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Abstract

Mean residual life (MRL) is the remaining life expectancy of a subject who has survived to a 

certain time point and can be used as an alternative to hazard function for characterizing the 

distribution of a time-to-event variable. Inference and application of MRL models have primarily 

focused on full-cohort studies. In practice, case-cohort and nested case-control designs have been 

commonly used within large cohorts that have long follow-up and study rare diseases, particularly 

when studying costly molecular biomarkers. They enable prospective inference as the full-cohort 

design with significant cost-saving benefits. In this paper, we study the modeling and inference of 

a family of generalized MRL models under case-cohort and nested case-control designs. Built 

upon the idea of inverse selection probability, the weighted estimating equations are constructed to 

estimate regression parameters and baseline MRL function. Asymptotic properties of the proposed 

estimators are established and finite-sample performance is evaluated by extensive numerical 

simulations. An application to the New York University Women’s Health Study is presented to 

illustrate the proposed models and demonstrate a model diagnostic method to guide practical 

implementation.
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1 Introduction

The mean residual life (MRL) is the remaining life expectancy given that a subject has 

survived to a certain time point. For a non-negative survival time T with finite expectation, 

the MRL at time t is m(t) = E(T − t|T > t). As alternatives to models based on the hazard 

function, those based on the MRL have a more intuitive explanation often leading to easier 

communication with patients. For instance, providing patients who have been on a treatment 

for a year with their remaining life expectancy is likely to be more informative than 

providing them with instantaneous hazards.

Various statistical models have been proposed to characterize the MRL function given 

covariates. Specifically, the proportional MRL model (Oakes and Dasu, 1990; Maguluri and 

Zhang, 1994) is,

m(t ∣ Z) = m0(t)exp β′Z , (1)

where β is a vector of regression parameters characterizing the multiplicative effects of 

covariates on the MRL function, and m0(t) is an unknown baseline MRL function. The 

estimation and inference for model (1) have been developed to accommodate right censoring 

based on the counting process theory (Chen et al., 2005; Chen and Cheng, 2005). The 

additive MRL model (Chen and Cheng, 2006; Chen, 2007) is,

m(t ∣ Z) = m0(t) + β′Z, (2)

where the coefficients β characterize the additive change in remaining life expectancy per 

unit change in Z, and m0(t) is an unknown baseline MRL function. A quasi-partial score 

(QPS) estimation procedure has been proposed for the estimation of models (1) and (2) 

(Chen and Cheng, 2005, 2006; Chen, 2007).

More recently, Sun and Zhang (2009) proposed a class of generalized MRL models,

m(t ∣ Z) = g m0(t) + β′Z , (3)

in which g(·) is a pre-specified link function to allow flexible model settings. Sun and Zhang 

(2009) proposed using the inverse probability of censoring weighting (IPCW) technique to 

develop estimating equations based on a zero-mean stochastic process. Model (3) can 

include the proportional MRL model and the additive MRL model as special cases. 

Moreover, model (3) has been extended to handle time-varying coefficients (Sun et al., 2012; 

Yang and Zhou, 2014). Note that the choice of g(·) link function can be flexible, but it needs 

to ensure that the MRL function is properly defined and satisfies the following conditions: 

(a) g(·) is twice continuously differentiable, (b) g(·) is strictly increasing, and (c) g{m0(t) + β
′ 0Z} is a proper MRL function for all possible values of random covariates Z.

The MRL models described above have primarily been studied and applied in prospective 

cohort studies, where large sample size and long follow-up duration enable investigations on 

rare diseases and their complex mechanisms. Many large cohort studies store biological 

samples for future research. However, when studying costly molecular biomarkers, 
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assembling detailed covariate information for the entire cohort often becomes time-

consuming, expensive, and particularly cost-prohibitive for studying rare diseases.

Case-cohort (CC) design (Prentice, 1986) and nested case-control (NCC) design (Thomas, 

1977) are widely considered as alternatives to the full-cohort design. In the CC design, a 

random sample of the full cohort is selected and named the subcohort. All incident cases 

(i.e. participants who developed the event of interest during follow-up regardless of being 

included in the subcohort or not) and the selected controls (i.e. participants who did not 

develop the event of interest) in the subcohort will be included in the CC analysis. The NCC 

design randomly samples a fixed number of controls for each case from the case’s risk set 

(i.e. the set of cohort participants free of event at the time of the case), and then assembles 

covariate information for all the cases and the selected controls. Compared with the NCC 

design, the CC design is deemed to be more efficient since the selected subcohort can be 

used for multiple different case groups (Kupper et al., 1975; Prentice, 1986). However the 

NCC design has the advantage of matching cases and controls on follow-up duration and can 

be extended to match on other confounders as well. Both designs are efficient and cost-

effective in studying the relationship between exposures and diseases. However, for analysis 

of the CC and NCC studies, estimation and inference have been mostly dependent on the 

Cox proportional hazards model (Chen and Lo, 1999; Liu et al., 2010a,b; Scheike and Juul, 

2004) and MRL modeling remains understudied. Recently, Ma et al. (2017) studied the 

proportional MRL model for CC studies using the QPS approach based on mean-zero 

process; however, the adoption of the proportional MRL models in NCC studies is yet to be 

developed due to its complex sampling mechanism.

Here we study modeling and inference for the generalized MRL model (3) under the CC and 

NCC designs. We propose a unified estimation procedure for both the CC and NCC designs 

and establish asymptotic properties for our proposed estimators. Statistical inference 

procedure based on bootstrap method (Efron, 1979) is adopted for the CC design, and 

perturbation resampling method (Cai and Zheng, 2013) is needed for the NCC design. A 

practical contribution also includes an R package to implement the proposed approaches.

In Section 2, we present the proposed estimating equations and inference procedures for 

model (3) under the CC and NCC designs. Section 3 reports the results from extensive 

simulation studies. In Section 4, we apply our approach to a real dataset from the New York 

University Women’s Health Study (NYUWHS), and present a model diagnostic method that 

can be readily used for model selection. Discussion and concluding remarks are given in 

Section 5. Additional simulations, regularity conditions, and technical proofs are provided in 

Appendix.

2. Estimation and Inference

Consider a full cohort with size n. Let Ti be the failure time and Ci be the censoring time for 

subject i = 1, 2, …, n. We assume Ti and Ci are conditionally independent given covariate Zi. 

The complete cohort data consist of n independently identically distributed random triplets 

T~i, δi, Zi ; i = 1, 2, …, n , where T~i = min Ti, Ci  and δi = I(Ti ≤ Ct). Let I(·) denote the 

indicator function throughout. In addition, denote Ni(t) = δiI T~i ≤ t  and Y i(t) = I T~i ≥ t  as 
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the usual counting process and the at-risk process, respectively. We define filtration 

G = Gt: t ∈ [0, τ] , where Gt = σ Ni(u), Y i(u), Zi:0 ≤ u ≤ t, i = 1, …, n  and 

τ = inf t:Pr(T > t) = 0 < ∞.

Under the CC design, a subcohort with a fixed size n~ is drawn randomly from the entire full 

cohort. Let γi = 1 indicate that subject i is included in the subcohort; 0 otherwise. All cases 

in the cohort and controls in the selected subcohort constitute the CC sample, which can be 

summarized as T~i, δi, γi, δi + 1 − δi γi Zi , i = 1, 2, …, n . Based upon the idea of inverse 

selection probabilities, the weight wi for each subject is defined as wi = δi + (1−δi)γi/p0, 

where p0 = n~/n is the proportion of subcohort to the full cohort.

Under the NCC design, for each case, m controls are randomly selected without replacement 

from the risk set excluding the case itself. The risk set at any time t is defined as 

R(t) = i:T~i ≥ t . Following the notation of Samuelsen (1997), we define the “skeleton” 

filtration of the full-cohort as ℱ = ℱt: t ∈ [0, τ] , where 

ℱt = σ Ni(u), Y i(u):0 ≤ u ≤ t, i = 1, …, n . Note that ℱ has all the information relevant to the 

NCC sampling and is contained in G. Thus, the conditional probability that subject i is ever 

selected as a control given the skeleton filtration ℱ can be calculated as (Samuelsen, 1997),

p0i = 1 − ∏
T j < T i

1 − mδj
R T j − 1

. (4)

Then, we define the weight for subject i under NCC studies as wi = δi + (1 − δi)γi/p0i, where 

γi is the indicator of whether subject i is ever selected as a control into the NCC study.

2.1 Estimation equations

Note that

Mi t; β*, m* = Ni(t) − ∫
0

t
Y i(u)dΛi u; β*, m* , (5)

is a martingale with respect to Gt by the counting process and martingale theory (Fleming 

and Harrington 1991), where Λi(·) is the cumulative hazard function for subject i, β* and 

m*(·) are the true values of β and m0(·), respectively. Under the generalized MRL model (3), 

the relationship between the MRL function and the survival function can be easily derived 

as,

S t ∣ Z; β, m0 = g m0(0) + β′Z
g m0(t) + β′Z exp −∫

0

t du
g m0(u) + β′Z , (6)

and the hazard function as

dΛi t ∣ Zi; β, m0 = d g m0(t) + β′Zi + t
g m0(t) + β′Zi

. (7)
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Motivated by the inverse probability weighting technique (Samuelsen, 1997) and the QPS 

estimation approach (Chen and Cheng, 2005, 2006), we propose the following unified 

estimation equations for model (3) under the CC and NCC designs. For 0 ≤ t ≤ τ,

1
n ∑

i = 1

n
wi g m0(t) + β′Zi dNi(t) − Y i(t)d g m0(t) + β′Zi + t = 0, (8)

1
n ∑

i = 1

n ∫
0

τ
wiZi g m0(t) + β′Zi dNi(t) − Y i(t)d g m0(t) + β′Zi + t = 0, (9)

where wi is the design-specific weight for subject i as defined above. Although equations (8) 

and (9) do not have martingale interpretation because wi’s are not predictable processes with 

respect to Gt, they are mean-zero processes. Specifically, we have that 

E wi dNi(t) − Y i(t)dΛi t; β*, m* = E dNi(t) − Y i(t)dΛi t; β*, m* E wi ∣ G = 0 because 

E[dMi(t; β*, m*)] = 0 and E wi ∣ G = E wi ∣ ℱ = 1.

Given a fixed β and pre-specified g(·), equation (8) can be rewritten as a first-order linear 

ordinary differential equation about m0(t), which leads to a closed form solution. Let m0(t; β)
denote the solution of equation (8) with respect to m0(t), and then it can be plugged back 

into equation (9). It is evident that equation (9) can be re-arranged and written as,

U(β) = 1
n ∑

i = 1

n ∫
0

τ
wi Zi −

∑i = 1
n wiZiY i(t)

∑i = 1
n wiY i(t)

g m0(t; β) + β′Zi dNi(t)−Y i(t)dg m0(t; β) + β′Zi = 0.
(10)

To solve equation (10) for β, the Newton-Raphson algorithm can be applied after calculating 

the Jacobian matrix for multidimensional case. We denote β  as the resulting estimator of β.

Remark 1: We conducted numerical simulations to compare the IPCW method (Sun and 

Zhang, 2009) and the QPS estimator (Chen and Cheng, 2005, 2006) under the full-cohort 

design with various censoring proportions (results in Appendix) and observed that the QPS 

estimator outperformed the IPCW estimator in terms of estimation stability and 95% 

confidence interval coverage probability, especially under the high censoring scenarios. 

Based on these observations, we developed our estimating procedure based on the QPS 

approach for the generalized MRL modeling in the CC and NCC designs.

2.2 Asymptotic properties

In this section, we summarize the asymptotic properties of our proposed estimators and 

defer the details of assumptions and proofs toAppendix. We first introduce some notations. 

Let

Z(t; β) =
∑i = 1

n wiZiYi(t)ġ m0(t) + β′Zi
∑i = 1

n wiYi(t)ġ m0(t) + β′Zi
,
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Z̆(t; β) = 1
K(t; β)∫t

τ
K(u; β)Q(u; β),

Z~ (t; β) = K(t; β)
C(t; β)∫0

t n−1∑j = 1
n wj Zj − Z(u; β) ġ m0(t) + β′Zi dNi(t)

K(u; β)

−
n−1∑j = 1

n wj Zj − Z(u; β) Y i(t)dġ m0(t) + β′Zi
K(u; β) ,

C(t; β) = 1
n ∑

i = 1

n
wiYi(t)ġ m0(t) + β′Zi

K(t; β) = exp −∫0
t ∑i = 1

n wiġ m0(t) + β′Zi dNi(t)

∑i = 1
n wiYi(t)ġ m0(t) + β′Zi

−
∑i = 1

n wiYi(t)dġ m0(t) + β′Zi
∑i = 1

n wiYi(t)ġ m0(t) + β′Zi
.

Q(t; β) =
∑i = 1

n wiZi ġ m0(t) + β′Zi dNi(t) − Yi(t)dġ m0(t) + β′Zi
∑i = 1

n wiYi(t)ġ m0(t) + β′Zi

Theorem 1 Under the regularity conditions (C1) to (C4) stated in Appendix, we have:

i. The estimators β  and m0(t) exist and are consistent.

ii. n β − β* N 0, A−1Σ A−1 ′  in distribution. Moreover, variance matrix 

components A and Σ can be consistently estimated by A and Σ Specifically, for 

the CC design,

A = 1
n ∑

i = 1

n ∫0
τ

wi Zi − Z(t; β) Zi − Z̆(t; β) ′ ġ m0(t) + β′Zi dNi(t) − Yi(t)dġ m0(t) + β′Zi ,

Σ = Σ1 + Σ2,

Σ1 = 1
n ∑

i = 1

n
wi∫0

τ
Zi − Z(t; β) − Z~ (t; β) ⊗ 2Yi(t)g m0(t) + β′Zi dg m0(t) + β′Zi + dt ,
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Σ2 = 1
n ∑

i = 1

n 1 − p0i
p0i ∫0

τ
wi − δi Zi − Z(t; β) − Z~ (t; β) g m0(t) + β′Zi dMi(t)

⊗ 2

− 1
n ∑

i = 1

n 1 − p0i
p0i ∫0

τ
wi − δi Zi − Z(t; β) − Z~ (t; β) g m0(t) + β′Zi dMi(t)

⊗ 2
,

where α⨂2 denotes ααT for a vector α. For the NCC design, Σ2 is estimated 

differently as,

Σ2 = 1
n ∑

i = 1

n
wi2 − wi ∫0

τ
Zi − Z(t; β) − Z~ (t; β) g m0(t) + β′Zi dMi(t)

⊗ 2

− m∫0
τ 1

n ∑
i = 1

n
wi2 − wi Yi(t) ∫0

τ
Zi − Z(t; β) − Z~ (t; β) g m0(t) + β′Zi dMi(t)

⊗ 2

g1(t)
y(t) dm0(t) +

g2(t)
y(t) dt ,

where g1(t) = ∑j = 1
n Y j(t)ġ m0(t) + β′Zj /g m0(t) + β′Zj , g2(t) = ∑j = 1

n Y j(t)
/g m0(t) + β′Zj

, and 

y(t) = ∑j = 1
n Y j(t).

Remark 2: The NCC sampling is a dynamic process and the probability of being selected as 

a control is neither a constant nor independent, even in the asymptotic sense. The asymptotic 

variance estimate derived under the NCC design explicitly contains the cross-product term 

between subject i and j as shown in the Σ2 in Theorem 1.

2.3 Numerical variance estimation

The asymptotic variance formula and the plug-in estimators that are described above can be 

difficult to implement analytically. In practice, bootstrap method (Efron, 1979) is often 

adopted to compute the standard errors (SE) of estimators. Under the full-cohort design, 

estimating the SEs via the standard bootstrap method is straightforward. For the CC design, 

since the weight of each selected control is pre-specified, one can obtain the estimated SEs 

by implementing the bootstrapping within the selected subcohort.

Under the NCC design, however, the standard bootstrap approach cannot fully capture the 

complex correlation structure induced by repeated finite risk set sampling nor applicable for 

the proposed estimators. We thus employ the perturbation resampling method (Cai and 

Zheng, 2013) to estimate the SEs under the NCC design. Instead of resampling the selected 

subsample, the perturbation method approximates the variance of the IPW estimators by 

perturbing the weight of each subject. Specifically, the procedures are described below:

1. Generate n2 random realizations of Iil from a given distribution with E(Iil) = 1 

and let I = {Iil, i = 1, …, n; l = 1, …, n}.

2. Calculate the perturbed weights as wj = V j/pj, where
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V j = δjIjj + 1 − δj 1 − ∏
i: j ∈ Ri

1 − δiV 0ijIij ,

pj = δj + 1 − δj 1 − exp − ∑
i:Ti ≤ t, δi = 1

∑l ∈ R1V 0ilIil
‖Ri‖

,

and V0ij = 1 denotes the jth subject is selected as a control for the ith subject.

3. Replace the wi in (10) using the perturbed weights from step 2 and obtain the 

estimator β perturb.

4. Repeat steps 1–3 for M times and use the standard deviation of these β perturb to 

approximate the SE of β .

3 Simulation Studies

We conducted simulations to evaluate the finite-sample performance of the proposed 

inference procedures and to compare their efficiency under the CC and NCC designs to the 

full-cohort analysis. We considered two models with g(t) = exp(t) and g(t) = t, which 

corresponded to the proportional MRL model and additive MRL model, respectively. To 

generate the data, the baseline function m0(t) was taken from the Hall-Wellner family, which 

was m0(t) = g−1 {(D1t + D2)+}, where D1 > −1, D2 > 0 and d+ denoted dI(d ≥ 0) for any 

quantity d. In our setting, we considered D1 = −0.5 and D2 = 0.5. Let Z1 be a Bernoulli 

random variable with success probability 0.5 and Z2 be a uniform random variable on (0, 1). 

The true parameters (β1, β2)′ were set to be (0, 0)′ for null effects and (0.2, 0.2)′ for 

moderate effects. Censoring time C was generated from the exponential distribution with 

parameter λ, which was chosen to yield different censoring proportions. We conducted 500 

simulations under each setting.

The first set of simulations evaluated our proposed methods for the proportional MRL model 

under the full-cohort, CC, and NCC designs. To mimic a practical setting, we considered a 

cohort size of 1000 and 5000, and high censoring rates of 70%, 80% and 90%. In addition, a 

long follow-up duration was assumed as in many large epidemiology cohort studies and for 

stable estimation of the MRL models. We selected 1 control for each case in the NCC design 

and 30% random subcohort for the CC design. The SEs of estimators were computed based 

on the standard bootstrap method for the full-cohort and CC designs. The perturbation-based 

method was applied to estimate SEs under the NCC design, where the weights were 

generated from a Gamma distribution with shape and scale parameters of 1.

Table 1 and Table 2 summarize the results for the proportional MRL model over 1000 

simulations for cohort size of 1000 and 5000. The biases of the estimators were small, SDs 

and SEs matched well, and coverage probability (CP) of 95% Wald-type confidence interval 

was close to the nominal level. The SDs and SEs decreased as sample size increased. The 
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estimates from the CC and NCC designs lost some efficiency when compared to those 

obtained in the full-cohort analysis, but noted that these within-cohort sampling designs also 

would save cost by only using the partially sampled subcohort.

In Table 3 and Table 4, we summarized the simulation results for the additive MRL models 

under full cohort size of 1000 and 5000 with high censoring rates of 70%, 80%, and 90%. 

Note that the additive MRL model does not ensure positive baseline MRL functions at any 

time, which could make the estimating procedure unstable when the sample size is small. In 

order to have meaningful estimates from the estimating equations, by the convention of Reid 

(1981) and James (1986), the longest observation was always assumed to be a true event. We 

found that this single data-point change at the tail had minimal impact on the estimation. In 

general, the biases were small and the SDs of the estimates were close to the average of SEs. 

The 95% confidence interval coverage probabilities were around the nominal level, 

indicating that the bootstrapping and perturbation resampling methods worked well for the 

CC and NCC designs, respectively. The overall performance improved with increasing 

sample size. Figures 1 and 2 visually demonstrate the performance of the full-cohort, CC, 

and NCC designs, specifically on efficiency.

4 Application

4.1 Data analysis

The proposed models and estimation methods were demonstrated through a study conducted 

in the NYUWHS, a prospective cohort study that enrolled 14,274 healthy women aged 35–

65 between 1985 and 1991 at a breast cancer screening center in New York City. One 

primary interest of the study was to investigate the association between endogenous sex 

hormones and breast cancer risk. At enrollment, participants completed a questionnaire on 

lifestyle and reproductive history. Blood samples were collected and stored for all 

participants. Every two to four years, study participants were asked to update information on 

their health conditions by completing a questionnaire. Within the NYUWHS, multiple 

nested case-control studies on breast cancer have been conducted (Scarmo et al., 2013; 

Clendenen et al., 2015).

The cohort dataset we considered here was from the NYUWHS including 6,610 women who 

were less than 50 years of age at enrollment and used in a recent study for breast cancer risk 

prediction in younger women (Ge et al., 2018). In this cohort, approximately 12% of the 

study participants developed breast cancer during the follow-up period (Mean = 21.3 years, 

SD = 4.8 years). We considered risk factors that are included in the Gail model (Breast 

Cancer Risk Assessment Tool) (Gail et al., 1989): age, race, age at menarche, number of 

breast biopsies, age at first live birth, and number of first-degree relatives with breast cancer. 

The proportional MRL model and the additive MRL model were applied to evaluate the 

multiplicative and the additive effects of these risk factors on the MRL function of time to 

breast cancer occurrence. Within this cohort, we conducted NCC sampling with one 

matched control, and CC sampling with 20% of the full-cohort size. In order to obtain 

empirical results, we ran 200 times for both the CC and NCC sampling, and reported the 

mean of point estimates, as well as the mean of estimated standard error of β . The SEs were 

computed using the same approach as in the simulation studies.
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The results are summarized in Table 5. Under both the proportional and additive MRL 

models, the estimates from the CC and NCC designs were similar to the ones from full 

cohort. Specifically, age at first live birth, number of breast biopsies, and number of first-

degree relatives with breast cancer had significant effects on shortening the expected 

residual disease-free time, which were consistent with the effects observed in the Gail 

model. As expected, we observed that SEs of the estimators in the CC and NCC designs 

were larger than that in the full-cohort design.

The interpretation of the additive MRL model is straightforward. For example, in the full-

cohort, keeping all other covariates fixed, each additional breast biopsy decreased the 

expected remaining disease-free time by approximately 2.363 years. The average reduction 

of MRL estimated from the CC and NCC designs were 2.337 years and 2.818 years, 

respectively. For the proportional MRL model under the full-cohort design, keeping all other 

covariates fixed, each additional breast biopsy shortened the expected residual disease-free 

time by around 1.15%. The estimated percentage under the CC and NCC designs were both 

1.15%.

4.2 Model diagnosis

The generalized MRL framework provides flexible model options to study the association 

between covariates and MRL time under the full-cohort, CC, and NCC designs. For its 

practical use, some model diagnostic methods would be useful for model selection. Several 

graphical and numerical model diagnostic approaches have been proposed based on 

martingale residuals (Lin et al., 1993), but mainly focused on full-cohort data. We adopt the 

approaches from Lin et al. (1993) and propose weighted test statistics and processes for 

model selection in the generalize MRL models for CC and NCC studies.

In the NYUWHS application, we used the standardized empirical score process U(β, t) to 

conduct model selection graphically. Figure 3 and Figure 4 show the results for the 

proportional and additive MRL models in full cohort, respectively. The standardized score 

process in the proportional MRL was smaller than that in the additive MRL model. Another 

method is to use the value S = supt‖U(β, t)‖ as a numerical measure to assess the overall fit 

of the model. The larger value of supt‖U(β, t)‖ means the higher chance of violation of the 

specified model assumption. For the full-cohort data from the NYUWHS application, the 

measures were 0.0656 vs. 0.4402 for the proportional and additive MRL models, 

respectively, and thus we concluded the proportional MRL model fitted the data better in this 

application. For the CC and NCC designs with 200 times sampling, we observed the same 

conclusion, as the measure was 0.033 vs. 0.401 (CC) and 0.032 vs. 0.445 (NCC) for the 

proportional and additive MRL models.

Although we do not study asymptotic properties of these model diagnostic measures for the 

generalized MRL models in this paper, we evaluated their empirical performance using 

simulations. Specifically, when the true model was proportional MRL model with sample 

size of 5000, β value of (0.2,0.2), and 80% censoring proportion, the proportions of 

numerical measure S = supt‖U(β, t)‖ indicating the correct model were 97.4%, 93.0%, and 

97.8% under the full-cohort, CC, and NCC designs, respectively. When the true model was 
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additive MRL model with the same sample size, effect size, and censoring proportion, the 

proportions of numerical measure S = supt‖U(β, t)‖ indicating the additive MRL model were 

52.6%, 46.0%, and 63.6% under the full-cohort, CC, and NCC designs, respectively. We 

observed that the performance of the numerical measure was dependent on sample size, 

censoring rate, and effect size.

5 Discussion

In this manuscript, we developed unified inference procedures for the generalized MRL 

models under CC and NCC designs. The proposed models and inference procedures expand 

the analytical toolbox for these commonly used within-cohort sampling designs. In addition, 

we presented some model diagnostic and selection tools for the MRL models in full-cohort, 

CC, and NCC studies. Our numerical results support the use of the procedures, but the 

theoretical properties of which warrant further investigation.

The SEs of the proposed estimators were estimated using the bootstrapping method for CC 

data and the perturbation resampling approach for NCC data. Note that the perturbation 

approach requires the generation of n2 random realization matrix and subsequent matrix 

calculations, and it does tend to be computationally heavier comparing to the bootstrap 

method.

Both CC and NCC designs have cost-saving benefits as compared to the full-cohort design. 

In simulation studies and the real data example, we found estimators performed consistently 

across the three study designs when the data structure supported the application of MRL 

modeling. Based on the inverse probability weighting approach, other cohort sampling 

designs including counter-matching design and quota-matching design can be considered as 

well. Moreover, the generalized MRL models with time-varying coefficients under full 

cohort can also be extended to CC and NCC designs in future research.

In practice, left truncation may occur in epidemiological cohort studies. To incorporate the 

left truncation, controls need to be drawn from an adjusted risk set defined as 

R(t) = i:Li < t ≤ T~i , where Li denotes the left-truncation time for subject i. Besides, it is 

not rare to see that some patients may have relative longer survival time comparing to others 

in a cohort. If only few subjects have long survival time, the results may be biased and the 

restricted MRL should be considered.

Remark: An R package gmrl is available at https://github.com/pengjin0105/gmrl
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Appendix

Simulation study

We conducted numerical simulations to compare the IPCW method and the QPS estimator 

under the full cohort of 1000 subjects when censoring rates were approximately 10%, 30% 

and 80%. A total of 500 simulations were conducted for both the proportional and additive 

MRL models. We reported the bias, the standard deviation (SD) of the estimates, the average 

of estimated standard error (SE) and the coverage rate (CP) of 95% Wald-type confidence 

intervals (see results in Table 6). The SEs of the estimates were calculated through standard 

bootstrap method. Based on the simulation results, the two estimators had similar 

performance when censoring probability was low. The biases were all small and the means 

of estimated SEs were close to the empirical SDs of the parameter estimators. The 95% 

Wald-type confidence intervals had proper coverage rate. However, when the censoring rate 

was 80%, the IPCW performance dropped and underestimated SEs, which led to low 

coverage probabilities.

Regularity conditions

Let uZ~ (t; β), uZ̆(t; β) and uZ(t) be the limits of Z~ (t; β), Z̆(t; β) and Z(t; β), respectively. We 

assume the following regularity conditions:

(C1) sup supp(F) ≤ sup supp(G), where F(·) and G(·) are the distribution functions of 

T and C, respectively;

(C2) Z is bounded;

(C3) m*(t) is continuously differentiable on [0,τ];

(C4) A = ∫0
τE Z − uZ t; β* Z − uZ̆ t; β* ′ ġ m*(t) + β*′Z dN(t)−Y (t)dġ m*(t) + β*′Z

is nonsingular;

Proof of Theorem 1(i)

First, we want to establish the consistency of the estimators m0(t) and β . Condition (C3) 

implies that m0(t) is of bounded variation on [0, τ]. Define ℬ = β:‖β − β*‖ ≤ ϵ  for any ϵ > 

0 and we have E wi ∣ ℱ = 1. By the strong law of large numbers and the fact that 

E{widMi(t)} = 0, for large n, t ∈ [0, τ], β ∈ ℬ, and sufficiently large θ,

1
n ∑

i = 1

n
wi dNi(t) − Y i(t)

dg m0(t) + θ + β′Zi + dt
g m0(t) + θ + β′Zi

< 0, (11)

1
n ∑

i = 1

n
wi dNi(t) − Y i(t)

dg m0(t) − θ + β′Zi + dt
g m0(t) − θ + β′Zi

> 0. (12)

By (11), (12), and the monotonicity and continuity of g function, for any t ∈ [0, τ] and 

β ∈ ℬ, there exists a unique m0(t; β) that satisfies

Jin et al. Page 12

Lifetime Data Anal. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1
n ∑

i = 1

n
wi dNi(t) − Y i(t)

dg m0(t; β) + β′Zi + dt
g m0(t; β) + β′Zi

= 0. (13)

Note that (11) and (12) hold for any θ > 0 when and only when β = β*. Then we have that 

m0(t; β) converges to m0(t; β) uniformly in t ∈ [0, τ] and β in a compact set which contains 

the true parameter β*, and m0(t; β*) = m*(t). Thus, to prove the existence and uniqueness of 

β  and m0(t), it suffices to show that there exists a unique solution to U(β) = 0. Take derivative 

of (13) with respect to β, we have

dm0(t)
dβ

∑i = 1
n wi ġ m0(t) + β′Zi dNi(t) − Yi(t)dġ m0(t) + β′Zi

∑i = 1
n wiYi(t)ġ m0(t) + β′Zi

− d
dm0(t)

dβ =

−
∑i = 1

n wiZi ġ m0(t) + β′Zi dNi(t) − Yi(t)dġ m0(t) + β′Zi
∑i = 1

n wiYi(t)ġ m0(t) + β′Zi
,

which is a first-order linear ordinary differential equation about dm0(t)/dβ. The solution is

dm0(t)
dβ =

dm0(t; β)
dβ = − 1

K(t; β)∫t
τ

K(u; β)Q(u; β) ≡ − Z̆(t; β ),

where

K(t; β) = exp −∫0
t ∑i = 1

n wi ġ m0(t) + β′Zi dNi(t) − Yi(t)dġ m0(t) + β′Zi
∑i = 1

n wiYi(t)ġ m0(t) + β′Zi
,

Q(t; β) =
∑i = 1

n wiZi ġ m0(t) + β′Zi dNi(t) − Yi(t)dġ m0(t) + β′Zi
∑i = 1

n wiYi(t)ġ m0(t) + β′Zi
.

Let A β* ≐ dU(β)/dβ β = β. We have

A β* ≐ 1
n ∑

i = 1

n ∫0
τ

wi Zi − Z t; β* Zi − Z̆ t; β* ′ ġ m*(t) + β*′ Zi dNi(t) − Yi(t)dġ m*(t) + β*′ Zi

= 1
n ∑

i = 1

n ∫0
τ

wi Zi − uZ t; β* Zi − uZ̆ t; β* ′ ġ m*(t) + β*′ Zi dNi(t) − Yi(t)dġ m*(t) + β*′ Zi +op(1)

= A + op(1)

Thus, A β*  converges in probability to a nonrandom A. It is easy to check that U(β*) → 0 

almost surely, and A is nonsingular by (C4). The convergence of A β*  and the continuity of 

A(β) imply that we can find a small neighborhood of β* in which A β*  is nonsingular when 

n is large enough. Therefore, it follows from the inverse function theorem that within a small 
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neighborhood of β*, there exists a unique solution β  to U(β) = 0 for sufficiently large n. 

Thus, there exists unique estimators β  and m(t). Since β  is strongly consistent to β*, then it 

follows the uniform convergence of m0(t; β) to m0(t; β) that m0(t) ≐ m0(t; β) m0 t; β* = m*(t)

almost surely in [0, τ].

Proof of Theorem 1(ii)

In this section, we first prove the theorem 1(ii) under the CC design, then prove the theorem 

under the NCC design following the proof from Lu and Liu (2012). We know from equation 

(8) that

1
n ∑

i = 1

n
wi g m0(t) + β′Zi dNi(t) − Yi(t)d g m0(t) + β′Zi + t = 1

n ∑
i = 1

n
wig m0(t) + β′ZidMi(t)

1
n ∑

i = 1

n
wi g m0(t) + β′Zi dNi(t) − Yi(t)d g m0(t) + β′Zi + t = 0

Subtract the above two equations and use Taylor expansion, we have,

1
n ∑

i = 1

n
wiġ m0(t) + β′Zi m0(t) − m0(t) dNi(t) − 1

n ∑
i = 1

n
wiYi(t)dġ m0(t) + β′Zi m0(t) − m0(t) − 1

n ∑
i = 1

n
wiYi

(t)dġ m0(t) + β′Zi dm0(t) − dm0(t) = − 1
n ∑

i = 1

n
wig m0(t) + β′Zi dMi(t)

Hence, following the first-order ordinary differential equation,

m0(t) − m0(t)
∑i = 1

n wi ġ m0(t) + β′Zi dNi(t) − Yi(t)dġ m0(t) + β′Zi
∑i = 1

n wiYi(t)ġ m0(t) + β′Zi
− dm0(t) − dm0(t) =

−
∑i = 1

n wig m0(t) + β′Zi dMi(t)

∑i = 1
n wiYi(t)ġ m0(t) + β′Zi

,

m0(t) − m0(t) = − 1
K(t; β)∫t

τ
K(u; β)

∑i = 1
n wig m0(t) + β′Zi dMi(t)

∑i = 1
n wiYi(t)ġ m0(t) + β′Zi

.

Let U β* ≐ U β*, m0 t; β*  and we have

U β*, m*(t) = 1
n ∑

i = 1

n ∫0
τ

wiZi g m*(t) + β*′ Zi dNi(t)−Yi(t)dg m*(t) + β*′ Zi − Yi(t)dt .
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By using Taylor expansion again in U β*, m0 t; β* − U β*, m*( ⋅ ) , we have

U β*, m0 t; β* − U β*, m*( ⋅ )

= 1
n ∑

i = 1

n ∫0
τ

wiZi m0(t) − m0(t) ġ m*(t) + β*′ Zi dNi(t) − wiZiYi(t) m0(t) − m0(t) dġ m*(t) + β*′ Zi

− wiZiYi(t) dm0(t) − dm0(t) ġ m*(t) + β*′ Zi

= 1
n ∑

i = 1

n ∫0
τ

wi Zi − Z t; β* m0(t) − m0(t) ġ m*(t) + β*′ Zi dNi(t)−Yi(t)dġ m*(t) + β*′ Zi

− wiZ t; β* g m*(t) + β*′ Zi dMi(t)

= − 1
n ∑

i = 1

n ∫0
τ

wi Z~ t; β* + Z t; β* g m*(t) + β*′ Zi dMi(t) .

Thus,

nU β* = nU β*, m0 t; β*
= nU β*, m* + n U β*, m0 t; β* − U β*, m*

= 1
n ∑

i = 1

n ∫0
τ

wi Zi − Z t; β* − Z~ t; β* g m*(t) + β*′ Zi dMi t; β*, m*

= 1
n ∑

i = 1

n ∫0
τ

wi Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi t; β*, m* + op 1

= 1
n ∑

i = 1

n ∫0
τ

Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi t; β*, m*

+ 1
n ∑

i = 1

n ∫0
τ

wi − 1 Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi t; β*, m* + op(1)

= 1
n ∑

i = 1

n ∫0
τ

Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi t; β*, m*

− 1
n ∑

i = 1

n ∫0
τ

1 − δi 1 − γi/p0i Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi t; β*, m* + op(1) .

As we defined in our manuscript, let Gi be the σ-field generated by T~i, δi, Zi, i = 1, …, n  and 

ℱi be the σ-field generated by T~i, δi, i = 1, …, n . We denote

ηi = 1 − δi ∫0
τ

Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi t; β*, m* .

It is evident that E 1 − γi/p0i ∣ ℱi = 0 and E ηi 1 − γi/p0i ∣ ℱi = E ηiE(1 − γi/p0i ∣ ℱi = 0. 

Following the proof in Lu and Tsiatis (2006), 

var ηi 1 − γi/p0i = E ηi
⊗ 2 1 − p0i /p0i − E ηi 1 − p0i /p0i

⊗ 2 = Σ2. Condition on 

ℱi, ηi 1 − γi/p0i , i = 1, …, n , {ηi(1 – γi/p0i), i = 1, …, n} and the first term of nU β*  are 

uncorrelated. Therefore, nU β*  is asymptotically normal with mean zero and variance-

covariance Σ = Σ1 + Σ2. By Taylor expansion and consistency of β , it follows
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n β − β*

= − A−1 nU β* + op(1)

= − A−1 1
n ∑

i = 1

n ∫0
τ

wi Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi t; β*, m* + op(1),

thus n β − β* N A−1Σ A−1 ′ .

Under the nested case-control design, the asymptotic distribution of β  is more difficult to 

derive because the NCC sampling scheme is a dynamic process. The probability of being 

selected as a control is neither a constant not independent. Thus, we consider the idea of 

central limit theory for asymptotically negatively dependent random variables (Zhang, 

2000), which has been used in the proof of Lu and Liu (2012). Based on the following 

asymptotical representation, we have

U β* = 1
n ∑

i = 1

n ∫0
τ

wi Zi − uZ t; β* − uZ t; β* g m*(t) + β*′ Zi dMi t; β*, m* + op(1) ≡ U1 β* + U2 β*

+ op
1
n .

By martingale central limit theorem, 

nU1 β* = 1
n ∑i = 1

n ∫0
τwi Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′Zi dMi t; β*, m* N 0, Σ1  as 

n → ∞. Since E wi − 1 ∣ ℱi = 0, it is evident that U1(β*) and U2(β*) are uncorrelated. 

However because of the NCC sampling scheme, wi and wj (i ≠ j) are correlated even after 

conditioning on ℱ. Since wi − 1 2 = 1 − δi γi − p0i
2 /p0i

2 , then 

E wi − 1 2 ∣ ℱ = 1 − δi 1 − p0i /p0i. Thus, the conditional variance of nU2 β*  can be 

written as

1
n ∑

i = 1

n 1 − p0i
p0i

1 − δi ∫0
τ

Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi(t)
⊗ 2

+ 1
n ∑

i ≠ j
E

γi
p0i

− 1
γj
p0j

− 1 ∣ ℱ * 1 − δi 1 − δj ∫0
τ

Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi(t

) ∫0
τ

Zj − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zj dMj(t)
′
.

According to Samuelsen (1997), for i ≠ j, Cov γi, γj ∣ ℱ = ρij 1 − p0i 1 − p0j , where 

ρij = − m
n ∫0

min T~i, T~j g1(t)
y(t) dm*(t) +

g2(t)
y(t) dt + Op n−2 . Thus, with some algebra, the 

Var nU2 β* ∣ ℱ  can be written as
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1
n ∑

i = 1

n
1 − δi

1 − p0i
p0i ∫0

τ
Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi(t)

⊗ 2

− m∫0
τ 1

n ∑
i = 1

n
Yi(t)

1 − p0i
p0i

1 − δi ∫0
τ

Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi(t)
⊗ 2

g1(t)
y(t) dm*(t) +

g2(t)
y(t) dt + op(1),

where g1(t) = ∑j = 1
n Y j(t)ġ m0(t) + β′Zj

g m0(t) + β′Zj
, g2(t) = ∑j = 1

n Y j(t)
g m0(t) + β′Zj

, y(t). According to 

strong law of large numbers, we have where

Σ2 ≡ limn ∞Var nU2 β* ∣ ℱ

= E
1 − s0

s0
(1 − δ) Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dMi(t)

⊗ 2

− m∫0
τ

E Y (t)(1 − δ)
1 − s0

s0 ∫0
τ

Zi − uZ t; β* − uZ~ t; β* g m*(t) + β*′ Zi dM(t)
⊗ 2 g1(t)

y(t) dm*(t) +
g2(t)
y(t) dt

,

where

s0i = limn ∞p0i = 1 − exp −m∫0
T~i g1(t)

y(t) dm0(t) +
g2(t)
y(t) dt

Thus, by the central limit theory for asymptotically negatively dependent random variables 

(Zhang, 2000), we have nU2 β* N 0, Σ2  as n → ∞, and

nU β* N 0, Σ1 + Σ2 ,

in distribution as n → ∞. It is easy to see that Σ1 + Σ2 = Σ. Follow by Taylor expansion and 

consistency of β , we have n β − β* N A−1Σ A−1 ′ .
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Fig. 1. 
Bias of estimated coefficients with sample size of 1000
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Fig. 2. 
Bias of estimated coefficients with sample size of 5000
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Fig. 3. 
Model checking: proportional MRL model
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Fig. 4. 
Model checking: additive MRL model
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Table 1

Simulation results under proportional MRL models

N β

censoring rate Full
†

CC (30%)
‡

NCC (1-to-1)
§

β1 β2 β1 β2 β1 β2

1000 (0,0) 0.7 Bias −0.002 −0.002 0.001 0.002 −0.002 −0.001

SD 0.060 0.105 0.079 0.129 0.072 0.122

SE 0.061 0.106 0.078 0.136 0.065 0.112

CP 95.0 94.7 93.9 96.2 92.0 93.2

1000 (0,0) 0.8 Bias −0.000 −0.001 −0.002 −0.012 −0.001 0.000

SD 0.071 0.129 0.097 0.156 0.092 0.155

SE 0.073 0.127 0.091 0.157 0.082 0.143

CP 95.5 94.2 93.5 94.6 92.7 92.5

1000 (0,0) 0.9 Bias 0.001 −0.009 0.002 0.005 −0.007 −0.001

SD 0.086 0.153 0.092 0.164 0.114 0.202

SE 0.086 0.150 0.093 0.162 0.109 0.190

CP 95.0 94.5 95.8 95.3 93.2 94.4

1000 (0.2,0.2) 0.7 Bias 0.000 −0.001 −0.002 0.002 −0.002 −0.006

SD 0.048 0.087 0.063 0.104 0.057 0.093

SE 0.050 0.087 0.060 0.105 0.051 0.088

CP 95.1 95.3 94.2 95.9 91.7 93.4

1000 (0.2,0.2) 0.8 Bias 0.001 −0.002 0.008 0.002 −0.005 −0.006

SD 0.057 0.105 0.073 0.125 0.069 0.123

SE 0.059 0.103 0.073 0.127 0.067 0.116

CP 95.3 95.4 95.3 95.4 94.2 94.1

1000 (0.2,0.2) 0.9 Bias −0.004 −0.012 −0.011 −0.013 −0.018 −0.006

SD 0.079 0.136 0.092 0.154 0.103 0.182

SE 0.077 0.134 0.088 0.153 0.099 0.174

CP 94.6 94.8 94.3 94.5 94.2 95.2

SD: sample standard deviation; SE: mean of estimated standard error;

CP: empirical coverage probability of 95% confidence interval;

†
Full-cohort population

‡
Case-Cohort design with 30% random sample from full-cohort population

§
Nested Case-Control design with 1 control for each case
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Table 2

Simulation results under proportional MRL models

N β

censoring rate Full
†

CC (30%)
‡

NCC (1-to-l)
§

β1 β2 β1 β1 β2 β1

5000 (0,0) 0.7 Bias 0.000 0.001 0.000 −0.003 0.000 −0.001

SD 0.027 0.048 0.034 0.060 0.033 0.054

SE 0.027 0.047 0.035 0.060 0.029 0.051

CP 94.6 94.0 95.3 94.4 92.0 93.6

5000 (0,0) 0.8 Bias 0.000 0.002 −0.002 −0.001 −0.001 0.002

SD 0.033 0.058 0.040 0.072 0.040 0.072

SE 0.032 0.056 0.041 0.070 0.037 0.064

CP 94.9 94.4 95.4 95.0 92.4 92.1

5000 (0,0) 0.9 Bias −0.001 0.003 0.002 0.000 0.001 0.003

SD 0.043 0.076 0.050 0.083 0.056 0.098

SE 0.042 0.074 0.048 0.083 0.052 0.091

CP 94.8 94.7 94.5 95.1 93.6 92.6

5000 (0.2,0.2) 0.7 Bias 0.000 0.001 −0.001 −0.001 −0.003 −0.004

SD 0.023 0.040 0.027 0.047 0.023 0.042

SE 0.022 0.038 0.027 0.047 0.023 0.039

CP 94.6 94.2 95.0 94.9 93.9 93.6

5000 (0.2,0.2) 0.8 Bias 0.000 0.002 −0.001 −0.001 −0.002 0.002

SD 0.026 0.046 0.031 0.054 0.032 0.056

SE 0.026 0.045 0.032 0.056 0.030 0.052

CP 95.1 94.8 95.4 96.1 93.8 93.4

5000 (0.2,0.2) 0.9 Bias 0.001 0.004 −0.003 0.000 −0.006 −0.009

SD 0.036 0.063 0.043 0.071 0.050 0.088

SE 0.036 0.062 0.042 0.072 0.047 0.082

CP 95.6 95.2 94.0 95.3 93.4 93.2

SD: sample standard deviation; SE: mean of estimated standard error;

CP: empirical coverage probability of 95% confidence interval;

†
Full-cohort population

‡
Case-Cohort design with 30% random sample from full-cohort population

§
Nested Case-Control design with 1 control for each case
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Table 3

Simulation results under additive MRL models

N β

censoring rate Full
†

CC (30%)
‡

NCC (1-to-l)
§

β1 β2 β1 β1 β2 β1

1000 (0,0) 0.7 Bias −0.001 −0.001 0.001 0.003 −0.002 0.000

SD 0.045 0.070 0.057 0.096 0.054 0.095

SE 0.045 0.079 0.057 0.099 0.051 0.089

CP 94.9 94.4 94.2 95.9 93.5 92.8

1000 (0,0) 0.8 Bias 0.000 −0.001 0.002 −0.004 −0.002 −0.002

SD 0.059 0.106 0.078 0.126 0.053 0.096

SE 0.060 0.105 0.073 0.127 0.054 0.094

CP 95.4 94.8 94.1 95.3 92.7 94.0

1000 (0,0) 0.9 Bias 0.004 0.000 0.009 0.017 0.000 0.012

SD 0.080 0.143 0.088 0.168 0.103 0.187

SE 0.079 0.139 0.088 0.154 0.106 0.193

CP 95.8 94.8 95.6 93.9 94.0 93.0

1000 (0.2,0.2) 0.7 Bias 0.010 0.008 0.007 0.017 0.010 0.014

SD 0.066 0.114 0.087 0.147 0.080 0.135

SE 0.067 0.114 0.085 0.145 0.078 0.135

CP 96.0 94.8 95.5 95.3 94.6 95.0

1000 (0.2,0.2) 0.8 Bias 0.010 0.007 0.014 0.013 0.007 0.012

SD 0.088 0.158 0.117 0.204 0.114 0.192

SE 0.091 0.155 0.115 0.194 0.112 0.194

CP 95.7 95.1 95.5 95.8 94.7 95.3

1000 (0.2,0.2) 0.9 Bias −0.006 −0.010 −0.007 0.010 −0.012 0.005

SD 0.138 0.229 0.161 0.282 0.167 0.305

SE 0.123 0.212 0.138 0.240 0.196 0.359

CP 92.9 94.8 91.5 92.2 95.6 93.6

SD: sample standard deviation; SE: mean of estimated standard error;

CP: empirical coverage probability of 95% confidence interval;

†
Full-cohort population

‡
Case-Cohort design with 30% random sample from full-cohort population

§
Nested Case-Control design with 1 control for each case
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Table 4

Simulation results under additive MRL models

N β

censoring rate Full
†

CC (30%)
‡

NCC (1-to-l)
§

β1 β2 β1 β1 β2 β1

5000 (0,0) 0.7 Bias 0.000 0.000 0.000 −0.002 0.001 −0.001

SD 0.020 0.035 0.025 0.044 0.025 0.042

SE 0.020 0.034 0.025 0.044 0.024 0.041

CP 94.6 94.2 95.9 94.9 93.4 94.2

5000 (0,0) 0.8 Bias 0.000 0.001 −0.001 0.000 −0.001 0.002

SD 0.026 0.047 0.032 0.059 0.032 0.060

SE 0.026 0.045 0.033 0.057 0.033 0.057

CP 94.8 94.5 95.3 94.5 95.2 93.5

5000 (0,0) 0.9 Bias 0.000 0.004 0.002 0.001 0.001 0.005

SD 0.039 0.068 0.045 0.074 0.052 0.091

SE 0.038 0.066 0.044 0.076 0.050 0.088

CP 94.8 94.7 94.4 95.7 94.6 94.2

5000 (0.2,0.2) 0.7 Bias 0.004 0.005 0.005 0.004 0.005 0.006

SD 0.029 0.050 0.038 0.066 0.035 0.059

SE 0.029 0.049 0.037 0.063 0.033 0.058

CP 95.0 93.7 95.0 94.4 93.9 94.7

5000 (0.2,0.2) 0.8 Bias 0.004 0.006 0.009 0.001 0.005 0.008

SD 0.039 0.067 0.051 0.083 0.048 0.084

SE 0.039 0.065 0.049 0.082 0.048 0.082

CP 94.7 94.1 95.0 94.8 94.8 94.2

5000 (0.2,0.2) 0.9 Bias 0.000 0.006 −0.001 0.000 −0.003 0.002

SD 0.063 0.105 0.074 0.121 0.082 0.135

SE 0.058 0.098 0.067 0.114 0.079 0.136

CP 94.1 94.0 93.0 93.7 94.1 95.4

SD: sample standard deviation; SE: mean of estimated standard error;

CP: empirical coverage probability of 95% confidence interval;

†
Full-cohort population

‡
Case-Cohort design with 30% random sample from full-cohort population

§
Nested Case-Control design with 1 control for each case
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Table 5

Analysis of NYUWHS data

Full
‡

CC (20%)
§

NCC (1-to-1)
¶

Covariate Estimate SE Estimate SE Estimate SE

g(t) = exp(t)

race −0.0084* 0.0025 −0.0083* 0.0030 −0.0085* 0.0032

age at menarche −0.0027 0.0018 −0.0027 0.0022 −0.0027 0.0024

age at 1st live birth −0.0070* 0.0015 −0.0071* 0.0018 −0.0068* 0.0020

# of breast biopsies −0.0116* 0.0032 −0.0116* 0.0038 −0.0116* 0.0040

# of relatives
† −0.0188* 0.0041 −0.0191* 0.0051 −0.0182* 0.0053

g(t) = t

race −2.8210* 1.0297 −2.7862* 1.1421 −3.5018* 1.4782

age at menarche −0.8995 0.6284 −0.8603 0.6994 −1.0138 0.9348

age at 1st live birth −2.7701* 0.6331 −2.8038* 0.6993 −3.1273* 0.8129

# of breast biopsies −2.3625* 0.5487 −2.3372* 0.6191 −2.8184* 0.9047

# of relatives
† −3.8616* 0.6153 −3.8675* 0.6984 −4.4870* 1.1350

SE: Average of estimated standard error

*
The coefficient is statistically significant at 0.05 significant level

†
Number of first-degree relatives diagnosed with breast cancer

‡
Full-cohort population

§
Case-Cohort design with 20% random sample from full-cohort population

¶
Nested Case-Control design with 1 control for each case
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Table 6

Comparison between IPCW estimator and QPS estimator

censoring rate
IPCW estimator

†
QPS estimator

‡

β = (0, 0) β = (0.2, 0.2) β = (0, 0) β = (0.2, 0.2)

g(t) =exp(t)

0.1 Bias 0.000 −0.006 0.000 −0.004 0.000 0.003 0.000 0.002

SI) 0.038 0.065 0.032 0.049 0.039 0.065 0.033 0.056

SE 0.037 0.065 0.030 0.051 0.038 0.066 0.032 0.056

CP 94.0 94.6 92.7 94.8 94.2 96.2 94.2 95.5

0.3 Bias −0.003 −0.004 −0.001 −0.002 0.001 −0.004 0.001 −0.003

SD 0.047 0.078 0.037 0.059 0.043 0.075 0.036 0.063

SE 0.046 0.080 0.035 0.060 0.042 0.073 0.036 0.062

CP 94.4 94.6 93.7 93.9 94.2 94.1 95.1 94.6

0.8 Bias 0.001 0.004 0.006 0.005 −0.001 −0.001 0.001 −0.002

SD 0.273 0.459 0.139 0.237 0.071 0.129 0.057 0.105

SE 0.245 0.373 0.138 0.225 0.073 0.127 0.059 0.103

CP 86.2 86.0 92.6 93.4 95.5 94.2 95.3 95.4

g(t) = t

0.1 Bias 0.000 −0.002 −0.001 −0.004 0.000 0.002 0.004 0.007

SD 0.013 0.022 0.024 0.044 0.020 0.034 0.030 0.050

SE 0.013 0.022 0.023 0.043 0.020 0.034 0.029 0.051

CP 94.0 94.8 94.6 93.0 93.9 96.1 94.0 95.6

0.3 Bias −0.001 −0.001 −0.004 −0.006 0.001 −0.002 0.001 −0.002

SI) 0.016 0.028 0.030 0.057 0.024 0.042 0.034 0.060

SE 0.016 0.028 0.029 0.057 0.024 0.042 0.034 0.058

CP 94.6 94.6 93.6 93.8 94.4 94.3 94.3 94.1

0.8 Bias 0.000 0.001 −0.098 −0.091 0.001 −0.002 0.010 0.006

SD 0.106 0.184 0.139 0.222 0.059 0.102 0.094 0.158

SE 0.091 0.142 0.116 0.179 0.058 0.101 0.084 0.146

CP 84.8 84.8 78.8 85.4 94.3 94.9 92.8 93.8

SD: sample standard deviation; SE: mean of estimated standard error;

CP: empirical coverage probability of 95% confidence interval;

†
Inverse probability censoring weighted estimator

‡
Quasi-partial score estimator
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