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By March 2020, COVID-19 led to thousands of deaths and disrup-
ted economic activity worldwide. As a result of narrow case def-
initions and limited capacity for testing, the number of unobserved
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fections during its initial invasion of the United States remains un-
known. We developed an approach for estimating the number of
unobserved infections based on data that are commonly available
shortly after the emergence of a new infectious disease. The logic of
our approach is, in essence, that there are bounds on the amount of
exponential growth of new infections that can occur during the first
few weeks after imported cases start appearing. Applying that logic
to data on imported cases and local deaths in the United States
through 12 March, we estimated that 108,689 (95% posterior pre-
dictive interval [95% PPI]: 1,023 to 14,182,310) infections occurred in
the United States by this date. By comparing the model’s predictions
of symptomatic infections with local cases reported over time, we
obtained daily estimates of the proportion of symptomatic infec-
tions detected by surveillance. This revealed that detection of symp-
tomatic infections decreased throughout February as exponential
growth of infections outpaced increases in testing. Between 24 Feb-
ruary and 12 March, we estimated an increase in detection of symp-
tomatic infections, which was strongly correlated (median: 0.98;
95% PPI: 0.66 to 0.98) with increases in testing. These results sug-
gest that testing was a major limiting factor in assessing the extent
of SARS-CoV-2 transmission during its initial invasion of the
United States.

coronavirus | emerging infectious disease | mathematical modeling | public
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) is a newly emerged coronavirus that is causing a global

pandemic (1). The unprecedented spread of SARS-CoV-2 owes
to its high transmissibility (2), presymptomatic transmission (3),
and transmission by asymptomatic infections (4). An appreciable
fraction of infections is asymptomatic (5), and many others result
in mild symptoms that could be mistaken for other respiratory
illnesses (6). These factors point to a potentially large reservoir
of unobserved infections (7), especially in settings where capacity
to test for SARS-CoV-2 has been limited (8). The United States
is one such country in which limited testing was a major concern,
particularly as imported cases and then local cases increased over
time in early 2020 (9). Until 27 February, testing criteria in the
United States were limited to close contacts of confirmed cases
and those with recent travel to China (9). This means that any
local infections resulting from an unobserved imported infection
would have gone unnoticed. Community transmission occurred
without notice while testing was still being rolled out (10, 11),
albeit to an unknown extent.
Our goal was to estimate the extent of community transmis-

sion of SARS-CoV-2 in the United States that occurred prior to
its widespread recognition. Unlike other countries where testing
and containment measures were pursued aggressively (12, 13),
rollout of testing in the United States was slow (9), and widespread
social-distancing measures did not go into effect until several

weeks after the first reported case (14, 15). Understanding the
extent of community transmission has major implications for the
effectiveness of different options for control (16) and for antici-
pating the trajectory and impact of the pandemic (17).

Results
To estimate the extent of community transmission of SARS-
CoV-2 in the United States, we used a stochastic simulation
model that combined importation and local transmission processes.
We informed model parameters with estimates from epidemio-
logical studies of those parameters, where available (Table 1), and
estimated values of two unknown parameters by fitting our model
to data on local reported deaths in the United States (18). To
model importation, we simulated observed and unobserved im-
ported infections based on the number and timing of imported
cases reported in the United States (19) and assumptions about the
proportion of different infection outcomes (5, 20). To model local
transmission, we used a branching process model informed by es-
timates of the reproduction number from a meta-analysis (21) and
of the serial interval from a study in China (22). To relate our
model’s predictions to US data on reported cases and deaths, we
also simulated the timing of symptom onset (22), case reporting
(18), and death (23) for simulated infections for which those
outcomes occurred.
By 12 March, there were a total of 1,514 reported cases and

39 reported deaths that resulted from local transmission of
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SARS-CoV-2 in the United States. We used that information to
estimate the probability of detecting imported symptomatic in-
fections, ρtravel, by seeding our model with imported infections,
simulating local transmission, and comparing simulated and
reported local deaths. In our baseline analysis, this resulted in a
median estimate of ρtravel = 0.45 (95% posterior predictive in-
terval [95% PPI]: 0.04 to 0.97). This wide uncertainty reflects
several factors, including that the simulations used to estimate
ρtravel incorporated uncertainty in eight model parameters in-
formed by other studies. Along with ρtravel, the one other pa-
rameter that we estimated (relative infectiousness of asymptomatic
infections, α) also displayed wide uncertainty (median: 0.55; 95%
PPI: 0.04 to 0.98) and was positively correlated (Pearson’s corre-
lation: 0.40) with ρtravel (SI Appendix, Fig. S4). The fact that cali-
bration of our model yielded such broad estimates of ρtravel and α
was neither surprising, given that these estimates were informed by
only a single data point (39 cumulative deaths) nor concerning
given that their estimation was secondary to our primary objective
of estimating unobserved infections.
Simulating from 1 January, we obtained 108,689 (95% PPI:

1,023 to 14,182,310) local infections cumulatively in the United
States by 12 March (Fig. 1A). Due to the exponential growth
posited by our model, 17,122 (95% PPI: 120 to 3,366,705) local
infections were predicted to have occurred on 12 March alone
(Fig. 1B). This wide uncertainty reflects a combination of sto-
chasticity inherent to early epidemic growth, particularly for a
pathogen with heterogeneous transmission (24), and uncertainty
about model parameters. Estimates of cumulative local infections
in our sensitivity analysis were reasonably robust to most alter-
native parameterizations (SI Appendix, Supplementary Text and
Fig. S5), with the exception of a scenario in which a long serial
interval ruled out the possibility of more than a million infections.
Overall, this suggests that uncertainty in our results was driven
primarily by parameter uncertainty already accounted for in our
baseline analysis. With values ranging from 1.6 to 3.9 in its 95%
uncertainty interval, uncertainty in R seemed to account for much

of the uncertainty in our estimate of cumulative local infections
(SI Appendix, Fig. S6).
Had we performed a simple extrapolation of reported cases

and deaths based on ρtravel, our estimate of cumulative local in-
fections by 12 March would have been only 6,050 (95% PPI: 2,752
to 19,986). This suggests that detection of local infections was less
sensitive than detection of imported infections. To estimate the
probability of detecting local symptomatic infections, ρlocal, we
compared our model’s predictions of symptomatic infections with

Table 1. Model parameters

Parameter Baseline (alternatives) Distribution Reference/reason

Reproduction number, R [95% UI] 2.7 [1.6, 3.9] Negative
binomial (with k)

Davies et al. (21)

Dispersion, k [95% UI] 0.58 [0.35, 1.18] (0.1 [0.04, 0.2], 1000) Negative
binomial (with R)

Bi et al. (24) [Endo et al. (25),
Poisson like]

Asymptomatic proportion, σ [95% UI] 0.432 [0.322, 0.547] (0.178 [0.155,
0.202], 0.74 [0.70, 0.78])

Beta Lavezzo et al. (20) [Mizumoto et al.
(5), Emery et al. (26)]

CFR 0.0138 [0.0123, 0.0153] (0.0086 [0.0072,
0.0103], 0.0565 [0.0550, 0.0581])

Beta Verity et al. (23) [Deng et al. (27)
outside Hubei, Deng et al. (27)
overall]

Generation interval [meanlog, sdlog] [1.51, 0.493] ([1.39, 0.568], [1.92, 0.432]) Log normal Zhang et al. (22) [Nishiura et al. (28), Li
et al. (29)]

Incubation period [shape, scale] (2.03 [1.42, 2.64], 5.84 [4.74, 6.94])
([1.24, 5.38], [2.45, 6.26])

Weibull Zhang et al. (22) [Guan et al. (30),
Lauer et al. (31)]

Delay in reporting following
symptom onset [shape, rate]

[3.43, 0.572] ([1.72, 0.572], [5.15, 0.572]) Gamma MIDAS Network (19) (50% lower or
higher shape parameter)

Period from symptom onset to
death [meanlog, sdlog]

[2.81, 0.370] ([2.19, 0.501], [2.88, 0.472]) Log normal Verity et al. (23) [Mizumoto et al. (5)
time from hospitalization to death
as plausible lower bound, Wu et al.
(32)]

Proportions of symptomatic imported
infections detected, ρtravel

0.387 [0.154–0.870] Calibrated This is the calibrated estimate in the
baseline analysis; it is recalibrated in
each sensitivity analysis scenario

Relative infectiousness of
asymptomatic infections, α

0.602 [0.0460–0.981] Calibrated This is the calibrated estimate in the
baseline analysis; it is recalibrated in
each sensitivity analysis scenario

All time periods are given in days; 95% UI refers to the 95% uncertainty interval.

Cumulative infections (log10)

P
ro

po
rti

on
 o

f s
im

ul
at

io
ns

0.00

0.05

0.10

0.15

0.20

0.25

0.30

102 104 106 108

A

1e+00

1e+02

1e+04

1e+06

Date

In
fe

ct
io

ns

1 Feb 15 Feb 1 Mar

B

Fig. 1. Local infections of SARS-CoV-2 in the United States by 12 March.
These results derive from our baseline analysis and show (A) cumulative and
(B) daily incidence of local infections. In A, the red line shows the cumulative
number of reported cases by 12 March (1,514), indicating that the cumula-
tive number of infections exceeded the cumulative number of reported
cases in 95.7% of simulations. The model’s predictions of cumulative infec-
tions, which were informed by data on cumulative deaths (33) and param-
eter estimates from the literature (Table 1), exceeded 10,000 in 82.5% of
simulations and 100,000 in 51.3% of simulations. In B, the model’s prediction
of daily incidence of infection was 100/d or less in early February but grew
exponentially to thousands per day by 12 March. The black line shows the
median, dark gray shading shows the interquartile range, and light gray
shading shows the 95% PPI.
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local case reports on a daily basis (Fig. 2A). Over the course of
February, daily estimates of ρlocal decreased from our uniform
prior down to a low of 0.015 (95% PPI: 0.001 to 0.465) on 24
February, as increases in simulated local infections outpaced newly
reported local cases (Fig. 2B). Our results indicate that detection of
symptomatic infections was below 10% for around a month (me-
dian: 31 d; 95% PPI: 0 to 42 d) when containment still might have
been feasible. As testing increased in March (Fig. 2B, red), so too
did reported cases (Fig. 2C, red) and daily estimates of ρlocal
(Fig. 2B, black). By 12 March, we estimated ρlocal to be 0.176 (95%
PPI: 0.002 to 0.999) (Fig. 2D). Uncertainty in the degree to which
ρlocal rose in early March was driven to a great extent by uncer-
tainty in R, with lower values of R associated with higher values of
ρlocal by 12 March (SI Appendix, Fig. S6). Despite this uncertainty
due to R, the trajectory of ρlocal over time was generally robust to
alternative parameter scenarios in our sensitivity analysis (SI Ap-
pendix, Fig. S7). Furthermore, between 24 February (low estimate
of ρlocal) and 12 March, our daily estimates of ρlocal in all replicates
in our baseline analysis were well correlated with daily numbers of
tests administered (Pearson’s correlation, median: 0.98; 95% PPI:
0.66 to 0.98).
The fit of our model to cumulative deaths was assessed by its

predictions of local deaths by 12 March (median: 35; 95% PPI: 1
to 983), which were consistent with the 39 reported in terms of
the central tendency of the model’s predictions (Fig. 3). As with
other aspects of our analysis, there was wide uncertainty in our
predictions of cumulative deaths, due to stochasticity and pa-
rameter uncertainty. Because our model was fit to cumulative

deaths only, it was not informed by any information about the
timing of those deaths, other than that they occurred by 12 March.
Even so, 95.5% of the deaths predicted by our model occurred
within the same range of days over which local deaths were
reported (29 February to 12 March). This indicates that, collec-
tively, our model’s assumptions about the timing of importation,
local transmission, and delay between exposure and death are
plausible. Because deaths caused by COVID-19 often occur sev-
eral weeks after exposure (34), our baseline model predicted a
median of 827 (95% PPI: 6 to 115,707) additional deaths after 12
March as a result of infections that occurred by then. Relative to
deaths reported by then, this represents an increase by a factor of
21 (95% PPI: 0.18 to 2,965). This result was generally robust in our
sensitivity analysis, except that extremely high values of this ratio
were ruled out if the serial interval was long or the time to death
was short (SI Appendix, Fig. S8).

Discussion
Our approach used a mathematical model to leverage available
data to answer a question of significant interest to public health
during the initial phase of the COVID-19 pandemic in the United
States. The only requirements for applying this approach are basic
epidemiological data and estimates of standard epidemiological
parameters, both of which are collected routinely during the ini-
tial weeks of incipient epidemics. Although other approaches—
namely, serological surveys—could have provided more direct
answers to the question of how many unobserved infections there
were in the weeks following the arrival of SARS-CoV-2 in the
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Fig. 2. Comparison of symptomatic infections and reported cases. (A) Local symptomatic infections predicted under the baseline analysis (black and gray)
increased exponentially and at much greater magnitude than reported cases (red). (B) To reconcile these differences, we estimated a time-varying probability
of detecting symptomatic infections, ρlocal, which yielded model predictions of reported cases (black and gray) consistent with daily reported cases (red). (C)
An initial decline in ρlocal (black and gray) resulted from exponential growth of symptomatic infections (A) outpacing relatively constant testing (red) in early
February. A later increase in ρlocal is consistent with a sharp increase in testing through late February and early March. (D) By 12 March, most symptomatic
infections were still likely going undetected, despite increases in testing. Our analysis resulted in some estimates of ρlocal approaching one on 12 March, due to
a portion of simulations with fewer symptomatic infections than reported cases that day. This was a consequence of the model being informed by data on
cumulative deaths only and not reported cases. Black lines show the median, dark gray shading shows the interquartile range, and light gray shading shows
the 95% PPI.
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United States, serological assays were only beginning to be de-
veloped at that time (35). Even now that results from serological
surveys are beginning to emerge (36), they still do not address the
extent of unobserved infections during the specific time frame of
our analysis, are not representative of the United States as a
whole, and can be sensitive to even small inaccuracies in assay
performance (37, 38). Relative to other approaches, our approach
offers the ability to quickly obtain provisional estimates of the
number of unobserved infections early in an epidemic, when there
still might be time to act on that information with testing and case
isolation.
One prominent feature of our results is uncertainty. Although

more precise estimates would be preferable, it is important to
recognize the inherently uncertain nature of the problem we
sought to address. Within the first few months of recognizing a
newly emerged pathogen, there is a paucity of data to inform
models, considerable uncertainty about parameters related to
transmission and disease manifestation, and major unknowns
about basic aspects of the pathogen’s biology (39, 40). Our ap-
proach offers a way to synthesize multiple aspects of uncertainty
from disparate studies to address an important question to which
there are no clear answers from more direct, empirical ap-
proaches. Some of our results offer more clarity than others. On
the one hand, we were unable to resolve much of the uncertainty
in two parameters that we estimated in the course of our anal-
ysis: ρtravel and α. This was a result of the fact that many differ-
ent combinations of those parameters were similarly capable of
explaining the 39 deaths by 12 March, especially given wide
uncertainty on the other parameters that we did not estimate. On
the other hand, our results place a high probability (0.825) on the
number of local infections in the United States by 12 March being
at least an order of magnitude greater than the number of reported
cases and quite possibly (with a probability of 0.515) two orders of
magnitude or more. Additional precision on our estimate of the
number of unobserved infections would not change our overall
conclusion that SARS-CoV-2 infections in the United States were
severely underreported prior to declaration of a national emer-
gency on 13 March.
In addition to the uncertainty associated with our results, there

are other limitations of our analysis that should be acknowledged.

First, our branching process model assumes exponential growth,
which could be affected by social distancing (41) or the buildup of
immunity (42). Neither of those factors seem to have had much
influence on local transmission of SARS-CoV-2 in the United
States before 13 March, however (43). Second, our parameter
assumptions were based primarily on analyses of data collected
outside the United States. Similar information has proven useful
in past public health emergencies however, such as Zika and
Ebola (44, 45), and our accounting for uncertainty about R, which
is one of the more likely parameters to vary across contexts, spans
a wide range of possibilities that could apply to the United States
(21). Third, we did not make use of airline data to model impor-
tation (46), which could be used to refine assumptions about un-
observed importations in future applications of our method (47).
Although the limitations of our analysis limit the precision of

our results, we can nonetheless conclude that unobserved SARS-
CoV-2 infections in the United States by 12 March could have
easily numbered in the hundreds of thousands (31.0% of simu-
lations in our baseline analysis) and quite possibly in excess of 1
million (20.3% of simulations). This result, considered together
with extensive presymptomatic and asymptomatic transmission
of SARS-CoV-2 (3, 4), suggests that the United States was well
past the possibility of containment by 12 March. Other modeling
work (16) suggests that the feasibility of containing SARS-CoV-2
is highly sensitive to the number of infections that occur prior to
initiation of containment efforts. Our estimate that fewer than
10% of local symptomatic infections were detected by surveil-
lance for around a month is consistent with estimates from a
serological study (36) and suggests that a crucial opportunity to
limit the impact of SARS-CoV-2 on the United States may have
been missed. Although the number of tests administered in-
creased in March (9), so too did the number of infections and
consequently, the demand for testing.
Coincident with the 13 March declaration of a national emer-

gency (14), social-distancing measures went into effect across the
United States (15). Our estimate of many thousand unobserved
SARS-CoV-2 infections at that time suggests that large-scale
mitigation efforts, rather than reactionary measures (33), were
indeed necessary. Analyses since have indicated that such mea-
sures were effective across a wide range of geographic settings
(48–51). Even so, acting sooner could have prevented even more
cases and deaths (52).

Materials and Methods
We used a stochastic model, including separate importation and local
transmission steps, to represent SARS-CoV-2 transmission in the United States
through 12 March 2020. Model parameters and uncertainty therein were
either specified according to published studies or calibrated to the total
number of deaths reported in the United States through that time period. In
our baseline analysis, we used the calibrated model to estimate the total
number of SARS-CoV-2 infections in the United States through 12 March,
estimate the probability of detecting local symptomatic infections on a daily
basis through 12 March, and project the number of deaths expected to occur
13 March and after based only on infections that occurred through 12
March. In our sensitivity analysis, we explored the sensitivity of results from
the baseline analysis to alternative choices about parameter values and
other assumptions

Data. We obtained data on the number of imported cases and deaths from
line list data compiled by the Models of Infectious Disease Agent Spread
(MIDAS) Network (19). These data informed the number and timing of im-
ported infections predicted by our importation model. We obtained data on
the total number of United States cases and deaths and total number of
cases and deaths globally from time series compiled by the Johns Hopkins
University Center for Systems Science and Engineering (18). These data in-
formed our estimates of the proportion of local infections detected. We also
used these data in an alternative importation scenario in which the timing of
imported infections was sampled proportional to daily global incidence.
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Fig. 3. Daily incidence of deaths over time. Our model’s predictions under
our baseline analysis were consistent with reported deaths through 12
March (dashed line) and indicate that many more deaths should have been
expected after then based solely on infections that occurred by 12 March.
This is due to the relatively prolonged delay between infection and death, as
well as the model’s prediction that most infections that occurred through 12
March happened fairly close to then. Results to the right of the dashed line
do not reflect additional deaths that would result from new infections oc-
curring 13 March or after, which would be expected to add considerably to
the number of deaths in April and May. The black line shows the median,
dark gray shading shows the interquartile range, and light gray shading
shows the 95% PPI.
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Model Description.
Importation. We considered cases associated with international travel in the
MIDAS dataset to be imported. Due to the fact that SARS-CoV-2–positive
individuals who were repatriated from the Diamond Princess cruise ship
were quarantined (53), we removed them from our analysis, leaving 153
imported cases (including one death). We estimated the number of im-
ported infections based on the asymptomatic proportion, σ, the case fatality
risk (CFR), and the probability of an imported symptomatic infection being
detected, ρtravel. The probability of the number of unobserved imported
infections, U, along with the 152 observed cases, C, and one observed death,
D, was calculated as a multinomial probability

Pr({U,C,D}) = (U + C + D)!
U!C!D!

Pr(U)UPr(C)CPr(D)D, [1]

where

Pr U( ) = σ + 1 − σ( )  1 − ρtravel( )  1 − CFR( ) [2a]

Pr C( ) = 1 − σ( )  ρtravel   1 − CFR( ) [2b]

Pr D( ) = 1 − σ( )  CFR. [2c]

After calculating Pr({U,C,D}) for values of U between 0 and 20,000 given
fixed values of C = 152 and D = 1, we used the sample function in R to
sample U proportional to Pr({U,C,D}). This resulted in posterior samples of U
conditional on observed values of C and D. We then smoothed the date of
known imported infections with a Gaussian kernel and sampled dates of all
U + C + D imported infections from that distribution.
Local transmission.We simulated local transmission in the United States from 1
January to 12 March using a branching process model seeded by imported
infections. The number of secondary infections generated by each infection
in the branching process model was drawn from a negative binomial off-
spring distribution with mean R and dispersion parameter k. The number of
secondary infections that were generated by asymptomatic individuals was
also drawn from a negative binomial distribution but with mean αR, where α
in [0,1]. Each secondary infection’s exposure time was drawn from a log-
normal generation interval distribution. In doing so, we assumed that the
generation interval followed the same distribution as the serial interval.
Infection outcomes. In addition to exposure, we simulated three additional
outcomes, and the timing thereof, in a subset of infections.

Symptomatic infection: The number of new symptomatic infections on
day t was drawn from a binomial distribution with the number of trials
equal to the number of infections with time of potential symptom onset
on day t and the probability of success equal to 1 − σ. For infections that
resulted in symptoms, the time of symptom onset was drawn from a
Weibull distribution and added to each individual’s exposure time.

Potentially reported case: The number of cases that could have poten-
tially been reported on day twas drawn from a binomial distribution with
the number of trials equal to the number of infections with time of po-
tential case reporting on day t and the probability of success equal to 1 − σ.
The time of potential case reporting was drawn from a gamma distribution
of the period between symptom onset and case reporting and added to
each infection’s time of symptom onset.

Death: The number of deaths on day t was drawn from a binomial distri-
bution with the number of trials equal to the number of symptomatic
infections that could have experienced death on day t and the probability
of success equal to CFR. The time of death was drawn from a log-normal
distribution of time from symptom onset to death and added to each
individual’s time of symptom onset.

Model Parameterization. All parameter values, and their associated distri-
butions, are described in Table 1. Where parameter distributions were de-
scribed in the literature using medians and interval measures of spread, we
used the optim function in R to estimate parameter values that matched
distribution moments reported by those studies. In that sense, all parameters
in our analysis were treated as random variables, with associated uncertainty
accounted for throughout our analysis. For most parameters, this reflected
uncertainty based on an estimate from a single study, given that few studies
have generated high-quality estimates for some parameters. In the case of R,
our estimate was taken from a meta-analysis (21) and thereby, captured
uncertainty within and between studies. For the delay between symptom
onset and case notification, we fit a gamma distribution to data on the delay
between symptoms and reporting for 26 US cases in the MIDAS line list data

(19); the gamma distribution fit the data better than negative binomial or
log-normal distributions according to the Akaike information criterion (AIC;
133.5, 134.6, and 134.0, respectively) (SI Appendix, Fig. S1). Our mean esti-
mate of 6.0 for this delay is in line with previous estimates from China of 5.8
by Li et al. (29) and 5.5 by Bi et al. (24).

Due to a lack of available estimates for ρtravel and α, we estimated them by
fitting the model to the total number of deaths resulting from locally ac-
quired SARS-CoV-2 infections in the United States by 12 March. To approx-
imate a likelihood for ρtravel and α, we simulated 200 replicate time series of
imported infections, each based on the same value of ρtravel, and then sim-
ulated local transmission using the same value of α for each of the 200
replicates. For each of these 200 replicate simulations, we calculated the
cumulative number of infections, ID, that based on their timing, could have
resulted in death by 12 March. We then calculated the likelihood as the
probability of the reported number of deaths, D, according to a binomial
distribution in which D ∼ Binomial(ID, CFR (1 − σ)). To account for the effect
of stochasticity on ID, we estimated the marginal likelihood of ρtravel and α
over a grid of values between 0 (or 0.01 for ρtravel) and 1 in increments of
0.05 for each parameter. At each point on this grid, 200 replicate likelihoods
were obtained, meaning that our estimate of the marginal likelihood of
ρtravel and α was informed by a total of 88,200 simulations. We represented
this marginal likelihood surface with a generalized additive model (GAM) fit
to these 88,200 likelihoods using thin-plate splines with 100 knots using the
mgcv package (54) in R. We selected 100 knots based on AIC and chose this
over default settings of the gam function due to the sensitivity of the latter
to noise in the likelihoods, as indicated by its prediction of multiple peaks in
the marginal likelihood surface. We then used this GAM to create a gridded
marginal likelihood surface with a 0.001 × 0.001 mesh. Finally, we drew
samples from the posterior probability distribution of these parameters by
sampling with replacement over this mesh, which implicitly assumed a uni-
form prior on ρtravel and α.

Baseline Analysis. Under the baseline parameter values in Table 1, we used
the calibrated model to perform three analyses.

First, we generated a distributional estimate of the total number of
SARS-CoV-2 infections in the United States through 12 March, based on
1,000 realizations of the model. Each realization drew independent values
of each parameter, such that the distributional estimate of SARS-CoV-2 in-
fections reflected both parameter uncertainty and stochasticity inherent to
the earliest stage of the epidemic. This stochasticity included randomness in
the number and timing of imported infections, as each simulation used a
separate realization of the importation process to seed local transmission.

Second, we estimated how the probability of detecting local symptomatic
infections, ρlocal, changed over time. These estimates were based on the
number of symptomatic cases reported each day, C(t), and our model’s pre-
dictions of the number of symptomatic infections that could have been
reported each day, S(t), after accounting for a delay between symptom onset
and reporting. We assumed a uniform prior for ρlocal and on each day, esti-
mated a posterior equal to ρlocal(t) ∼ Beta(1 + C(t), 1 + S(t) − C(t)). We then took
1,000 replicates of independent daily draws of logit-transformed values of
ρlocal(t) and smoothed over them using the smooth.spline function in the stats
package in R, using weekly knots (SI Appendix, Fig. S2).

Third, we estimated how many deaths would occur 13 March and after
based only on infections that occurred through 12March. The purpose of this
was to illustrate the effect of the relatively long lag between infection and
death on patterns of death over time. To do this, we simulated 1,000 real-
izations of our model through 12 March and then set R = 0 from 13 March to
31 May. This allowed infections occurring by 12 March enough time to result
in death.

Sensitivity Analysis. We undertook a one-at-a-time sensitivity analysis for
each parameter shown in Table 1, with the exception of ρtravel, α, and R.
Including the baseline analysis, this resulted in a total of 16 scenarios (i.e.,
the baseline plus low and high values for each of seven parameters plus 1
alternative scenario for importation timing). For each scenario, we repeated
each of the three steps in our baseline analysis. We excluded R from the
sensitivity analysis because between-study variability was already accounted
for in our baseline analysis. In the case of ρtravel and α, these parameters
were recalibrated for each alternative scenario considered in the sensitivity
analysis. For the delay in reporting following symptom onset, we obtained
low and high values by multiplying the shape parameter by 0.5 and 1.5,
respectively, while holding the rate parameter constant. In this way, this
delay is the sum of one, two, or three identically distributed gamma random
variables in the low, baseline, and high scenarios, respectively. For impor-
tation timing, our alternative scenario involved sampling dates of imported
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infections based on the timing of international incidence. This excluded cases
in China after 3 February, due to a ban on entrance by nonresident foreign
nationals who had been to China within the past 14 d enacted on 2 February.

Data Availability. All code and data used are available at GitHub (https://
github.com/TAlexPerkins/sarscov2_unobserved).
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