed SOX2 at a low level (red, SOX2low EdU+). (I) BF and green fluorescent (Atoh1-nGFP)
images of control and LIN28B overexpressing organoids after 8 d of differentiation. (J) Percentage of Atoh1-nGFP+ organoids in control (Ctrl) and LIN28B
overexpressing (iLIN28B) cultures after 3, 5, and 8 d of differentiation (n = 6, two independent experiments). (K) qRT-PCR analyzing hair cell-specific mRNA
expression (Atoh1, Myo7a, Pou4f3) in control (Ctrl, blue bar) and LIN28B overexpressing (iLIN28B, red bar) organoids after 5 d of differentiation (n = 3, from
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were plotted. Individual data points in D, G, and H represent the average value per animal. n = animals analyzed per group. Two-tailed, unpaired Student’s
t test was used to calculate P values. a.u., arbitrary unit.
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BAC transgene. GFP expression in p27-GFP transgenic mice is
under the control of the p27/Kip1 (cdkn1b) gene locus (45). P27/
Kip1, a cyclin-dependent kinase inhibitor, is essential for forcing
prosensory cells out of the cell cycle and for maintaining supporting
cells in a postmitotic state (46–48). In the cochlear sensory epithe-
lium, p27-GFP is selectively expressed in supporting cells. Other cell
types, including hair cells, don’t express p27-GFP or, in the case of
Kölliker’s cells, express p27-GFP at a much lower level than sup-
porting cells (33). Importantly, p27-GFP expression is rapidly lost
when supporting cells reenter the cell cycle (33), allowing us to pin-
point the peak of cell-cycle reentry of supporting cells in cochlear
organoids. There was no significant difference in the number of
p27-GFP+ organoids in control and LIN28B overexpressing cul-
tures during early expansion (5 d), suggesting that supporting cells
survived equally well in control and LIN28B overexpressing cul-
tures (Fig. 3B). In control cultures the percentage of p27-GFP+

organoids declined during the remainder of the culture (Fig. 3A), and
after 7 d of differentiation less than 10% of organoids contained p27-
GFP+ supporting cells (Ctrl, blue line in Fig. 3B), suggesting that the
majority of supporting cells in control organoids failed to re-enter the
cell cycle. In contrast, p27-GFP expression in LIN28B overexpressing
organoids, which during the latter half of expansion was near to being
absent, dramatically increased upon differentiation (Fig. 3A). After
7 d of differentiation close to 50% of organoids in LIN28B over-
expressing cultures contained large clusters of p27-GFP+ cells, indi-
cating that LIN28B overexpression enabled stage P5 supporting
cells to propagate in organoid culture (iLIN28B, red line in Fig. 3B).
To address whether LIN28B overexpression facilitates the

de-differentiation of supporting cells into prosensory-like cells,
we analyzed the expression of supporting cell (S100a1, F2rl1,
Cybrd1, Ano1) (33, 49, 50) and prosensory cell-specific genes
(Trim71, Hmga2, Fst, Fat3) (28, 51) (Fat3; Allen Developing
Mouse Brain Atlas, https://developingmouse.brain-map.org/) in

LIN28B overexpressing and control organoids after 7 d of ex-
pansion. As controls, we analyzed the expression of Isl1 (52)
and Emx2 (53), which are expressed in prosensory cells and
continue to be expressed in supporting cells and transiently in
hair cells (54). As expected, the expression of Emx2 and Isl1
was not significantly changed in LIN28B overexpressing orga-
noids compared to control. However, consistent with supporting
cell de-differentiation, we found that the transcripts of prosensory
cell-specific genes Fst, Fat3, and Hmga2 were fourfold higher
expressed in LIN28B overexpressing organoids compared to
control, whereas supporting cell-specific transcripts for S100a1,
F2rl1, and Cybrd1 were two- to sevenfold lower expressed com-
pared to control (Fig. 3C). Once differentiation was induced,
LIN28B overexpressing organoids contained both Atoh1-nGFP+ hair
cells and Atoh1-nGFP− S100A1+ or Atoh1-nGFP− JAGGED1+

supporting cell-like cells (SI Appendix, Fig. S2 A, H, and I). To-
gether, these results indicate that LIN28B stimulates supporting
cells to de-differentiate into prosensory-like cells that are capable
of producing both hair cells and supporting cells in organoid culture.

Let-7 Overexpression or Loss of LIN28A/B Accelerates the Age-
Dependent Decline in Supporting Cell Plasticity. LIN28 proteins
and let-7 miRNAs are mutual antagonists. To determine whether
higher than normal let-7 miRNA levels would diminish the re-
generative capacity of stage P2 supporting cells, we made use of
iLet-7g transgenic mice (39). In this double transgenic mouse
model a LIN28A/B-resistant form of let-7g is expressed under the
control of a TRE promoter (Col1a-TRE-let-7S21L), which in the
presence of the R26-rtTA-M2 transgene and dox allows for
robust let-7g overexpression (28, 39). First, we analyzed whether
let-7g overexpression disrupts the capacity of young, immature
supporting cells to regenerate hair cells in response to Notch
inhibition in cochlear explant culture. To ablate hair cells, control
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and let-7g overexpressing cochlear explants were treated with
gentamicin for 20 h, after which Notch inhibitor (γ-secretase in-
hibitor) (LY411575) was added to induce supporting cell-to-hair
cell conversion (SI Appendix, Fig. S3A). We found that let-7g
overexpression reduced the production of hair cell (MYO7A+

SOX2+) in response to Notch inhibition by more than twofold in
both intact (PBS, iLet-7) and hair cell-damaged (gentamicin, iLet-
7) cochlear explants (SI Appendix, Fig. S3 B and C).
Next, we analyzed whether let-7g overexpression inhibits the

capacity of young, immature supporting cells to reenter the cell
cycle and propagate in organoid culture. To do so, we expanded
cochlear epithelia cells from stage P2 iLet-7g transgenic mice and
their nontransgenic control littermates (lack let-7g transgene) in
the presence of dox for 10 d (Fig. 1A). We found that over-
expression of let-7g decreased the number of organoids (Fig. 4 A
and C) and decreased their average size by more than twofold
(Fig. 4 A and B). These defects were accompanied by a 30%
reduced rate of cell proliferation at 10 d of expansion (Fig. 4 D
and E), as well as defects in supporting cell de-differentiation, as
indicated by nearly twofold higher S100a1 expression and more
than threefold lower Hmga2 expression in let-7g overexpressing
organoids compared to control organoids (Fig. 4F). Next, we
analyzed the hair cell-producing capacity of control and let-7g
overexpressing organoids. To obtain sufficient cells for further
analysis, we modified the experimental approach and omitted dox
from the early phase of expansion. After 5 d of differentiation,
about 20% of control organoids contained Atoh1-nGFP+ cell

clusters, whereas only ∼10% of let-7g overexpressing organoids
contained Atoh1-nGFP+ cell clusters (Fig. 4 G and H). Moreover,
after 5 d of differentiation iLet-7g transgenic organoids expressed
hair cell-specific genes (Atoh1, Myo7a) at a twofold lower level
than control organoids (Fig. 4I). Together, these findings indicate
that let-7miRNAs inhibit supporting cell proliferation and limit the
ability of supporting cells to acquire a hair cell fate. These findings
complement our previous finding that let-7g overexpression inhibits
progenitor cell proliferation during cochlear development and in-
hibits transdifferentiation of supporting cells into hair cells in re-
sponse to Notch inhibition in cochlear explant culture (28).
Next, we addressed whether endogenous LIN28B limits the

capacity of neonatal supporting cells to form hair cells in vitro.
Mice with single deletion of Lin28a or Lin28b are viable and show
relatively mild or no overt defects, whereas codeletion of Lin28a
and Lin28b result in severe abnormalities and is embryonic-lethal
(55). To avoid potential functional redundancy between LIN28B
and LIN28A, we conditionally knocked out both Lin28a and
Lin28b in vitro using Lin28a and Lin28b floxed (f) mice (55) and
UBC-CreERT2 transgenic mice, which ubiquitously express a
tamoxifen-inducible form of Cre recombinase (56). First, we ex-
amined whether endogenous LIN28A/B are required for the di-
rect conversion (transdifferentiation) of supporting cells into hair
cells (Fig. 5A). We generated cochlear explant cultures from stage
P2 UBC-CreERT2;Lin28af/f;Lin28bf/f mice and littermates that
lacked the UBC-CreERT2 transgene (Lin28af/f;Lin28bf/f). Cultures
received 4-hydroxy-tamoxifen (TM) or vehicle control (DMSO) at
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plating. The next day, cultures received the Notch inhibitor (LY411575)
to induce supporting cell-to-hair cell conversion. Three days later,
control cochlear explants (DMSO: UBC-CreERT2;Lin28af/f;Lin28bf/f;
TM: Lin28af/f; Lin28bf/f; DMSO: Lin28af/f;Lin28bf/f) and Lin28a/b
double knockout (dKO) cochlear explants (TM: UBC-
CreERT2;Lin28af/f;Lin28bf/f) were analyzed for newly formed
hair cells (MYO7A+ SOX2+). Consistent with previous reports,

we found that supporting cells in control cochlear explants readily
converted into hair cells in response to Notch inhibition, forming
close to 20 new hair cells per 100 μm (Fig. 5 B and C, blue, red,
green). In contrast, Lin28a/b dKO cochlear explants produced
fewer than 7 new hair cells per 100 μm in response to Notch in-
hibition (Fig. 5 B and C, black).
Next, we determined whether endogenous LIN28A/B is re-

quired for young, immature supporting cells to propagate and
produce hair cells in cochlear organoid culture (Fig. 1A). To do
so, we established organoid cultures from stage P2 UBC-
CreERT2;Lin28af/f;Lin28bf/f mice and Lin28af/f;Lin28bf/f litter-
mates in the presence of TM or vehicle control (DMSO). The
tamoxifen-induced Lin28a/b deletion was confirmed by qRT-
PCR analysis, which showed that Lin28a/b dKO organoids
expressed Lin28b and Lin28a transcripts at three- to fivefold
lower level than control organoids (Fig. 6D). The reduction in
Lin28a/b expression was accompanied by the mild, but a sig-
nificant down-regulation of the let-7 target Hmga2. Moreover,
we found that twofold fewer organoids formed in Lin28a/b
dKO organoid cultures compared to control cultures (Fig. 6 A
and C) and Lin28a/b dKO organoids were on average 30%
smaller than control organoids (Fig. 6 A and B). Furthermore,
EdU pulse experiments revealed that the fraction of cells that
were actively cycling within Lin28a/b dKO organoid was ∼30%
lower than in control organoids (Fig. 6 E and F). To address
whether LIN28A/B deficiency limits the ability of supporting
cells/prosensory cells to generate hair cells, we differentiated
control and Lin28a/b mutant organoids for 10 d and analyzed
their expression of hair cell-specific genes (Atoh1, Pou4f3,
Myo7a) using qRT-PCR. We found that Lin28a/b dKO orga-
noids expressed hair cell-specific transcripts at a more than
threefold lower level than control organoids (Fig. 6G). To-
gether, our findings indicate that endogenous LIN28A/B play
an essential role in the mitotic and nonmitotic production of
cochlear hair cells in vitro.
Recent studies uncovered an important link between LIN28A/

B and the mTOR signaling pathway (39, 55). Integrating various
growth factor-dependent signals and downstream phosphoino-
sitide 3-kinase (PI3K)-Akt signaling, mTOR signaling pathway
promotes anabolic processes in aid of cell growth and cell sur-
vival (reviewed in ref. 57). Central to the mTOR pathway is the
serine-threonine kinase mTOR. The mTOR kinase exists in two
distinct protein complexes: mTORC1 and mTORC2, which differ
in terms of rapamycin sensitivity, substrate specificity, and func-
tional outputs (reviewed in ref. 58). The rapamycin-sensitive
mTORC1 complex plays, among others, a central role in protein
synthesis. Commonly used indicators for mTORC1 activity are the
phosphorylated forms of the ribosomal protein S6 (Ser240/244)
and the eukaryotic initiation factor 4E binding protein 1 (4E-BP1)
(Thr37/46) (59–61). Phosphorylation (p) of the kinase Akt on
serine 473 (Ser473) by mTORC2 is a readout for maximal Akt
activation downstream of PI3K (62).
To determine whether mTOR activity declines during co-

chlear maturation, we analyzed p-S6 and p-Akt protein levels in
cochlear epithelial lysates from stage P2 and P5 wild-type mice.
We found that similar to LIN28B, p-S6 and p-Akt protein levels
were significantly reduced in P5 cochlear sensory epithelia
compared to P2 (SI Appendix, Fig. S1 B and C). Furthermore,
LIN28B protein expression as well as mTOR activity (p-4E-BP1)
were higher in the apical portion of stage P5 cochlear sensory
epithelia than the basal one. However, due to the high variability
across samples the apex-base difference in mTOR activity was
not statistically significant (SI Appendix, Fig. S1 D–F). To de-
termine whether LIN28A/B positively regulates mTOR activity
in cochlear epithelial cells in vivo, we analyzed mTOR activity in
acutely isolated cochlear epithelial lysates after postnatal LIN28B
overexpression (iLIN28B) or Lin28a/b knockdown (Lin28a/b dKO,
iLet-7g). We found that conditional ablation of Lin28a/b genes (Fig.
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6H) or let-7g overexpression in neonatal mice (SI Appendix, Fig. S4
A–C) reduced cochlear m-TOR activity (p-Akt and or p-S6 pro-
tein), whereas LIN28B overexpression increased it (SI Appen-
dix, Fig. S5 A and B).
Consistent with these in vivo findings, p-Akt, p-S6 and or

p-4E-BP1 protein levels were 1.5-fold to twofold lower in lysates
of P2 LIN28A/B deficient organoids (Lin28a/b dKO, iLet-7g)
than control organoids (Fig. 6 K and L and SI Appendix, Fig. S4

F and G). Furthermore, the percentage of p-S6+ cells in P2
LIN28A/B deficient organoids (Lin28a/b dKO, iLet-7g) was
two- to threefold lower than in control organoids (Fig. 6 I and J
and SI Appendix, Fig. S4 D and E). Conversely, the levels of
p-Akt and p-S6 proteins were more than 1.7-fold higher in lysates
of P5 LIN28B overexpressing organoids compared to control
organoid lysates (SI Appendix, Fig. S5 C and D). Moreover, we
found that P5 LIN28B overexpression increased the percentage
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of p-S6+ cells within organoids by more than twofold (SI Ap-
pendix, Fig. S5 E and F). Costaining with SOX2 revealed that
the majority of p-S6+ cells in P5 LIN28B overexpressing orga-
noids expressed SOX2 at a low level (SI Appendix, Fig. S5G,
SOX2low, p-S6high, red dots).
Next, we determined whether the expansion of supporting

cells/prosensory cells requires mTOR signaling. To block mTOR
signaling we used the mTORC1 complex inhibitor rapamycin
(reviewed in ref. 63). Treatment with 50 μM of rapamycin has
been reported to induce hair cell death in rat cochlear explants
(64). Pilot experiments revealed that rapamycin at 4 ng/mL
(4.4 nM) effectively blocked mTOR activity (SI Appendix, Fig. S6
A and B), and attenuated the growth of P2 wild-type cochlear
organoids (SI Appendix, Fig. S6 C–E), without increasing cell
death within these organoids (SI Appendix, Fig. S6 F and G). In
contrast, 50 ng/mL (56 nM) rapamycin did induce cell death in
organoid culture (SI Appendix, Fig. S6H). Furthermore, we
found that the presence of 4 ng/mL of rapamycin reversed the
LIN28B-mediated increase in organoid forming efficiency and
organoid growth in P5 organoid culture (Fig. 7 A–C). Next, we
investigated whether mTORC1 activity is required for the for-
mation of hair cells in LIN28B overexpressing organoids. To
avoid the negative effects of rapamycin on organoid growth, we
added rapamycin or vehicle control (DMSO) to LIN28B over-
expressing organoids just prior to the first formation of Atoh1-
nGFP+ cells at day 10 of expansion. The initial induction of Atoh1-
nGFP+ cells within organoids occurred in rapamycin-treated
cultures at a similar rate than in DMSO-treated cultures (Fig. 7 D

and E). However, LIN28B overexpressing organoids treated with
rapamycin contained 3.5-fold fewer Atoh1-nGFP+ MYO7A+ hair
cells and expressed hair cell-specific genes (Myo7a, Pou4f3) at a
twofold lower level than LIN28B overexpressing organoids treated
with DMSO (Fig. 7 F–H). To address whether mTOR signaling
plays a role in the initial induction of Atoh1, we modified our
experimental approach and pretreated the culture media with
rapamycin 1 d prior to the induction of LIN28B overexpression
at day 8 of expansion (SI Appendix, Fig. S7A). Using this modified
experimental approach, we found that rapamycin treatment signifi-
cantly reduced the number of Atoh1-nGFP+ organoids produced in
response to LIN28B overexpression (SI Appendix, Fig. S7 B and C).
Next, we analyzed whether elevated LIN28B-mTOR levels

would promote the production of new hair cells in stage P5 co-
chlear explants. To ensure robust LIN28B transgene expression,
we administered dox in vivo starting at embryonic day 17.5
(E17.5) and provided dox throughout the duration of the ex-
periment. At plating, control and LIN28B overexpressing co-
chlear explants received rapamycin or DMSO (vehicle control).
The next day, the Notch inhibitor LY411575 and Wnt-activator
(GSK3-β inhibitor) CHIR99021 was added to the culture media
and 3 d later explants were harvested and analyzed for newly
generated hair cells (Atoh1-nGFP+ SOX2+ MYO7A+) (Fig. 8A).
Inhibition of Notch signaling in combination with Wnt-activation
is highly effective in stimulating hair cell production in the
neonatal cochlea in vitro and in vivo (22, 65). However, the ef-
fectiveness of such combined treatment has not yet been tested
at later stages. We found that combined Notch inhibition and
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stage P5 Atoh1-nGFP;iLIN28B transgenic mice and Atoh1-nGFP transgenic control littermates and maintained as outlined in Fig. 2A. (A–C) Rapamycin at-
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Wnt activation yielded on average 10 new hair cells per 100 μm
in stage P5 control cochlear explants, a modest but significant
improvement over the previously reported failure to produce
hair cells with Notch inhibitor treatment alone (26) (control and
DMSO in Fig. 8 B and C). As anticipated, LIN28B overexpression
significantly increased the production of new hair cells in P5 co-
chlear explants, yielding on average 25 new hair cells per 100 μm, a
more than twofold improvement compared to control cochlear
explants (iLIN28B and DMSO in Fig. 8 B and C). The increase in
hair cell formation in response to LIN28B overexpression was not
due to an increase in cell proliferation as new hair cells were
produced by nonmitotic mechanisms (EdU in Fig. 8B). The ability
to produce new hair cells was completely abolished when control
cochlear explants were cultured in the presence of rapamycin
(control and rapamycin in Fig. 8 B and C). Furthermore, we found
that rapamycin treatment reversed the gain in hair cell production
observed in response to LIN28B overexpression (iLIN28B and
rapamycin in Fig. 8 B and C).

Discussion
The developing embryo and neonate show a remarkable capacity
for regeneration in response to injury; however, only few tissues
retain such regenerative plasticity into adulthood (reviewed in
ref. 66). Likewise, the capacity of murine cochlear supporting
cells to produce hair cells sharply declines during the first postnatal
week (27, 49) and little to no hair cell production/regeneration is
observed within the cochlea of adult mice (14, 17, 67). The reason
for the decline in supporting cell plasticity is unknown.
Here, we provide evidence that the decline in supporting cell

plasticity during cochlear maturation is, at least in part, the result
of diminishing LIN28B-mTORC1 activity. We show that in vivo,
coinciding with the abrupt decline in supporting cells plasticity,
cochlear LIN28B protein levels and Akt-mTORC1 kinase ac-
tivity sharply decline. We establish a regulatory link between
cochlear Akt-mTORC1 activity and LIN28B/let-7 expression
levels in vitro and in vivo, with Akt-mTORC1 kinase activity

being augmented by LIN28B overexpression but suppressed by
loss of LIN28A/B or overexpression of let-7g. Using cochlear
organoid and explant culture systems, we found that diminished
LIN28B-mTORC1 activity due to let-7g overexpression, or tar-
geted deletion of Lin28a/b, accelerated the developmental de-
cline in supporting cell plasticity. Conversely, we found that
LIN28B overexpression halted the decline and enabled supporting
cells that were undergoing maturation to activate a progenitor-like
state and to produce new hair cells in response to regenerative
cues. Finally, using the mTORC1 inhibitor rapamycin, we un-
covered that LIN28B-induced supporting cell reprogramming
required mTORC1-dependent signaling.
Rapamycin-sensitive mTOR signaling supports a wide range

of regenerative processes, including the regrowth of axons,
injury-induced cell proliferation, and stem cell-based muscle
regeneration (68–71). Activation of mTORC1 kinase activity in
response to injury or other environmental stimuli increases the
cell’s synthesis of proteins and other macromolecules and ramps
up mitochondrial ATP production, which is critical for the cell’s
ability to divide and differentiate (72). Thus, rapamycin-sensitive
mTOR signaling may enhance the regenerative capacity of
supporting cells by ensuring that supporting cells have the energy
and building blocks needed for mitotic or nonmitotic hair cell
generation. Indeed, LIN28A/B induced and mTORC1-dependent
metabolic reprogramming has been reported in the context of
organismal growth and glucose metabolism (39, 55). Moreover,
mTOR signaling is known to cross-talk and cross-regulate growth-
related signaling pathways, including Wnt/β-catenin signaling
(73; reviewed in ref. 74). Future studies will examine both
LIN28B-dependent and -independent roles of mTOR signaling
in supporting cell plasticity and address how mTOR signaling
may alter the strength and transcriptional output of Wnt/β-catenin
signaling in the context of hair cell regeneration.
How does LIN28B promote mTORC1 activity in cochlear

epithelial cells? Several members of the mTOR pathway and the
upstream IGF2/IGF1R and amino acid-sensing pathways are
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direct let-7 targets (39, 75, 76), suggesting that LIN28B enhances
mTOR activity, at least in part, by relieving let-7–mediated re-
pression. In addition, LIN28A/B have been shown to promote
IGF2/IGF1R–mTOR signaling through increasing the mRNA
translation of key member genes (39, 77, 78). It needs to be
noted that treatment with the mTORC1 inhibitor rapamycin
attenuated, but did not completely block supporting cell prolif-
eration and hair cell production, suggesting that LIN28B pro-
motes these processes through additional, mTORC1-independent
mechanisms. LIN28A/B and let-7 miRNAs regulate self-renewal
and regeneration via translational activation/repression of pro-
growth genes, such as Igf2bp1 (79), Trim71 (80), and Hmga2 (81),
as well via the direct targeting of genes critical for oxidative
phosphorylation (82) and lipid synthesis (83). Indeed, we found
LIN28B activated, whereas let-7g limited, Hmga2 expression in
cochlear organoids. In addition, we found that LIN28B over-
expression led to a transient down-regulation in Sox2 mRNA ex-
pression at the peak of organoid expansion. Recent studies found
that SOX2 positively regulates p27/Kip1 transcription and reduc-
tion in Sox2 expression primes cochlear supporting cells for pro-
liferation and hair cell regeneration (48, 67). There is precedent
for LIN28A/B limiting Sox2 expression. A recent report found that
LIN28A overexpression during somitogenesis inhibits Sox2 ex-
pression, causing a promesodermal phenotype (84). Furthermore,
the transcription factor ARID3A, the expression of which is
positively regulated by LIN28A/B and negatively regulated by let-7
miRNAs, has been shown to inhibit Sox2 expression in murine
embryonic stem cells (85, 86). Future studies are warranted to ad-
dress LIN28B’s role in Sox2 expression during hair cell regeneration.
It is important to note that reactivation of LIN28B is, by itself,

not sufficient to stimulate supporting cell proliferation and is not
sufficient to induce the conversion of supporting cells into hair
cell. Additional signals and factors, such as Wnt and Notch sig-
naling, need to be manipulated to stimulate cochlear supporting
cell proliferation and their conversion into hair cells. Further-
more, it needs to be emphasized that our study was conducted
in vitro and was limited to immature, early postnatal stages.
While recent studies showed promise in regenerating vestibular
hair cells in adult mice (9, 87), the regeneration of cochlear hair
cells in adult mice has proven thus far an impossible task (67;
reviewed in ref. 88).
Similar to mammals, auditory supporting cells in birds are

highly specialized postmitotic cells. The lack of progenitor-like
features has led to the yet to be proven hypothesis that hair cell
loss in birds triggers a partial de-differentiation of supporting
cells, in which supporting cells revert to a transitional progenitor-
like state (reviewed in ref. 89). Here, we provide evidence that
supporting cells do undergo a process of de-differentiation in
organoid culture and show that supporting cell de-differentiation
is regulated by the LIN28B/let-7 axis. We found that overexpression
of let-7g in cochlear organoids repressed the down-regulation of
supporting cell-specific genes (e.g., S100a1) and limited the up-
regulation of prosensory-specific genes (e.g., Hmga2), whereas
LIN28B reactivation enhanced it. Such positive role of LIN28B
in supporting cell de-differentiation is reminiscent of the role of
LIN28A in Müller glia de-differentiation. In zebrafish, Lin28a
reactivation is essential for the de-differentiation of Müller glia
into multipotent retinal progenitors in response to injury (90,
91). The importance of LIN28-mediated de-differentiation in the
context of retinal regeneration is further highlighted by the re-
cent finding that LIN28A reactivation induces Müller glia de-
differentiation and proliferation in adult mice (92, 93).
We anticipate that the findings presented here will lead to a

similar evaluation of the role of LIN28A/B in injury-induced hair
cell regeneration in birds and fish. Furthermore, an evaluation of
the role of LIN28A/B in vestibular hair cell regeneration may
address why vestibular supporting cells have a higher regenerative
capacity than their cochlear counterparts (94). Most importantly,

our observation that reactivation of LIN28B facilitates the reprog-
ramming of supporting cells into “progenitor-like” cells may inform
future therapeutic strategies that combine LIN28B-mediated
reprograming with Wnt-activation and/or Notch inhibition to
regenerate lost cochlear hair cells in adult mammals.

Methods
Mouse Breeding and Genotyping. All experiments and procedures were ap-
proved by the Johns Hopkins University Institutional Animal Care and Use
Committees protocol, and all experiments and procedures adhered to Na-
tional Institutes of Health-approved standards. The Atoh1-nGFP transgenic
(tg) (MGI:3703598) mice were obtained from Jane Johnson, University of
Texas Southwestern Medical Center, Dallas, TX (37). The p27-GFP tg mice
(MGI:3774555) were obtained from Neil Segil, University of Southern California,
Los Angeles, CA (45). The Col1a-TRE-LIN28B (MGI:5294612), Col1a-TRE-let-7S21L
(MGI:5294613), and Lin28afl/fl (MGI:5294611), and Lin28bfl/fl (MG:5519037) mice
were obtained from George Q. Daley, Children’s Hospital, Boston, MA (39, 55).
UBC-CreERT2 tg (MGI:3707333; stock no. 007001) (56) and R26-M2-rtTA
(MGI:3798943; stock no. 006965) (40) mice were purchased from the Jackson
Laboratories. Mice were genotyped by PCR and genotyping primers are listed
in SI Appendix, Table S1. Mice of both sexes were used in this study. Embryonic
development was considered as E0.5 on the day a mating plug was observed.
To induce LIN28B or let-7g transgene expression, dox was delivered to time-
mated females via ad libitum access to feed containing 2 g of dox per kilogram
feed (Bioserv, no. F3893).

Organoid Culture. Cochleae from early P2 and P5 mice were harvested and
microdissected in HBSS (Corning, no. 21-023-CV). Enzymatic digest with
dispase (1 mg/mL; ThermoFisher, no. 17105041) and collagenase (1 mg/mL;
Worthington, no. LS004214) was used to isolate cochlear epithelia, as pre-
viously described (95). To obtain a single cell suspension, cochlear epithelia
were incubated in TrypLE solution (ThermoFisher, no. 2604013), triturated,
and filtered through a 35-μm filter (BD, no. 352235). An aliquot of cells was
counted to establish the total number of cells isolated per animal. Equal
numbers of cells were resuspended in a 1:1 mix of Matrigel (Corning, no.
356231) and expansion medium and plated into prewarmed four-well plates
(CELLTREAT, no. 229103). For stage P2, eight organoid cultures and for stage
P5, five organoid cultures, placed in individual wells, were established per
animal. The expansion medium was prepared with DMEM/F12 (Corning, no.
10-092-CV), N2 supplement (1×; ThermoFisher, no.17502048), B-27 supple-
ment (1×; ThermoFisher, no.12587010), EGF (50 ng/mL; Sigma-Aldrich, no.
SRP3196), FGF2 (50 ng/mL; ThermoFisher, no. PHG0264), CHIR99021 (3 μM;
Sigma-Aldrich, no. SML1046), VPA (1 mM; Sigma-Aldrich, no. P4543), 616452
(2 μM; Sigma-Aldrich, no. 446859-33-2), and penicillin (100 U/mL; Sigma-
Aldrich, no. P3032). Dox hyclate (10 μg/mL; Sigma-Aldrich, no. D9891), EdU
(3 μM, ThermoFisher, no. A10044) or TM (20 ng/mL; Sigma-Aldrich, no.
H7904) was added to expansion media as indicated. To induce differentia-
tion, expansion media was replaced by a differentiation media composed of
DMEM/F12, N2 (1×), B27 (1×), CHIR99021 (3 μM), and LY411575 (5 μM;
Sigma-Aldrich, no. SML0506). To block mTORC1 activity, organoids received
rapamycin (4 ng/mL; Sigma-Aldrich, no. R0395) or vehicle control DMSO.
Culture media was changed every other day.

Quantification of Organoid Forming Efficiency, Organoid Diameter, and GFP
Reporter Expression. Brightfield and fluorescent images of organoid cul-
tures were captured with an Axiovert 200 microscope using 5× and 10×
objectives (Carl Zeiss Microscopy). To calculate organoid forming efficiency,
the total number of organoids per culture was counted manually and values
were normalized to the total number of cells plated. To calculate organoid
size, the diameter of organoids in two randomly chosen fields was measured
per culture using ImageJ (https://imagej.nih.gov/ij/) and the average value
per animal was reported. To establish the percentage of GFP+ organoids per
culture, the total number of organoids and the number of GFP+ organoids
was counted manually. For each genotype and treatment, three indepen-
dent organoid cultures were established and analyzed. At a minimum, two
independent experiments were conducted and analyzed.

Explant Culture. Cochlear tissue was collected and microdissected in HBBS.
Cochlear sensory epithelia with attached spiral ganglion were placed onto
SPI-Pore membrane filters (Structure Probe, no. E1013-MB) and cultured in
DMEM-F12, EGF (5 ng/mL), penicillin (100 U/mL), and N2 Supplement (1×).
Cultures were maintained in a 5% CO2/20% O2 humidified incubator. To
induce let-7g or LIN28B transgene expression, timed pregnant dams received
dox-containing feed starting at E17.5/E18.5 until pups were harvested. To

22234 | www.pnas.org/cgi/doi/10.1073/pnas.2000417117 Li and Doetzlhofer

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000417117/-/DCSupplemental
https://imagej.nih.gov/ij/
https://www.pnas.org/cgi/doi/10.1073/pnas.2000417117


maintain let-7g or LIN28B transgene expression in vitro, the culture media
contained dox hyclate. To induce hair cell loss, control and let-7g over-
expressing cochlear explants received gentamicin sulfate (100 μg/mL;
Sigma-Aldrich, no. G1272) at plating. After 20 h the gentamicin-containing
media was replaced with culture media containing LY411575 (5 μM). To
block mTORC1 activity, control and LIN28B overexpressing cochlear explants
received rapamycin (4 ng/mL) or vehicle control DMSO at plating. CHIR99021
(3 μM), LY411575 (5 μM) and EdU (3 μM) were added the following day (day
1). For Lin28a/b dKO experiments, TM or vehicle control DMSO was added to
the culture medium at plating. LY411575 (5 μM) or vehicle control DMSO
were added the next day. In all experiments, the culture media were ex-
changed every other day, and cultures were maintained for a total of 4 d.

Immunohistochemistry. Organoids/explants were fixed with 4% (vol/vol)
paraformaldehyde in PBS (ElectronMicroscopy Sciences, no. 15713) for 30min
at room temperature. To permeabilize cells and block unspecific antibody
binding, organoids/explants were incubated with 0.5% (vol/vol) TritonX-100/
10% (vol/vol) FBS in 1× PBS for 30 min. Antibody labeling was performed
according to manufacturer’s recommendations. Used antibodies are listed in
SI Appendix, Table 2. Cell nuclei were stained using Hoechst 33258 solution
(Sigma-Aldrich, no. 94403).

Cell Proliferation. EdU was added to culture media at a final concentration of
3 μM. EdU incorporation was detected using Click-iT Edu Alexa Fluor 555
imaging Kit (ThermoFisher, no. C10338) following the manufacturer’s
specifications.

Cell Death. TUNEL reactions were used to detect dying cells. PFA-fixed and
permeabilized organoids were processed using the In Situ Cell Death De-
tection Kit, Fluorescein (Roche, no.11684795910) according to the manu-
facturer’s specifications. As positive control, organoids were preincubate
10 min at room temperature in DNase I (3000 U/mL, in 50 mM Tris·HCl, pH
7.4, 1 mg/mL BSA). As negative control, organoids were processed without a
reaction mixture that lacked terminal deoxynucleotidyl transferase.

Cell Counts. High-power confocal single-plane and z-stack images of fluo-
rescently immunolabeled organoids and explants were taken with 40× ob-
jective using LSM 700 confocal microscope (Zeiss Microscopy). To establish
the percentage of cells within an organoid that expressed an epitope of
interest, two to three images containing a minimum of three organoids
were analyzed and the average value per animal was reported. To establish
the number of hair cells within cochlear explants, confocal z-stacks spanning
the supporting cell and hair cell layer were exported into Photoshop CS6
(Adobe). Existing (MYO7A+) and newly formed hair cells (MYO7A+ SOX2+)
were manually counted. The length of the analyzed cochlear segment was

measured using ImageJ. At a minimum, two independent experiments were
conducted in which at a minimum three cochlear explants/organoid cultures
per genotype and treatment were established and analyzed.

RNA Extraction and qRT-PCR. Total RNA was extracted using the miRNeasy
Micro Kit (Qiagen, no. 217084). The mRNAwas reverse-transcribed into cDNA
using the iScript cDNA synthesis kit (Bio-Rad, no. 1708889). SYBR Green-based
qPCRwas performed by using Fast SYBR GreenMaster Mix reagent (ThermoFisher,
no. 4385612) and gene-specific primers. qPCRs were carried out in triplicate
using a CFX Real-Time PCR System (Bio-Rad). Rpl19 was used as reference
gene. Relative gene expression was calculated using the ΔΔCT method (96).
qPCR primers are listed in SI Appendix, Table S3.

Immunoblotting. Cochlear epithelia/organoids were lysed with RIPA buffer
(Sigma-Aldrich, no. R0278) supplementedwith protease inhibitor (Sigma-Aldrich,
no.11697498001), phosphatase Inhibitor mixture 2 (Sigma-Aldrich, no. P5726)
and phosphatase inhibitor mixture 3 (Sigma-Aldrich, no. P0044). Equal amounts
of protein lysate were resolved on NuPAGE 4 to 12% Bis-Tris gels (ThermoFisher,
no. NP0321PK2) and transferred to a PVDF membrane (Bio-Rad) by electro-
phoresis. Membranes were blocked with 5% (w/vol) nonfat dry milk in TBST and
immunoblotted with primary antibodies and HRP-conjugated secondary anti-
bodies (Jackson Immuno Research) according to the manufacturer’s instructions.
Primary antibodies are listed in SI Appendix, Table S4. This was followed by
washes in TBST and incubation in SuperSignalWest Pico PLUS Chemiluminescent
Substrate (ThermoFisher, no.34580). The resulting chemiluminescence was cap-
tured using X-ray films. To quantify protein levels, X-ray films were scanned,
digital images converted to gray scale and the relative density (intensity) of
bands was analyzed using the Gel Analysis plug-in ImageJ.

Statistical Analysis. The sample size (n) represents the number of animals
analyzed per group. Animals (biological replicates) were allocated into
control or experimental groups based on genotype and/or type of treat-
ment. To avoid bias, masking was used during data analysis. Data were
analyzed using Graphpad Prism 8.0 (Graphpad Software). Relevant infor-
mation for each experiment including sample size, statistical tests and
reported P values are reported in each figure.

Data Availability. All study data are included in the article and SI Appendix.
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