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Abstract

Background: Approximately one-fourth of all cancer metastases are found in the brain. MRI is 

the primary technique for detection of brain metastasis, planning of radiotherapy, and the 

monitoring of treatment response. Progress in tumor treatment now requires detection of new or 

growing metastases at the small subcentimeter size, when these therapies are most effective.

Purpose: To develop a deep-learning-based approach for finding brain metastasis on MRI.

Study Type: Retrospective.

Sequence: Axial postcontrast 3D T1-weighted imaging.

Field Strength: 1.5T and 3T.

Population: A total of 361 scans of 121 patients were used to train and test the Faster region-

based convolutional neural network (Faster R-CNN): 1565 lesions in 270 scans of 73 patients for 

training; 488 lesions in 91 scans of 48 patients for testing. From the 48 outputs of Faster R-CNN, 

212 lesions in 46 scans of 18 patients were used for training the RUSBoost algorithm (MatLab) 

and 276 lesions in 45 scans of 30 patients for testing.
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Assessment: Two radiologists diagnosed and supervised annotation of metastases on brain MRI 

as ground truth. This data were used to produce a 2-step pipeline consisting of a Faster R-CNN for 

detecting abnormal hyperintensity that may represent brain metastasis and a RUSBoost classifier 

to reduce the number of false-positive foci detected.

Statistical Tests: The performance of the algorithm was evaluated by using sensitivity, false-

positive rate, and receiver’s operating characteristic (ROC) curves. The detection performance was 

assessed both per-metastases and per-slice.

Results: Testing on held-out brain MRI data demonstrated 96% sensitivity and 20 false-positive 

metastases per scan. The results showed an 87.1% sensitivity and 0.24 false-positive metastases 

per slice. The area under the ROC curve was 0.79.

Conclusion: Our results showed that deep-learning-based computer-aided detection (CAD) had 

the potential of detecting brain metastases with high sensitivity and reasonable specificity.

Each year, 170,000 patients are diagnosed with brain metastases in the U.S., and they 

account for roughly one-fourth of all cancer metastases.1 As advances in molecularly 

targeted therapies, immunotherapies, and stereotactic radiation therapy improve the survival 

of cancer patients, the proportion of patients presenting with brain metastasis is increasing. 

Indeed, many patients live for years with treated brain metastases without suffering the 

cognitive impairment produced by whole-brain radiation.2-4 This improved survival 

represents a significant advance in cancer treatment, but also dramatically increases the 

importance of accurate detection of brain metastases and the need for precision follow-up. 

When brain metastases are detected early at a small size,5,6 stereotactic radiosurgery (SRS) 

and stereotactic radiotherapy (SRT) have been shown to be very effective.7,8 For example, 

SRT can be performed on new or additional metastases at multiple timepoints without 

exceeding critical radiation dose thresholds.

These developments make it essential that radiologists find all the metastases in each follow-

up brain magnetic resonance imaging (MRI) scan, where a single scan can consist of more 

than 150 slices. Radiologists are now often asked to track 20 or more metastases that have 

been treated with SRS at different times over a course of years. Many metastases 

demonstrate a decrease in size and postcontrast conspicuity after therapy. By comparison, 10 

years ago it was rarely necessary to follow more than three or four brain metastases because 

once this number was exceeded the only available treatment options were whole-brain 

radiation and then hospice care. This paradigm shift in neuro-oncology has made the task of 

brain MRI interpretation far more critical, difficult, and time-consuming. Because 

metastases can grow rapidly in weeks or months between MRI follow-ups, and radiologist 

workloads are increasing, improving accuracy and efficiency are critical to improving 

patient safety and outcomes.9-11

The primary obstacles to metastasis detection are their small sizes, similarity with small 

blood vessels, and low contrast-to-background ratio (CBR) on brain images. Also, although 

small metastases are often seen only on a single MRI slice, radiologists must scroll back and 

forth through neighboring slices to differentiate a metastasis from the surrounding vessels, a 

time-consuming and error-prone process. This search task is complicated by the fact that, 
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prior to detection, it is unknown whether sections of a given brain MRI harbor any 

metastasis and, if so, the number of metastases.

Because the consequences of missing a metastasis are high for patients, providers, and the 

healthcare system, and the task is difficult, brain metastasis detection presents an 

opportunity for computer-aided detection (CAD), such as deep-learning-based approaches. 

Deep-learning techniques like convolutional neural network (CNN) and its variations have 

been increasingly used in image classification and segmentation.12-14 Motivated by its 

successful applications seen in computer vision, CNN-related techniques have been applied 

to address clinical problems.15-20 For example, CNNs have also been applied to detect and 

segment breast cancer in mammograms21 and lung cancer in computed tomography.22

As a descendant of CNN, R-CNN (regions with CNN) combines region proposals with CNN 

to constitute a scalable detection scheme for image analysis.23 R-CNN evolved into Faster 

R-CNN, which is based on a region proposal network (RPN) that shares full-image 

convolutional features with a detection network.24 RPN is a deep convolutional neural 

network that inputs the image feature map from the last convolutional layer of the Faster R-

CNN network and outputs a number of “region proposals.” RPN quickly scans an image to 

calculate the probability of an object is at a location and only the locations with a high 

probability, ie, region proposals, are further analyzed for detection and classification. These 

region proposals reduce the computational cost by narrowing down the area of an input 

image with a high probability of containing the objects of interest, which in our case means 

brain metastases. With a simple alternating optimization, RPN and Faster R-CNN can be 

trained to share convolutional features. In brain image analysis, use of these and similar 

deep-learning techniques have been reported for primary brain tumor detection and 

segmentation,25,26 and, in a few cases, for brain metastasis detection.
27-29

In spite of existing efforts for developing CAD approaches for brain image modeling and 

analysis, to date no clinically useful CAD system is available to assist radiologists in 

detecting brain metastases on MRI.30

In this work we designed a deep-learning-based pipeline as a CAD approach for detecting 

brain metastases on 2D MRI. We aimed to achieve a high sensitivity with a reasonable false-

positive rate for assisting users to find metastases.

Materials and Methods

Imaging Data

The study was approved by our Institutional Review Board (IRB). Informed consent was 

waived by the IRB because this study was a retrospective analysis of existing records. The 

image data were retrospectively retrieved from our institutional electronic medical records. 

All study images were deidentified before analysis. Axial 3D spoiled gradient recalled or 

magnetization prepared rapid gradient echo T1-weighted contrast-enhanced MR images 

were retrieved for analysis. Patients with one or more brain metastases were selected 

sequentially during clinical readout. MRI scanners included 1.5T and 3T from two major 

vendors (General Electric, Milwaukee, WI, and Siemens, Erlangen, Germany). Spatial 
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coverage for all sequences was “whole brain.” The range of acquisition parameters for 

SPGR sequences were as follows: matrix: 256–512 by 256–512; slice thickness: 0.9846–

3.8396 mm (2.6368 ± 0.8204); pixel size: 0.4297–1.0156 mm (0.5855 ± 0.1973 mm); 

relaxation time (TR): 6–30 msec; echo time (TE): 1.88–11 msec; field of view (FOV): 75–

100 mm; flip angle: 10–40°. The range of acquisition parameters for MPRAGE sequences 

were as follows: matrix: 176–512 by 215–512; slice thickness: 0.8862–2.1504 mm (1.0711 

± 0.2023); pixel size: 0.4688–1.0547 mm (0.9489 ± 0.1013 mm); TR: 1580–2400 msec; TE: 

2.49–4.44 msec; TI: 900–1240 msec; FOV: 69–100 mm; flip angle: 8–15°. Our dataset also 

included a small amount of sampling perfection with application optimized contrasts using 

different flip angle evolution and volumetric interpolated breathhold examination sequences 

from other hospitals. The acquisition parameters for SPACE sequences were as follows: 

matrix: 256–512 by 256–512; slice thickness: 1–2.0078 mm (1.6991 ± 0.4692); pixel size: 

0.4980–1 mm (0.6385 ± 0.2414 mm); TR: 600–700 msec; TE: 8.2–12 msec; FOV: 100–100 

mm; flip angle: 120–120°. The acquisition parameters for VIBE sequences were as follows: 

matrix: 448–512 by 512–512; slice thickness: 1.9692–2.0480 mm (2.0086 ± 0.0557); pixel 

size: 0.4883–0.5078 mm (0.4980 ± 0.0138 mm); TR: 6–7 msec; TE: 2.23–3.48 msec; FOV: 

88–100 mm; flip angle: 10–10°.

In total, we retrieved data from 121 metastases patients, with 2053 metastases on 14,530 

slices of images from a total of 361 scans. Patients were selected for inclusion in the study 

from patients known to have definite clinical and imaging diagnosis of brain metastases. 

Patients with lesions not definitively known to represent metastases were not included. To 

confirm the diagnoses of brain metastases, we convened a review panel consisting of two 

radiologists and two oncologists: a neuroradiologist with 20 years of experience (G.S.Y.), an 

academic general radiologist with 9 years of experience (J.L.), a neuro-oncologist with 25 

years of experience (D.A.R), and a neuro-oncologist with 3 years of experience (J.R.M.F.). 

The panel reviewed all imaging and clinical data relevant to whether lesions on the included 

brain MRIs represented metastases, including index, immediate prior and follow-up MRIs, 

clinical oncology and other notes, and pathology reports as available. Pathological 

confirmation of brain metastasis from brain biopsy or resection was available in 43 patients 

(36%). In the remaining 78 patients (64%) brain surgery had not been performed and hence 

brain tissue pathologic diagnosis was not available. Presumably this is because the treating 

physicians determined that the risks of brain surgery were not justified in light of the high 

diagnostic certainty of brain metastasis based on clinical and imaging data. All 78 of these 

patients had a known diagnosis of primary cancer arising elsewhere in the body. After 

review, the panel unanimously confirmed the clinical diagnosis of brain metastasis in all 78 

of these patients. Most patients had multiple scans, while a few of them had one scan. Their 

primary cancer included lung cancer (53), breast cancer (28), melanoma (22), and other 

types of cancer (18). The mean and standard deviation of patient ages were 54.4 and 16.76, 

respectively. There were 46 males and 75 females in the patient cohort. For training and 

testing of the Faster R-CNN and RUSBoost (MatLab, MathWorks, Natick, MA), we 

randomly divided patients into training and test sets. Because a subset of patients had had 

multiple scans over a period of time, in assigning patients to the training and test sets we 

ensured that all the scans of the same patients were either assigned to the training set or the 
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test set to ensure that no patient occurred in both datasets and to keep the two sets 

independent.

Major Steps of the CAD System

The proposed CAD pipeline consisted of several steps, including preprocessing, Faster R-

CNN for metastasis detection, skull stripping, and RUSBoost for false-positive reduction. 

The preprocessing steps included intensity normalization and data augmentation. The Faster 

R-CNN step then analyzed each slice of brain MRI for generating bounding boxes that may 

contain metastases. Next, skull striping was employed to remove skull from each slice. 

Finally, RUSBoost was applied to reduce false positives by analyzing 22 radiomics features 

of each remaining bounding box.

Preprocessing

Before an image was used for training or testing purposes, we applied a series of operations 

to preprocess the images. As the first step, because the original images were of different 

matrix sizes, we padded the images with 0’s. We then performed scaling, if necessary, to 

convert all the images to the same matrix size of 900 × 900. Next, we then performed a per-

image mean subtraction to make all the images zero-centered, which is a necessary step 

because the VGG16 model required all the input images to have a zero mean. Then, as the 

last step of preprocessing, we employed a left-right flip operation to augment the size of our 

training data.

Faster R-CNN

In this step, we applied a Faster R-CNN VGG16 model as outlined previously24,31 for 

metastasis detection. The detailed structure of the model is shown in Fig. 1, and it consisted 

of five convolutional layers, two deconvolutional layers, one RPN layer, and two fully 

connected layers. The RPN network uses a 3 × 3 spatial window to scan the feature map to 

obtain the proposals. It attached nine anchor boxes at a single position—derived from three 

different aspect ratios at three different scales. The three aspect ratios used here were 0.5 

(landscape), 1 (square), and 2 (portrait), and the areas of the rectangular bounding boxes at 

the three scales were set to 162, 322, and 642 pixels to accommodate the different sizes of 

brain metastases on the images. Next are two 1 × 1 convolutional layers for classification 

(cls) and regression (reg), whereas the classification layer determines whether anchors are 

positive or negative, and the regression layer obtains the exact proposals through bounding 

box regression correction anchors. Then the ROIPooling layer collected the input feature 

maps and calculated proposals, integrated this information, extracted the proposal feature 

maps, and sent them into the subsequent fully connected layer. The proposal feature maps 

are used to calculate the category of the proposal, and the bounding box regression is used 

again to obtain the position of the detection box. Finally, the Faster R-CNN generated the 

bounding boxes and the corresponding scores of the proposals. Its output has two outcomes: 

one is a rectangular bounding box over a detected brain metastasis and the other is a 

prediction score, representing the degree of confidence in determining the bounding box as a 

metastasis. The VGG16 model we used for metastasis CAD had been pretrained on the 

ImageNet database. As such, it requires that its input be in the RGB format, while our brain 
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MRIs were of grayscale only. So we repeated the mono-channel brain images twice to 

convert them to the RGB format.

One challenge in brain metastasis detection is the small size of the true objects. Further, the 

metastases may locate at any position in the brain. In optimizing the Faster R-CNN, we 

found that the stride length of the conv5_3 feature map was too large for most of the brain 

metastases seen in MRI, and the downsampling ratio of 1/16 used in the VGG16 model 

could cause a miss in detection so we applied deconvolutional layers to upsample the feature 

map. We used two deconvolutional layers after the conv5_3 layer to achieve a downsampling 

ratio of 1:4. In the convolutional layers, the stride is 1, kernel size is 3, and zero padding size 

1. In the deconvolutional layers, the stride is 2, kernel size 4, and zero padding size 1.

To train the RPNs, we assigned a binary class label (of being an object or not) to each 

anchor. A positive label was assigned to two kinds of anchors: 1) the anchor(s) with the 

highest Intersection over Union (IoU) overlapping with a ground truth box, and 2) an anchor 

that has an IoU of 70% or more between the bounding box and the ground truth. Here we 

note that a single bounding box of the ground truth may assign positive labels to multiple 

anchors. We assigned a negative label to a nonpositive anchor if its IoU was less than 30% 

for the corresponding ground truth box. Anchors that are neither positive nor negative will 

not contribute to the training objective. With these definitions, we minimize the following 

objective function24:

L({pi}, {ti}) = 1
Ncls

∑
i

Lcls(pi, pi
∗) + λ 1

Nreg
∑

i
pi

∗Lreg(ti, ti∗) (1)

where pi is the predicted probability of the i-th anchor being a brain metastasis, and λ is a 

balancing parameter, which was set to 10 in this work. The ground truth label pi
∗ was 1 if the 

anchor was positive and 0 otherwise. Here ti, i = 1, …, 4, are the four parameterized 

coordinates of the predicted bounding box, and ti
∗, i = 1, …4, are the coordinates of the 

bounding box of ground truth associated with a positive anchor. The classification loss Lcls 

is log loss over two classes, metastases or not. The regression loss Lreg uses the smooth L1 

loss function. The optimization method we used here was SGD (Stochastic Gradient 

Descent), the batch size was 2, total iterations 36,000, and learning rate 0.01. Most patients 

had multiple scans, while several patients only had one scan.

Our method achieves bounding box regression by a different manner from previous feature 

map-based methods,31 in which bounding box regression is performed on features pooled 

from arbitrarily sized regions, and the regression weights are shared by all region sizes. The 

features used for regression are of the same spatial size (n × n) on the feature maps. To 

account for varying sizes, a set of k bounding box regressors are learned. Each regressor is 

responsible for one scale and one aspect ratio, and the k regressors do not share weights, so 

it can predict bounding boxes of various sizes.

The output for our deep-learning method consists of rectangular object proposals, each with 

an objectness score (here, the word “objectness” means the presence of an object, or not, in a 

region of interest, so-called “objectness” of the proposed region24). If the objectness score is 
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larger than 0.85, we determined that it is a brain metastasis and drew a red rectangle on the 

proposal.

Skull Stripping

As in this work we focused on the metastases in the brain parenchyma and employed 

FreeSurfer to remove the skull32,33 and, hence, eliminate the false positives that were 

marked outside the brain mass. The skull strip algorithm combines watershed algorithms and 

a deformable surface.

False-Positive Reduction by RUSBoost

The false positives within the output of Faster R-CNN, followed by skull stripping, 

outnumbered the true positives. To reduce false positives, we applied the RUSBoost 

algorithm as a postprocessing step to improve the performance of the whole CAD pipeline.

The RUSBoost algorithm combines data sampling (random undersampling) and boosting 

(AdaBoost, adaptive boosting) to handle data imbalance problems.34 In our case, the 2639 

false positives from Faster R-CNN constituted the majority class, while the 841 true 

positives were the minority class. In implementation, RUSBoost undersampled the majority 

class to make the number of false positives equal to the true positives and then performed 

AdaBoost on the balanced classes. In this process, a new weak classifier is added in each 

iteration until a predetermined error rate is reached. Each training sample is given a weight, 

indicating the probability that it is selected into the next iteration’s training set. If a sample 

point has been accurately classified, then the probability of being selected in the next 

training set is reduced; otherwise, its weight is increased. In the AdaBoost, misclassified 

sample from previous classifier will be used to train the next classifier.

Training and Testing the Pipeline

The ground truth was marked by two radiologists by placing a rectangular box around each 

metastasis on every slice. All interpretations were performed independently by the two 

radiologists (G.S.Y. with 20 years of experience and J.L. with 9 years of experience.) To 

measure the agreement between the two readers, we calculated the Cohen’s kappa 

coefficient to be 0.901. We randomly selected 73 patients, for a total of 270 scans and 1565 

lesions, for training the Faster R-CNN. We assigned the remaining 48 patients, for a total of 

91 scans and 488 lesions, for testing the Faster R-CNN. Then, from the 48 output cases of 

Faster R-CNN, we randomly selected 18 cases, for a total of 46 scans and 212 lesions, for 

training the RUSBoost. We used the remaining 30 cases, for a total of 45 scans and 276 

lesions, for testing the RUSBoost.

We applied a holdout validation for the RUSBoost classification. In each round of cross-

validation, the data were partitioned into 75% for training and 25% for validation. The 

training set was used to train the RUSBoost and the testing set to evaluate the performance. 

The process was repeated several times, using the average cross-validation error as a 

performance indicator, which is essentially a 2-fold cross-validation with a 75:25 split ratio.
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We tested our method on brain MRIs and compared the results with the ground truth 

provided by human experts. Computations were carried out on a computer equipped with an 

Intel Core i7 2.90 GHz CPU and a single NVIDIA GTX 1080 Max-Q GPU with Ubuntu 

16.04 LTS system. The total training time of the Faster R-CNN was 20 hours and the 

running time for applying the trained Faster R-CNN on a single scan was about 1.5 minutes.

Performance Evaluation

We tested our method on brain MRIs and compared the results with the ground truth 

provided by human experts. To evaluate the overall performance of our method, we 

calculated the sensitivity and false-positive rate, defined as:

Sensitivity = True Positives
True Positives + False Negatives ( % ) (2)

False Positive Rate = All False Positives
Number of Scans(Slices) (3)

In this work we did not calculate the area under the curve (AUC) of the receiver operating 

characteristic (ROC) for the step of Faster R-CNN because the true-negative rate cannot be 

determined, as there are infinitive locations in a brain scan that can be considered metastasis-

free. Similarly, since our input data were selected from patients with brain metastases, there 

are no true-negative patients in the current sample, precluding a patient-by-patient analysis. 

In the absence of a clearly valid way to compute the AUC of the ROC, we chose to use 

sensitivity and the rate of false positives per examination to evaluate the performance of 

CAD. For the step of RUSBoost, because its input contains a known finite number of true-

positive boxes and false-positive boxes, we calculated its AUC of the ROC curve.

Results

Figure 2 shows three examples of brain metastases on different scans that the Faster R-CNN 

accurately detected, with red bounding boxes marking the Faster R-CNN results and green 

bounding boxes representing the ground truth. It shows that the Faster R-CNN method can 

find metastases that are very small and located throughout different regions in the brain. 

Figure 3 is an example of a patient with two metastases, the first of which, in the frontal 

lobe, was detected in all 12 consecutive slices. The second metastasis, located in the parietal 

lobe, was accurately detected in the five consecutive slices on which the metastasis was 

observed. These examples illustrate that the method can detect multiple metastases correctly, 

even when the metastases are of very different shapes and intensities. A more challenging 

case is shown in Fig. 4, in which a small lesion of the size of 3 mm in diameter was correctly 

identified by our method.

For some small metastases that appeared on multiple slices, our method did not detect the 

same metastasis on every slice, although it usually found the metastasis on at least one or 

two slices. Figure 5 illustrates such a case in which our method missed the brain metastasis 

in the first slice, but detected the metastases on the second and third slices. In this case, the 
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metastasis was small and had very low signal intensity, making it very challenging even for a 

human expert to detect.

The final model missed only 12 of 276 metastases in the test set of 30 patients. Six of the 

missed metastases were found from scans of a patient who had more than 25 metastases. All 

the missed metastases were small and had very low CBR (definition given in Appendix). A 

missed metastasis is shown in Fig. 6.

The method achieved a sensitivity of 95.6% (95% confidence interval [CI] [94.0%, 99.1%]) 

for metastasis detection with a false-positive rate of 19.9 (95% CI [16.9, 23.8]) per scan. If 

each slice with a detectable metastasis is treated independently, the sensitivity was 87.1% 

(95% CI [85.5%, 91.3%]) and false-positive rate 0.24 (95% CI [0.19, 0.27]) per slice.

For objects contained in a bounding box, our results showed that the CBR for all detected 

metastases is 3.15 ± 1.82 and the CBR for the missed metastases was 1.96 ± 1.63, indicating 

that higher CBR in the image allowed better performance. The histogram is shown in Fig. 

7a. Size is another factor that affects the detection rate of metastases. In Fig. 7b, the plot 

shows that the number of missed metastases decreased as the size of metastases increased. 

We also evaluated the effect of RUSBoost in impacting the performance of Faster R-CNN 

and found that, without using RUSBoost, the sensitivity was 97% and the false-positive rate 

was 27/scans. With the use of RUSBoost, the sensitivity of the whole pipeline was 96% and 

the false-positive rate was 20/scans.

In order to reduce the false-positive rate in the outcome of Faster R-CNN, we compared the 

performances of RUSBoost with several other classification methods and found that 

RUSBoost was the most effective. We plotted the ROC curves of RUSBoost vs. those of 

FineTree,35 CubicSVM (Cubic support vector machine),36 weighted K-nearest neighbor,37 

local discriminator,38 and AdaBoost39 (Fig. 8 and Table 1) and found that RUSBoost had the 

largest AUC.

Discussion

In this work we developed a deep-learning-based CAD tailored to brain metastasis detection 

on T1-weighted MRI and evaluated its performance in terms of sensitivity and false-positive 

rate. Accurate detection of brain metastases is of clinical significance for treating and 

managing cancer patients, as the brain is a common place for cancer to metastasize. 

However, finding brain metastases is very difficult because of the small sizes, weak signal 

intensities, and multiple locations of metastatic lesions. As a CAD technique, our method is 

comparable to previous reports on brain metastasis detection. For example, Sunwoo et al 

proposed a CAD framework that employed K-mean clustering and template match as 

preprocessing steps to reduce false positives and then a threelayer artificial neural network to 

identify metastases in 3D MRI.27 They achieved a sensitivity of 87.3% and a false-positive 

rate per case of 302. By modeling brain metastases as spherical objects while accounting for 

the partial volume effect, Ambrosini et al developed a 3D template matching algorithm for 

finding metastases in MRI.40 The algorithm, employing 3D templates of various radii, 

obtained a sensitivity of 89.9% with a false-positive rate of 0.22 per slice in the brain 
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parenchyma.40 Pérez-Ramírez et al proposed a template matching approach that first 

calculated the cross-correlations between 3D templates with brain MRIs for identifying 

candidate metastases and then each candidate was segmented to compute the degree of 

anisotropy.41 Candidates with a degree of anisotropy less than a preset threshold were 

determined to be true metastases. The method attained a performance of a sensitivity of 

88.10% and a false-positive rate of 0.05 per slice. Charron et al adapted an existing 3D CNN 

(DeepMedic) to detect brain metastases and found that, by combining 3D T1, 2D T1, and 2D 

FLAIR (fluid attenuated inversion recovery), the 3D CNN achieved the best performance for 

a sensitivity of 98% and 7.2 false positives per scan.28 Grovik et al developed a 2.5D neural 

network based on GoogLeNet architecture to take multiple MR sequence images, T1-

weighted 3D spin echo, T1-weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE 

FLAIR as input for brain metastasis detection and obtained an average sensitivity of 83%, a 

false-positive rate of 8.3 per scan for metastases of all sizes, and false-positive rate of 3.4 per 

scan for metastases larger than 10 mm3.29

Compared with primary brain tumor detection and other types of abnormality detection, 

metastases present several unique challenges. The first challenge is that, while primary brain 

tumors are usually more than a hundred pixels in size, brain metastases can be less than five 

pixels in many cases. The very high sensitivity of our algorithm (96% in our test set) 

suggests that the method can successfully deal with this challenge. Our results suggest that 

brain metastases of smaller sizes and lower CBR are more challenging for the machine-

learning model to find (Fig. 7), as they are for human experts.

The second challenge is the similarity between brain metastases and small blood vessels in 

images, as both may present as a small focus of hyperintensity on a single T1-weighted 

contrast-enhanced MRI image and small blood vessels may be misclassified as metastases. 

The false-positive rate of 20 FPs per scan in our test cases indicates that this remains an 

important challenge. To investigate the cause behind these remaining false positives, we 

randomly selected eight test scans, which had a total of 256 false positives, and examined 

the false positives on each scan. We found that 88% of false positives were small blood 

vessels and the remaining 12% were due to imaging artifacts and other factors. Human 

experts differentiate between metastases and small blood vessels by examining their 

morphology in 3D, since metastasis is typically spherical or ovoid and small blood vessels 

are generally serpentine and can be tracked through multiple adjacent images. We plan to 

apply 3D morphological analysis as a postprocessing step in our next iteration of the CAD 

model to distinguish brain metastases from small blood vessels and reduce the false-positive 

rate.

The third challenge is that there can be multiple brain metastases of various sizes and all 

need to be fully accounted for by computerized analysis. In future work, we plan to 

implement automated image preprocessing to improve input data uniformity and construct a 

new deep-learning network with MRI images.

In this work, we employed RUSBoost to reduce false positives in the output of Faster R-

CNN, which contained more false positives than true positives. The hybrid RUSBoost 

algorithm includes random undersampling and AdaBoost. This is appropriate for improving 
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the performance of classification learners trained with imbalanced data that have a much 

larger majority class and a much smaller minority class. The random undersampling step 

iteratively removes examples from the majority class (in our data, the false positives) until 

the desired class distribution is achieved. We compared RUSBoost with some popular 

classification algorithms, including support vector machine, decision trees, K-nearest 

neighbors, discriminant analysis, and AdaBoost and found RUSBoost had the best 

performance among them.

Although a well-designed CNN alone, with a sufficiently large training dataset, may provide 

excellent performance, this requires a large and comprehensive labeled training set, which is 

difficult to obtain in medical imaging. In addition, the accurate performance of CNN relies 

on having a complex and deep structure that raises the risk of overfitting when trained on 

small datasets. The results from our current work demonstrate high sensitivity and a false-

positive rate that is acceptable for initial proof-of-concept but will need to be reduced prior 

to clinical translation. We anticipate that the number of false positives can be substantially 

reduced by geometric modeling approaches to differentiate metastases from small blood 

vessels, which is a goal of ongoing work.

In a pipeline of detecting abnormalities in brain images, skull stripping can be either placed 

before or after the detection step. In our current work, we placed skull stripping after Faster 

R-CNN because our eventual goal was to design a CAD system that can detect metastases 

anywhere in the brain including the skull, scalp, and facial soft tissues.

The sensitivity of our method to false positives related to blood vessels highlights an 

important clinical application for a relatively recently developed set of MRI acquisition 

techniques referred to collectively as “black blood” techniques.42-44 These employ a variety 

of approaches to selectively suppress the signal intensity of flowing blood without 

suppressing the signal intensity of static enhancing structures such as brain metastases. In 

2013, Yang et al reported a neural network approach for finding brain metastases on black 

blood imaging, in which a 3D template matching was first used to select regions of interest 

(ROIs) that potentially contained metastases and then a neural network further analyzed the 

ROIs to determine the presence of metastases.45 The method obtained a sensitivity of 81.1% 

and a specificity of 98.2%. Although black blood imaging techniques are very promising, 

these approaches are currently not widely used in the clinic because of the extra scan time 

they require. In future, such approaches may prove synergistic to CAD methods in the quest 

for higher accuracy in diagnosis.

Limitations

Our current work has a limitation in that the pipeline is currently implemented to process 

each slice of a 3D image stack separately. As such, it may miss certain 3D anatomic context 

in the 2D analysis, and this context is essential for a human radiologist to detect true-positive 

metastases and reject false-positive vessels and other structures. This can prove to be 

valuable information in future CAD development such as 3D CNN approaches. Another 

limitation is the moderate amount of data used in the current work. With an expanded 
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database, it is expected that deep-learning-based CAD techniques can achieve better 

performance.

Conclusion

Our results from this initial exploratory CAD investigation demonstrate sensitivity high 

enough to be clinically useful and a false-positive rate acceptable for proof-of-concept but 

not yet optimal for clinical translation. Future work includes adapting this method to 3D data 

and acquiring additional larger training datasets to reduce the false-positive rate and produce 

a more robust CAD system.
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FIGURE 1: 
Structure of our deep-learning approach.
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FIGURE 2: 
Detection results of brain metastasis of three different images by our method, marked in red 

bounding boxes. Ground truth is given by green bounding boxes.
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FIGURE 3: 
Brain metastases on consecutive slices. Green boxes represent ground truth and red boxes 

are the predictive output.
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FIGURE 4: 
Smallest brain metastasis detected by our method (red bounding box).
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FIGURE 5: 
A challenging example of a small brain metastasis found in three consecutive slides by 

human experts. The metastasis was not detected on the first slice but was successfully 

detected on the second and third slices by our method.
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FIGURE 6: 
An example of missed metastases by our method.
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FIGURE 7: 
Number of missed metastasis-slice by CBR (a) and by diameter (b).
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FIGURE 8: 
ROC curves of RUSBoost and several comparison classification methods.
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TABLE 1.

AUC of the ROCs of RUSBoost and Several Classification Methods

Classification method AUC

RUSBoost 0.7945

Linear Discrimination 0.7070

Cubic SVM 0.7316

Weighted KNN 0.7096

Fine Tree 0.6831

AdaBoost 0.7229
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