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Abstract

Total metastatic burden is the primary cause of death for many cancer patients. While the process 

of metastasis has been studied widely, much remains to be understood. Moreover, few agents have 

been developed that specifically target the major steps of the metastatic cascade. Many individual 

genes and pathways have been implicated in metastasis but a holistic view of how these interact 

and cooperate to regulate and execute the process remains somewhat rudimentary. It is unclear 

whether all of the signaling features that regulate and execute metastasis are yet fully understood. 

Novel features of a complex system such as metastasis can often be discovered by taking a 

systems-based approach. We introduce the concepts of systems modeling and define some of the 

central challenges facing the application of a multidisciplinary systems-based approach to 

understanding metastasis and finding actionable targets therein. These challenges include 

appreciating the unique properties of the high dimensional omics data often used for modeling, 

limitations in knowledge of the system (metastasis), tumor heterogeneity and sampling bias, and 

some of the issues key to understanding critical features of molecular signaling in the context of 

metastasis. We also provide a brief introduction to integrative modeling that focuses on both the 

nodes and edges of molecular signaling networks. Finally, we offer some observations on future 

directions as they relate to developing a systems-based model of the metastatic cascade.
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Introduction

A key goal for many research programs is to identify a gene, pathway, or signaling feature 

that regulates a critical biological function in a manner that is actionable either as a 

predictive and/or prognostic biomarker, and/or as a therapeutic target. Increasingly, these 

signaling features are extracted from high dimensional omic datasets (genome, 

transcriptome, proteome, metabolome and their respective subomes including the epigenome 

and kinome). These high dimensional omic data sets have unique properties that often differ 

from other high dimensional data spaces such as those in many large epidemiologic studies 

[1]. Moreover, most omic studies produce massively parallel data that represent only a snap-

shot of the ome as it is represented at the time of sample collection, yet signaling pathways 

have critical dynamical sequencing features. The ability to detect this temporal sequencing 

may depend both on whether the key steps must be activated sequentially or if these can be 

acquired stochastically but retained (perhaps epigenetically), and/or if all steps are 

concurrently represented (and so can be detected) in the various cells present in 

heterogeneous tissue samples (Figure 1). Omic datasets are often obtained from 

heterogeneous bulk tissues, where cellular, molecular, and genetic heterogeneity, often 

compounded by sampling bias, can complicate the ability to identify correctly the molecular 

signaling associated with a complex biological phenotype of interest.

Since metastatic dissemination and overall tumor burden are major contributors to cancer 

morbidity and death, the ability to metastasize is one such complex biological phenotype 

that continues to be studied extensively. Many genes and pathways have been implicated in 

affecting key features of the metastatic cascade (see [2–4] for reviews). Much is understood 

about the general process of metastasis, which can be described as comprising the steps of 

invasion, extravasation, intravasation, and colonization. However, each of these steps is a 

complex process, affected by activities or signals arising both within the cancer cell 

(intrinsic) and within the microenvironment (extrinsic). Successful metastatic dissemination 

requires coordination of the molecular actions underlying each of these steps in a manner 

that has the appearance of exhibiting some temporal sequencing. Despite what is known 

currently, knowledge of the precise mechanisms that enable cells to seed distant sites 

remains incomplete [5].

From a molecular signaling perspective, complex biological processes like metastasis are 

among the more difficult to study. The search space for the most functionally relevant genes 

can be large. In different cellular contexts some key genes may be more or less important for 

controlling the same outcome, or affected by different regulatory or control actions. For 

example, the relative importance of the receptors for estrogens (ESR1; ER) and androgens 

(AR) as drivers of metastasis is different in breast compared with prostate cancers. ER 

activation dominates the regulation of cell proliferation and key features of metastasis in ER-

Clarke et al. Page 2

Cancer Metastasis Rev. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



positive (ER+) breast cancers but is less important in AR-positive prostate cancers that are 

driven by AR activation. The reverse is true for many prostate cancers. Nonetheless, the 

basic concepts of the primary steps and key features of metastasis are the same in breast and 

prostate cancer and both cancers may share key endocrine-regulated features that are 

regulated by ER and AR, respectively.

In this review we will explore, at a relatively high level, some of the central aspects of 

molecular signaling from a systems perspective and the challenges to identifying actionable 

targets, with a focus on the metastatic cascade. We use the term molecular signaling to 

represent the molecular interactions in a cell that affect its behavior/phenotype. Such 

interactions are multiscale in nature and include protein-protein (PPI; proteome), protein-

DNA (PDI; crosses the genome and proteome scales), and substrate-enzyme-product 

interactions (SEP; crosses the metabolome and proteome scales) in a chain of individual 

reactions that comprise a complex multiscale network. For metastasis, this network almost 

certainly includes PPIs, PDIs, and SEP interactions, crossing the scales of genome (and 

epigenome), transcriptome, proteome, and metabolome [6].

Below, we introduce systems and a view of metastasis from the perspective of a system and 

key challenges to understanding the complexities of the metastatic process. We first describe 

some of the challenges and opportunities in therapeutic targeting of metastasis and then 

introduce the modular structure of systems models. Since understanding the critical 

molecular features that explain module function mechanistically is key to understanding 

system function, we then introduce some of the properties of the omic datasets often used to 

discover these key features. Omic data are often obtained from heterogeneous tissues in 

animal and human subjects. Sampling bias and heterogeneity are often associated with these 

samples independent of the goals of the study, these are discussed briefly prior to giving a 

more detailed discussion of some of the key challenges associated with specifically 

modeling metastasis. We then follow by discussing some of the properties of molecular 

signaling that drive these essential components, the intrinsic and extrinsic nature of the 

signaling control and execution features, and the properties and utility of canonical pathways 

as guides to discovering cell context specific features. Finally, we introduce the emerging 

concept of modeling where the focus is less on discovering the nodes (such as individual 

genes, proteins, metabolites) of the network and more on discovering the edges that link 

these nodes.

Since it is not possible to cover all approaches, tools and workflows, the focus here is to 

introduce some of the more difficult challenges. The primary goal is to raise awareness of 

these challenges and their associated limitations, rather than to provide an exhaustive 

overview with detailed insights and potential solutions. Our approach here is 

multidisciplinary. Since some readers may not be experts in all of the fields, in several areas 

we have chosen to include a relative high proportion of citations to reviews, rather than 

providing an extensive listing of the primary papers that are cited within these reviews. 

Consequently, this review has its own limitations.
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Targeting metastasis

Identifying molecular targets and developing drugs that can block the process of metastasis 

has been an active area of research for decades. Nonetheless, few, if any, true antimetastasis 

drugs have made it into routine clinical practice [3,4]. Cytotoxic and cytostatic drugs can 

eliminate or slow the results of the metastatic process and improve disease-free, progression-

free, and overall survival in some patients with advanced cancer. However, these outcomes 

are less likely to reflect any specific effect on a step in the metastatic cascade than reflecting 

directly cytotoxic or cytostatic effects on cancer cells, whether in a primary tumor and/or its 

metastases. This observation is often overlooked in research where agents are claimed to 

specifically inhibit the process of metastasis in animal models while concurrently inhibiting 

the growth of the primary tumors. Such claims may be unwarranted, since drugs that kill or 

arrest cancer cells independent of their location will directly affect such endpoints as the 

number of metastases arising over time but can do so without any effect on the specifics of 

the metastatic cascade such as migration, invasion, or extravasation. While inhibiting growth 

at metastatic sites can be considered one step in the process, it is shared with the general 

feature of tumor growth that also occurs independent of the process of dissemination. While 

perhaps controversial, from a mechanistic perspective killing established metastases is often 

not considered as reflecting a purely antimetastasis activity. In contrast, blocking or 

reversing production of the premetastatic niche, and thereby preventing early cell survival at 

a distant site, would represent an antimetastasis action. Hence, a more easily interpreted 

outcome in such experiments would be a reduction in either the number of metastases, or the 

time to detection of metastases, by an agent that had no effect on tumor cell growth rate in 

the primary tumor or in any of its metastatic deposits. Such an intervention would be more 

likely to be considered as being truly antimetastatic than a generally cytotoxic antineoplastic 

drug. Of course, any drug that eliminated established metastatic deposits, even if it did not 

specifically target features of the metastatic cascade, could still produce major clinical 

benefit and be of great value.

Other challenges include the limitations inherent in both in vitro and in vivo models. In vitro 
models are widely used despite major limitations [7,8], particularly when 2D culture models 

are used as the primary or sole experimental models. 3D models [9] and those that can 

capture the physical forces related to early events in the metastatic cascade [10] generally 

offer more physiologically relevant tools but these remain less widely used. In vivo models 

often provide effective tools [3] but some experiments cannot be done in vivo because of 

technical and/or appropriate ethical constraints.

Perhaps not surprisingly, effectively and specifically targeting the process of metastasis has 

remained difficult, as clearly delineated in an excellent review by Steeg [4]. Indeed, 

skepticism that the process is at all targetable is evident among some academic and 

commercial investigators [4]. In addition to the limitations of in vitro and in vivo 
experimental models, the challenges of targeting metastasis specifically require an 

understanding of the processes that constitute the overall process, how these are integrated 

and regulated at the cellular and molecular levels, and how this knowledge can be leveraged 

to identify actionable and process-specific molecular targets and drugs. Obtaining this level 

of understanding likely requires a more systems-based [3] than reductionist approach. 
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Clearly, both approaches can produce important insights. The critical mechanistic studies 

needed to validate or determine the functions of individual genes and their role(s) in the 

overall system require a largely reductionist approach. However, to identify these individual 

genes and to predict their relationships within the overall system generally requires a 

systems approach. Systems approaches also create an opportunity to identify key, actionable 

control points in a process, as has been proposed for studies of other complex problems in 

cancer research [6].

System structure

A key goal of systems modeling is to identify the critical control mechanisms that regulate 

system function. Often, these mechanisms represent candidates to target as a means to block 

system function. Models can be either mathematical (based primarily on stochastic 

differential equations and algorithms) using mostly low dimensional data, or computational 

(based primarily on machine learning approaches) using mostly high dimensional data [6]. 

Integrative modeling adaptively uses both approaches, as is most appropriate for the specific 

hypothesis and data available. Since the data modeled are often acquired from many 

different sources including molecular (multiple omic forms), tissue level (such as biopsies), 

and clinical (including patient characteristics; treatment and response outcomes measures), 

each of which represents a different scale, integrative systems models are multiscale.

Systems models of complex, dynamic, adaptive, and open systems are often modular in 

structure [6]. While some investigators define modules as either known or discovered 

signaling features, we define the modules by the physiological processes known to 

contribute to system function. For estrogen regulated signaling in breast cancer, we defined 

the initial structural modules as autophagy, cell death, metabolism, proliferation, and 

unfolded protein response (UPR) [11]. Each of these modules has underlying molecular 

signaling that both regulates and executes each module. Since regulation of the modular 

functions can be coordinated, integrated signaling is envisioned where some nodes, and 

perhaps also edges, are common to more than one module [11]. An example is BCL2, where 

free BCL2 can act in mitochondrial membranes to inhibit apoptosis (a node in the cell death 

module) but it is also available to sequester BECN1 and so affect the ability of BECN1 to 

regulate autophagy (a node in the autophagy module) [6].

Metastasis is an example of the complex, dynamic, adaptive and open nature of biological 

systems [6]. For example, the open nature of metastasis is evident from interactions with the 

external microenvironment, as occurs between the disseminated cancer cells and the 

metastatic niche, rather than metastasizing cells representing a closed system and so acting 

independent of extrinsic factors. Complexity, dynamism and adaptation are each evident at 

every step in the metastatic cascade. Unlike some biological systems, metastasis – and 

perhaps also the continuing accumulation of mutations in genetically unstable cancer cells – 

does not appear to be self-limiting. Whether the rate of dissemination increases or decreases 

over time is unclear and may vary among different patients with the same disease. 

Nonetheless, the general process of metastasis appears to continue until the ever increasing 

total body tumor burden can no longer be sustained and death of the host follows.
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Functionally, metastasis can be reduced to the steps of local invasion, extravasation, 

intravasation, and distant colonization (cell survival at a distant but permissive site often 

referred to as the pre-metastatic niche) [12]. Thus, an initial model framework of the overall 

system (metastasis) could be constructed around these steps. Each step is treated as a general 

feature that can first be understood individually, and then pieced together to begin rebuilding 

the overall system. In this approach, there are two integrated levels of the system that are to 

be understood. Firstly, what are the properties (physiological processes) required to execute 

fully each step. Secondly, what are the multiscale molecular interactions that determine 

when these processes are regulated and integrated (control functions) and the overlapping 

multiscale interactions that then execute these processes (execution functions). Figure 2 

provides a simplistic representation of how regulation and execution functions may be 

structured within a module. An ER-positive breast cancer cell is used as an example to 

illustrate how extrinsic (endocrine therapy) actions can affect intrinsic activities. Upstream 

regulatory activities (mostly reversible) control the execution of downstream activities 

(generally irreversible until the activity is completed). Downstream activities can appear to 

oscillate; for example, contractility likely oscillates in cycles of contraction and relaxation. 

The regulation (control) and extent of cell-cell adhesion, cell-matrix adhesion and matrix 

degradation, and cell contractility likely differ depending on the pattern of cancer cell 

invasion being performed such as collective cell migration, multicellular streaming, or 

single-cell migration [8]. A hierarchy of signaling events is implicit in this representation, 

where sensing and regulatory control activities (generally reversible) precede those actions 

that execute the modular function (generally irreversible). Since it is unlikely that each 

physiological process (module) and its control and execution signaling will be fully 

understood at the outset, the process of discovering components of each individual process, 

and how these may be integrated or cooperate within the overall system, will be iterative.

Learning from mathematical models

In molecular systems biology, mathematical models are often developed to connect 

molecular regulatory networks to the cellular physiology that they regulate and execute. 

These models have been proven particularly helpful for revealing the basic principles of 

complex signalprocessing by molecular regulatory networks that would be difficult to 

discover heuristically. Understanding these principles allows us, for example, to predict a 

type of dynamic behavior or signal-response curve based on the topology of a reaction 

network. Reaction networks can exhibit complex internal regulatory activities such as 

positive or negative feedback loops for multiple stable steady states or oscillations [13,14]. 

Generally, mathematical models can accurately describe how the concentrations of chemical 

species (like intermediate metabolites) and/or the activities of genes and proteins (the 

enzymes that metabolize these intermediates) change in time and space within the cell or 

tissue. These changes are linked with corresponding qualitative and quantitative observations 

about the dynamic behavior of cells or populations in a variety of perturbed and unperturbed 

conditions. Mathematical models have been successfully developed to study cell cycle 

regulation [15–17], signaling in cancer cell lines [18–20], programmed cell death [21–23], 

stem cell differentiation [24,25], circadian rhythms [26–28], dynamic behavior of metabolic 
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pathways [29,30], epithelial-to-mesenchymal plasticity [31], and even the entire molecular 

regulatory network of a bacterium [32,33].

Mathematical modeling can also help researchers to gain a deeper understanding of the 

metastatic process. One challenge to the accurate mathematical modeling of metastasis is 

that different aspects of the metastatic cascade and its molecular control are characterized in 

widely divergent details and many are yet to be experimentally characterized or discovered. 

Under these circumstances, mathematical modeling can be a particularly useful tool for 

testing incomplete hypotheses about the underlying molecular controls of the metastatic 

process. The limitations in data availability and quality, and uncertainties in mechanistic 

details, can be countered and managed by using hybrid mathematical approaches 

[16,18,19,34,35] that incorporate robustness and sensitivity analyses [20,23,36,37].

Overall, qualitative and quantitative insights into molecular regulation of the metastatic 

process derived from mathematical modeling can help us to design the next set of 

experiments to be pursued. Then, based on the new experimental data, the mathematical 

model can be further refined and improved. Iteratively, a detailed and accurate mathematical 

model of metastasis can be developed. A reliable model can be then used to predict features 

of the system, for example, the effect of novel and existing treatments on the metastatic 

process.

Mathematical models use relatively low dimensional or dimension-reduced data, largely 

because there are realistic limits on the number of parameters that can be included 

effectively in the models. However, there is often a good understanding of the properties and 

variability inherent in these data that can often be accounted for during model building. 

Computational modeling can learn or discover new features from within high dimensional 

data spaces. However, as we discuss next, the properties of high dimensional data spaces are 

different from those of low dimensional spaces and pose their own unique challenges to data 

analysis and modeling.

The properties and challenges of high dimensional omic data spaces

Many studies attempt to discover meaningful signaling and phenotype relationships from 

within high dimensional omic data sets. These data sets are defined by the presence of 

100s-10,000s of measured experimental variables, with the structure of the data being 

critical for how these variables can be linked, successfully and correctly, to the outcome(s) 

of interest. Omic data are massively parallel, representing a snapshot of the state of the 

system at the time the samples were collected [1]. Hence, the dynamic nature of biological 

signaling can be difficult to capture adequately. Time series collections represent categorical 

sampling of a continuous process (like metastasis) and, depending on the sample collection 

intervals, may miss some dynamical features. The relative importance of what may (or may 

not) be missed is usually hypothesis specific and so is not considered further here.

In omic studies, most tools and workflows tend to focus on differential expression of the 

nodes (genes, proteins, metabolites) in a molecular signaling network, correlating these 

expression changes with specific outcome(s), such as disease-free survival, progression-free 
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survival, or overall survival in samples from patients, or with experimental endpoints in cell 

culture or animal models including changes in cell proliferation rate, cell death rate, or 

colony formation. While experimental design is critical to understanding what may or may 

not be learned from the resulting data, the possible designs are too varied to be considered 

here in any detail. Hence, we use specific examples to illustrate key points.

Epidemiologic studies can produce high dimensional data but the data structure can usually 

be approached using established biostatistical methods, mostly because of the relationship 

between the dependent variables and predictors. For example, consider a validated 

questionnaire with 40 questions (each question is a data dimension) that is completed by 

2,000 subjects and where the outcome measure is binary. An example of a binary outcome is 

a study comparing a quantitative exposure to an environmental agent (predictor variable) 

with a specific disease state (present or absent; dependent variable) that is more or less 

evenly distributed in the dataset (approximately similar numbers of affected and unaffected 

subjects). Here, the ratio of dependent:predictor variables is 1:50 (40:2000). A ratio of 1:10 

is often considered appropriate as a general rule-of-thumb and so the statistical power to 

detect a meaningful association between the dependent and predictor variables is high using 

well-established biostatistical methods. Compare this data structure with that of a 

transcriptome study using a genechip or RNAseq method that can detect 20,000 genes 

(predictor variable where each gene is a dimension represented by its expression value) 

applied to tissue samples from 50 subjects with the same binary outcome (dependent 

variable). Here, the ratio of dependent:predictor variables is 400:1 (20,000:50) and the 

properties of the data are very different, as are the tools needed to extract meaningful 

associations. We have discussed these unique properties in detail elsewhere [1,6,38] and 

focus here only on a few properties and primarily from the perspective of a non-

quantitatively trained investigator interested in molecular signaling.

Inflation of the type 1 error (false positive estimates) from multiple comparisons is 

problematic. Established approaches using the False Discovery Rate to control this rate are 

certainly useful and are used widely. Nonetheless, all such approaches will also tend to 

inflate the type 2 error (false negative estimates), which may or may not be problematic 

depending on the study design and goals of the investigator. For example, a high false 

negative rate could exclude mRNAs critical to obtaining a meaningful and correct answer to 

a mechanistic hypothesis tested in a high dimensional transcriptome study. Another major 

challenge in high dimensional spaces is that, unless directed otherwise, most search tools 

search the entire dataspace. However, the most informative data (for addressing the goals of 

the study) may be in one or a small number of subspaces that can be missed when the ratio 

of dependent:predictor variables is very high (for example, 400:1). With complex models, 

high dimensionality and variability in the outcomes measure, potentially further 

compounded by a large dependent: predictor variable ratio, the curse of dimensionality may 

cause the search algorithm to fail to converge to a true solution(s) [1]. For example, 

convergence to locally correct but globally incorrect solutions can arise and reflect a local 

overfit but global underfit. A common reflection of the curse of dimensionality is the need 

for large computational resources, causing the algorithm either to fail to converge or to take 

an unacceptable time to reach convergence when these resources are inadequate [1]. 

Conversely, overly simple analytical models may need few computational resources and 
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converge quickly. However, these approaches can generate an underfit of the model to the 

data, with the model outcomes not being adequately representative of the truth and thereby 

also potentially misleading [1].

The biological source of the data contributes several additional challenges to the structure of 

the data. Noise (random fluctuation in the variables) can be large and arise from multiple 

sources. Given the many advances in the technologies used to collect omics data, the noise 

contributed by the technology may be relatively small for some datasets. For example, data 

from established omics tools such as commercial genechip or RNAseq facilities are often 

high quality in the sense that the technical noise associated with the measurements obtained 

is small. However, assignment of each signal to the correct molecular species can vary 

across technologies. Commercial genechips are often reasonably accurate. For some 

RNAseq, proteomic, and metabolomic technologies the accuracy of this assignment can vary 

and coverage of the ome being sampled can be limited. For example, current unbiased single 

cell RNAseq technologies may correctly detect and assign only 10-40% of the 50,000 or 

more RNA species potentially present [39], leaving the majority of transcripts undetected. A 

further challenge is that the accuracy of protein expression predictions from genome or 

transcriptome data is limited for molecular signaling studies. Approximately 50% of 

changes detected in the transcriptome are not detected in the proteome [40]; extrapolating 

from the genome (such as mutations, single nucleotide polymorphisms) to the proteome may 

be even less accurate.

A further challenge is the confound of multimodality, a consequence of cells executing 

multiple functions concurrently and where a single gene or protein may be implicated in 

affecting one or more of these concurrent activities [1]. This effect is compounded further 

when the data are obtained from heterogeneous tissue samples, such that the differential 

expression of the gene reflects an aggregate across different cell types concurrently 

performing different functions (heterogeneity is discussed below in greater detail). It can 

then become difficult to attribute correctly the differential expression of a gene to the 

varying proportion of these several activities or subtypes, or to the phenotype or outcome of 

interest to the investigator. This challenge is not unusual for some gene set enrichment or 

pathway analysis tools. The onus is often then on the investigator to determine whether (or 

not) the analytical solution to their dataset is acceptable [6]. Unfortunately, this challenge 

opens up the trap of self-fulfilling prophecy, where investigators may unwittingly find in the 

data precisely what they expected to find even if it is not the underlying truth [1].

These challenges are certainly not insurmountable and new tools and workflows continue to 

emerge [41–49]. Also, investigators may be able to use data on other genes in implied 

pathways, or other metadata in the dataset, as a means to constrain the search space during 

data analysis or to guide data interpretation after data analysis. Currently, the use of 

independent validation of model outcomes and objective approaches to data interpretation 

remain essential to finding truth in data [1,6].
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Sampling bias, noise and heterogeneity

Cellular, molecular, and genetic heterogeneity are features of the metastatic process that 

contribute substantially to the difficulty observed in eliminating metastatic disease. These 

features reflect the heterogeneity inherent in the primary tumor, the different selection 

pressures applied at each step in the metastatic cascade [2], and the temporal variability in 

when these pressures and the responses that they induce occur relative to the timing of 

sampling, and how well the sample reflects the inherent heterogeneity of the tissue. Thus, a 

related source of noise in high dimensional omics and other data is the contribution of 

sampling bias and how this may also affect assessments of cellular, molecular, or genetic 

heterogeneity or confound studies associating data features with a cellular mechanism or 

phenotype. For example, a fine needle aspirate with 5x106 cells taken from a palpable 

primary breast tumor of 109 cells may be less representative of the heterogeneity present 

than a similar image-guided aspirate taken from a non-palpable metastasis of 5×107 cells. 

For identifying driver mutations, this may not be problematic, since Reiter et al. [50] have 

estimated that the likelihood of missing a single driver mutation present in all metastases is 

below 3%. However, mechanistic studies often aim to find more than a single putative driver 

mutation. As discussed below, the assumption that any complex feature of cancer biology is 

solely the result of a single driver mutation may often be an oversimplification. The nature 

of sampling bias also is more complex than the relationship between the sample size and the 

population size.

Cancer progression and metastasis are dynamic processes (time is a variable) in which 

treatment interventions may be applied prior to or between sampling. When comparing 

samples from a time-dependent process across different patients there may be bias or noise 

introduced by both interpatient and intertumor variables. Interpatient variables, such as 

genetic (germline), age, gender, or differences in the drug combination, and/or time since 

treatment can each introduce variability in the omics data collected and in the outcomes 

measured if they are linked to samples collected from a study with human subjects. 

Intertumor variables include sample timing relative to the biological age of the tumor, 

different perfusion gradients for drugs and nutrients in tumors (often reflecting tumor 

vascularity), tumor growth rates, genetic instability, and differences in both the nature and 

degree of immune effector cell infiltration. The extent to which any of these variables affect 

the ability to address an investigator’s hypothesis is often study specific.

Spatial heterogeneity can arise from sampling different metastatic sites within a patient or 

among all patients within a study population. The sampling method may introduce 

additional variability if the same method is not used to collect all samples. In breast cancer, 

for example, samples taken from a primary tumor may be obtained by either a core needle 

biopsy or fine needle aspirate of the primary tumor taken prior to excision, or a tissue slice 

taken from what remains after a portion of an excised tumor is sent for pathologic 

examination.

In contrast, there is usually limited variability in the linked clinical outcomes measures of 

survival. For overall survival, the date of death measure is likely to be have little noise 

relative to the time scale of the clinical study. There may be more variability in the measures 
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of progression-free or disease-free survival, depending on the intervals between clinical 

evaluations of the subjects.

The ability of an investigative team to account for and or all of the variables noted above will 

depend partly on the meta data available. For many public datasets, these metadata may not 

be available or adequate and so cannot easily be used. Both supervised and unsupervised 

tools are becoming available to address the cellular heterogeneity present in data collected 

from complex samples [51–55]. While the variables described here may require careful 

consideration in data analysis for some systems modeling studies, their detailed 

consideration is beyond the scope of this article.

Challenges to modeling metastasis as a system

We have described here some of the more important general challenges related to the types, 

properties, advantages, and limitations of data and the implications of these challenges for 

arriving at reasonable and likely correct interpretations. However, these are general issues 

and are not specific to studying metastasis, which has other challenges to building a 

systems-based model. The process of metastasis and how this is currently understood both 

add their own challenges to modeling metastasis as a system.

Several key issues arise from the general lack of consensus regarding whether metastasis 

occurs early or late in the biological age of the primary tumor (see [2] for an excellent and 

detailed review). Biological age of the tumor is often conceived as beginning with the initial 

transforming event in the single cell from which the tumor was ultimately derived. However, 

this can only be estimated and is often based on the apparent growth rate of the tumor. 

Commonly measured events that are often used to help separate early from late events in the 

metastatic process include the patterns of gene mutations in the primary and its metastases. 

Figure 3 shows a simple representation of this concept based on the assumption of a single 

clone of origin for metastases.

Early dissemination implies that the primary tumor and its metastases share a few common 

features but that other mutations unique to the primary tumor or its metastases will have 

been acquired independently over time. Thus, some level of genetic divergence will arise 

between a primary and its metastases – a process of parallel evolution [2]. If metastasis 

reflects continual seeding over time, some metastases will appear more divergent (early 

disseminated) than others (late disseminated) from the primary tumor. In each case, the 

metastases would share mutations with the primary tumor that reflected those present at the 

time they separated but not those acquired subsequently (and independently) by the primary 

tumor or its metastases [2].

Late dissemination is often conceived as representing the emergence of a single clone 

through a linear process whereby mutations are acquired until all of the necessary functions 

of metastasis become active and metastasis can be executed successfully. While this process 

would appear as serial evolution, the functions needed to execute metastasis fully do not 

need to be acquired in a specific sequence. Moreover, these functions could accumulate 

stochastically among several clones until one clone acquires all of the necessary functions.
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The concept of a single clone of origin creates its own challenge. For example, cells that 

appear to have a high metastatic potential but lack one or two key properties may be present 

with those that have acquired all the properties needed to metastasize successfully. This is a 

realistic possibility, since the cells that have most but not all of the necessary properties are 

likely to be the population from which the fully metastasis-competent clone(s) arises. 

Without knowing in advance all of the properties and/or their drivers, it may be difficult to 

determine what is ‘necessary but not sufficient’ (all but one or two features are present in 

some cells) from what is ‘necessary and sufficient’ (all essential features are present in other 

cells) using data obtained from heterogeneous samples. The challenge may be further 

complicated if the proportion of cells that have the ‘necessary and sufficient’ features is low 

relative to cells that have a ‘necessary but not sufficient’ collection of features, if the number 

of different features between them is small and difficult to detect above the noise in the data, 

and/or if different subclones exhibit different but overlapping ‘necessary but not sufficient’ 

patterns. If some key features are not the result of gene mutations, which are relatively easy 

to find, then these non-mutation features may be difficult to discover.

From the perspective of patterns of mutations, late metastases from a single clone would 

exhibit a pattern similar to that of the primary tumor and to each other. However, the 

underlying assumption of all metastases being seeded by a single initiating clone may not 

always hold. For example, several clones could arise, perhaps present in different relative 

frequencies within the primary tumor and acquiring the full panel of the necessary 

metastasis properties at different times. In this case, there could be variability in mutation 

patterns among metastases that would still contain similarities to the primary tumor and to 

each other. Differences among metastases would partly reflect how recently (relative to each 

other) each clone had left the primary tumor, partly reflect clone-specific mutations present 

while each clone was still evolving within the primary tumor, and partly reflect those 

mutations acquired while growing at its distant site. The different models of this time-

dependent feature of metastasis are not necessarily mutually exclusive, since different cells 

or subclones in a tumor may exhibit different properties at different times. Furthermore, 

there is not necessarily only one ‘correct’ model even for a specific cancer type.

None of these models account for the possibility that some metastases could seed other 

metastases; thus, all metastases may not arise only from the primary tumor [2]. Metastases 

arising from other metastases would likely appear to be very similar to the originating 

metastasis and so also appear to have arisen from the primary tumor at the same time as the 

seeding metastasis (early or late).

Over time, each individual metastatic deposit may acquire additional mutations. Mutation 

and growth rates of the primary tumor and each metastasis further affect their respective 

mutation patterns; both rates can vary significantly. For example, triple negative breast 

cancers (TNBC; lacking estrogen and progesterone receptors and HER2 amplification or 

overexpression) are notable for the rapid appearance of metastases. Many TNBC patients do 

not survive 5 years past their initial diagnosis [56]. In marked contrast, estrogen receptor 

positive (ER+) breast cancers are frequently characterized by late recurrences. Hence, breast 

cancer patients with ER+ tumors can experience distant recurrence a decade or more after 

their initial diagnosis, often referred to as dormancy [57,58]. The mutation landscape of 
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these two breast cancer subtypes also vary notably, with greater mutational diversity 

generally seen in triple negative tumors compared with early ER+ tumors [59–61]. Tumor 

mutational burden increases significantly and correlates with poor clinical outcome in 

metastatic ER+ breast cancers [59,62].

The ability to use mutation patterns to separate early from late events is also affected by 

other considerations. For example, the assumption that metastasis is clonal in origin may not 

always apply. Metastasis may not only arise from a single cell but instead from a small 

community of cells. Evidence suggests that single circulating tumor cells (CTCs) are much 

less effective in creating viable metastatic deposits than clumps of CTCs [63]. Only if those 

clumps arise from cells of the same subclone would the metastasis be truly clonal in origin. 

Depending on how rapidly each metastatic clone grows, one that arose late could become 

clinically detectable before one that arose early in the growth of the primary tumor. 

Moreover, a metastasis with a high proportion of cycling cells could acquire more mutations 

in a shorter period of time, perhaps reflecting greater genetic instability and a higher rate of 

acquiring new persistent replication errors, than a slowly growing metastasis or one that 

entered dormancy for a prolonged period. Thus, a late disseminated but rapidly proliferating 

clone could look more like an early disseminated clone (more divergent from the primary 

tumor) than one that disseminated early but became dormant for a time or that grew very 

slowly (low pattern of mutational divergence from the primary tumor).

From the systems perspective, mutation patterns also may be used to inform an 

understanding of mechanism. A central assumption here is that the function of interest – 

metastasis or some individual feature of this process – is driven directly by the mutated 

gene(s) detected. However, the requirements for recognizing a mechanistically relevant 

pattern are difficult to establish. For example, should the mutations of greatest interest be 

present only in the metastases, should these also be present in the primary tumor, and/or 

must these mutations be present in all or most cells? Requiring the presence of a small 

number of common mutations may imply that these control all of the complex functions of 

the metastatic cascade, or at least control some of the most important functions. Moreover, 

particularly when relying exclusively on mutations as the primary drivers of mechanism(s), 

non-mutational events such as cell-communication or adaptable and/or reversible signaling 

or epigenetic changes within cells may be overlooked.

A common solution to these challenges is to use whatever is known about the mechanistic 

functions of the mutations present and select those that appear related to a feature of the 

overall process; examples for the process of metastasis could include an ability to increase 

cell invasion. While reasonable, this approach also is open to the trap of self-fulfilling 

prophecy [1], which can be exacerbated by the presence of many mutations that are acquired 

and maintained through neutral evolution. Indeed, by the time of diagnosis it is predicted 

that there is no DNA locus that remains wild type in every malignant cell [64].
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Molecular signaling and the control and execution of complex biological 

functions

Complex, multistep biological processes are rarely controlled or executed by the actions of a 

single gene product, whether present in its wild-type or mutant form. Nonetheless, a 

hierarchy may exist where, in some specific circumstances, a single gene, mutation, or 

pathway may dominate or appear to dominate. Such examples would be the activation of ER 

or HER2 in some breast cancers. Functional dominance associated with ER− or HER2-

driven signaling is evinced by the ability of specifically targeting ER (antiestrogen or 

aromatase inhibitors) or HER2 (Herceptin, Lapatinib) to kill enough cancer cells that some 

patients, but not all, are cured.

Why targeting these two drivers does not cure all patients with tumors that overexpress the 

respective molecular target is unclear. In principle, ER or HER2 signaling may not always 

dominate (a form of de novo resistance) or a sufficient number of cells in these tumors may 

adapt over time to any blockade in ER− or HER2-regulated signaling (a form of acquired 

resistance). A third possibility is that these tumors contain a sufficient number of cells that 

do not express the appropriate molecular target and come to dominate the tumor as the 

sensitive cells are killed off, a form of Darwinian clonal selection (one means for tumor 

heterogeneity to confer resistance). A fourth possibility has been demonstrated where 

sensitive and resistant cells communicate with each other to alter the overall responsiveness 

of the tumor [65], an ecological rather than evolutionary means to acquire resistance. Indeed, 

all of these mechanisms could coexist among different cell populations within a single 

tumor. Decomposing the features of each mechanism from data obtained from 

heterogeneous tissues remains a major challenge in systems-based research.

When viewed as a system, there are features of the metastatic cascade that are reflective of 

the complexity of the example of drug resistance phenotypes and their generation (above). 

For example, the properties of motility, invasiveness, and an ability to survive exposure to 

the physical and immunological pressures in the circulation, may not be present in all cells 

that metastasize, or may be lost by cells once they reach their final destination and the 

stresses are removed. Indeed, metastasis may be a property of small communities of cells 

that work together, rather than being solely a clonal phenomenon where all cells that 

metastasize exhibit all of the properties necessary to do so [66]. Indeed, collective invasion 

is the predominant process by which group of cancer cells with different properties can 

migrate [8,67]. For example, an epigenetically distinct breast cancer cell in a population can 

become the ‘trailblazer cells’ that enable local invasion and are followed by ‘opportunistic 

cells’ [68]. The challenge then becomes one of trying to understand the basic principles of 

how the system (metastasis or drug resistance) operates and the critical control or integration 

points that enable the individual components of the system to work together. Hopefully, but 

not necessarily, a few control and integration points will offer actionable targets to intervene 

and break the system, ideally where the opportunities to rewire and maintain the phenotype 

or system function (acquire resistance) are more limited.

Some properties (processes) can be common to more than one feature of a system. For 

example, the property of motility may be required to execute some components of the 
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invasion, extravasation, and intravasation steps in metastasis. Execution (not necessarily 

regulation) of the property of motility may be performed by similar multiscale molecular 

interactions in many motile cells, and consequently be somewhat independent of cell 

context. When present, this commonality is a reflection of evolutionary parsimony, where 

the simplest means to execute a critical function has evolved and this mechanism is then 

largely conserved across divergent cell types and species. While some degeneracy in the 

execution signals may arise across evolutionary time [6], the basic topology of the execution 

machinery remains. Hence, we can gain critical insights into function execution in 

mammalian cells by studying how this is achieved in much simpler organisms like yeast, fly, 

or worm, as has been the case for metastasis [66]. There are many such examples. For 

example, much of what we have learned about how cells go through the cell cycle has been 

gleaned from modeling this process in yeast [15,69,70].

Where there is often much greater diversity is in the control functions of any given process 

among different tissues and species. The decision (output of a control function) to execute a 

turn of the cell cycle can often exhibit significant diversity in its upstream control functions. 

The example previously discussed of ER and AR in breast and prostate cancers can also be 

applied here to the control of proliferation. Indeed, dysregulation of the control of the cell 

cycle or key features of the metastatic cascade, relative to what occurs in normal cells that 

execute these functions as part of their normal physiological activities, are often considered 

among the hallmarks of cancer [71,72].

Similar to the notion that one property of the system may be shared among several steps, a 

protein may act in more than one signaling pathway. Glycolysis is sufficiently well known to 

easily exemplify several key points related to the importance of individual interactions 

within a pathway and how the activity of a single gene product may coordinate or integrate 

activities in more than one pathway or cellular function.

Within a pathway, some gene products can exert a greater level of influence over the output 

of a process than others. For example, only a few enzymes are rate-limiting for the process 

of glycolysis; hexokinase (converts glucose to glucose-6-phosphate), phosphofructokinase 

(converts fructose 6-phosphate to fructose 1,6-bisphosphate), and pyruvate kinase (converts 

phosphoenolpyruvate to pyruvate). While the level of expression or activity of a rate-limiting 

feature determines the rate of flux through a pathway, non-rate-limiting features may 

fluctuate in their levels of expression or activity with relatively limited consequences for 

flux. Thus, using a measure of the differential expression of a gene or protein as the primary 

determinant of its relative importance in an altered phenotype or pathway can sometimes be 

misleading. The scale of change, relative to output, also can vary. For example, a small 

(perhaps experimentally undetectable) change in the expression of a transcription factor may 

lead to a much larger, nonlinear change in the regulation of one of its target genes (more 

easily detected) that may or may not be the most relevant or functionally important among 

all of its concurrently regulated targets.

Molecules in one pathway may also participate in key events in another, as described above 

for the roles of BCL2 in autophagy and apoptosis. Following the example of glycolysis, the 

metabolic intermediate glucose-6-phosphate can be metabolized further to fructose-6-
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phosphate (the next step in the glycolysis pathway) or to 6-phosphogluconolactone and 6-

phosphogluconate (6-PG; the next step in the pentose phosphate pathway; PPP). The rate-

limiting step in PPP is catalyzed by glucose-6-phosphate dehydrogenase (G6PD), which 

oxidizes glucose-6-phosphate into 6-PG. Flux through the glycolytic pathway can affect 

both activity of the pentose phosphate pathway and the rate of proliferation. The ability to do 

so is entirely logical, since cells cannot complete a turn of the cell cycle if they do not have 

the energy needed from the ATP produced by glycolysis or the nucleic acids synthesized 

from the products of pentose phosphate metabolism. It is likely that similar types of 

relationships between genes and roles in multiple pathways also exist in the control of 

various components of the metastatic cascade.

Intrinsic versus extrinsic factors in the regulation of molecular signaling

For simplicity, the integrated signaling underlying each module can be conceived initially as 

exhibiting regulatory activities (for example, reversible; ‘on/off; ‘up/down’) that determine 

the level of activity of the execution activities (for example, irreversible; ‘on’ at the level(s) 

determined by regulatory activities until completed). These types of relationships are well 

known for apoptosis, where early (regulatory) events are reversible but later (execution) 

events are irreversible [25,73]. Other relationships also occur in signaling networks [74] that 

may or may not be known at the start of the modeling process. The signaling that determines 

when, where, and how these activities are regulated and performed can be either intrinsic or 

extrinsic to the cell.

Intrinsic and extrinsic activities are generally defined from the perspective of a specific cell 

type, with the focus here being on cancer cells (Figure 4). Thus, intrinsic factors or functions 

are those that occur within the cancer cells. Many of the key outcomes of interest to cancer 

researchers are sensed and executed by intrinsic factors (genes, proteins) or functions (a 

series of integrated signaling features that execute a specific cellular function such as the 

process of apoptosis). For example, cancer cell proliferation and programmed cell death 

outcomes are executed by actions that are almost exclusively intrinsic. Following the 

example of cell death, apoptosis (whether in the form of ‘intrinsic’ or ‘extrinsic’ apoptosis 

[75]) is ultimately executed by the activation of caspases that originate and act within the 

cancer cells (an intrinsic action).

Extrinsic factors are present in the tumor microenvironment in which the cancer cells live 

and die. These factors can originate locally including from stromal cells, infiltrating immune 

cells, or even from the cancer cells via autocrine, juxtacrine, or paracrine activities. Other 

extrinsic factors within the tumor microenvironment are produced distally by the host 

(endocrine) or may originate from outside the host as occurs with drug treatment. Thus, 

extrinsic factors can often regulate the activity of intrinsic factors or functions. Secretion of 

granzyme B into the tumor microenvironment by T cells is an example of an extrinsic action 

that can initiate an intrinsic activity (apoptosis) in sensitive cells. The consequences of 

granzyme B uptake by exocytosis into sensitive cancer cells, which include the activation of 

caspases in the presence of perforin and the activation of apoptosis leading to an apoptotic 

cell death [76], are intrinsic activities.
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Distinguishing between an intrinsic and an extrinsic origin for a protein or gene can be 

difficult depending on the data being explored. Many genes are produced in cells that are 

very different in form and function. For example, TGFβ is a multifunctional cytokine that is 

produced by many different cell types and that has activities that are often highly cell 

context specific [77–79]. When TGFβ is detected in heterogeneous (cellular) tumor samples, 

is its origin primarily intrinsic or extrinsic to the cancer cell (acting as an autocrine, 

juxtacrine, or paracrine factor), and is its expression reflecting activation of only one, 

several, or all of the pathways associated with its activation of its cognate receptors? If more 

than one pathway is regulated concurrently (or appears to be), which is the most relevant 

and/or active, or does one pathway share features with another and so is being differentially 

regulated independent of TGFβ? Is TGFβ inhibiting some cells and stimulating others [77] 

within a heterogeneous (cellular) tumor microenvironment? Answering these questions is 

often not trivial. Even with exhaustive single cell mRNA sequencing, current methods can 

miss the majority of transcripts [39]. Moreover, many of these mRNAs will not be translated 

[40] and the rates of translation of those that are translated, and the activity or secretion of 

any translated proteins, may vary in different cell types at different times and with different 

treatments.

Canonical and non-canonical signaling

Canonical pathways are generally constructed from the literature, with their graphical 

representations rarely annotated with cell context specific interactions. Moreover, the more 

frequently a signaling feature is associated with a specific pathway, the more likely it is to be 

included in a canonical representation of that pathway [6]. Such a feature is two or more 

nodes, such as mRNAs, proteins, metabolites where the connecting edge(s) may include 

PPIs, PDIs, and/or SEP reactions. While an inherently intuitive approach, the potential that a 

different route(s) may exist (degeneracy) within a pathway to control the same function, or 

that the relative importance of any feature may vary with time or cell context, is rarely 

considered. Essentially, canonical pathways are idealized and mostly relatively simple linear 

graphs. These linear representations can be visually appealing and easily understood, as 

exemplified by those provided by the Kyoto Encyclopedia of Genes and Genomes (https://

www.genome.jp/kegg/). While these are static representations, some directionality is 

captured and known feedback interactions may be included.

Current canonical representations rarely account easily for the ability of a molecule to 

participate in multiple different pathways. Hence, when databases with canonical pathway 

metadata are used by gene set enrichment and pathway analysis tools, it is not unusual to 

find that the same input gene list (for example, a list of previously identified differentially 

expressed mRNAs) implicates several different pathways in a single analysis. However, the 

direction of change in the genes that drive selection of that pathway may have been ignored. 

Hence, a pathway may be selected with an apparently high probability estimate when several 

of the genes that drive this selection are either regulated in directions that are inconsistent 

with how signaling is known to flow through the pathway, and/or are also features in other 

pathways that are identified by the algorithm but with larger p-values (less significance). The 

trap-of-self-fulfilling prophesy could then lead an investigator to select erroneously a 
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specific pathway with a smaller (more significant) p-value as explaining a biological 

response or phenotype.

An underlying assumption is that canonical pathways are enriched in features that are truly 

conserved across different cell contexts and even species, again reflecting evolutionary 

parsimony. Thus, if features (some nodes and/or edges) of the pathways likely to be driving 

the system are known, or can be implied from canonical representations of signaling, these 

can be used to constrain the initial search space, as can the elimination of genes definitively 

known not to participate. Using only known genes could over constrain the search space and 

result in latent variables being missed. However, where the goal is to find topological 

features to initiate modeling, this approach can provide a useful starting point to reduce 

dimensionality and still allow for the discovery of new edges that can later be ‘built-out’ as 

the modeling progresses. Canonical representations can also be used to find latent variables 

or features of the signaling that are not differentially expressed in the primary data and yet 

are absolutely required for the system to function. For example, only one member of a 

protein complex may be differentially regulated but all members are required for the 

complex to function, perhaps where the level of complex activity is a direct reflection of the 

amount of the regulated partner available. Measuring only the regulated component may be 

sufficient for predictive model building but all members of the complex could be targets for 

drug discovery, where some may prove more actionable than others.

Focusing on edges and not just nodes

Figure 5 shows a simple representation of a signaling network. A common approach in 

modeling such networks is to measure the expression of other genes that are known targets 

and imply the activation or suppression of pathways from canonical pathway 

representations. This approach focuses primarily on the nodes in a co-expression network. 

However, there are limitations to this approach that reflect both the tools used and the 

collation of genes into canonical representations of signaling pathways [6]. Moreover, each 

node may have the opportunity to form an edge with more than one other node, often in a 

cell context-dependent manner, which creates complexity and the opportunity to rewire 

signaling that may not be evident from analyses that are focused mostly on the differential 

expression of nodes.

Edges are the connections that link nodes and create network topology, often conferring the 

plastic nature of signal flow. Examples of edges include PPIs (the edge(s) represents the 

linkage(s) between the proteins in the complex), PDIs (the edge(s) represent the linkage(s) 

between the transcription factor and any other proteins in the complex and the DNA to 

which it binds), and SEP interactions (the edge(s) represent the links between substrate, 

enzyme and product). SEP interactions include the reactions involved in intermediate 

metabolism (like glycolysis or the TCA cycle) but also the reactions catalyzed by enzymes 

such as ATPases, kinases, phosphatases, methyl and acetyl transferases and many others.

Data-driven differential network analysis identifies a network of differentially connected 

molecular entities from within a complex and often unknown overall molecular regulatory 

circuitry. These entities comprise pairwise selective coupling or uncoupling that reflect the 
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specific phenotypes or experimental conditions that are under investigation including the 

associated regulatory elements. Such differential regulatory networks are typically used to 

assist in the inference of potential key pathways and targets in tumor biology [80]. The 

regulatory networks discovered can serve as useful frameworks for the construction and 

verification of mechanistic cancer models, which in turn help to provide a plausible 

interpretation of data, new insights into cancer biology, and hypotheses for further validation 

and investigations [80,81].

Unique yet subtle advantages of focusing on edges rather than nodes are multifold when 

compared with classic differential expression analysis [53,82]. First, the low expression 

values for many transcription factors or other regulators make their detection challenging in 

classic differential analysis, while edge analysis can uncover the regulators’ role in 

functional activation or deactivation. For example, the edge between a transcription factor 

(low expression) and a primary molecular target gene(s) (higher expression) may be found 

from the differential co-expression of the transcription factor’s target gene(s). Second, 

advanced network analysis can identify more relevant pathways that functionally control 

phenotypes, where the ‘networked’ gene subset can improve the specificity of enrichment 

analysis. Lastly, while sectional random snapshot(s) of a dynamic system is a significant 

source of uncertainty in classic differential analysis, the dependency among genes exploited 

by edge modeling is concurrently ‘retained’ within and across samples, yet independent of 

sampling order or bias.

Concluding comments and future directions

Systems models allow for high-throughput simulations that can predict outcomes for testing 

in experimental in vitro or in vivo models [83]. We have identified some of the challenges 

for consideration in building systems-based models of the process of metastasis. We have 

chosen not to offer many specific solutions because these are diverse, emerging, and 

frequently hypothesis and data specific. However, by raising these issues investigative teams 

can best decide which problems they need to, and can, address. New and improved 

approaches continue to evolve rapidly. The challenges and limitations of current approaches, 

tools, and representations that have been noted above do not necessarily mislead. Rather, the 

use of these approaches requires some knowledge of the system being studied, the nature of 

the tools applied and their limitations, and an ability of the investigator(s) to approach the 

data objectively, rather than looking only for what they hope or expect to find. The challenge 

of maintaining objectivity during analysis reflects the ‘trap of self-fulfilling prophecy’ and it 

can be difficult to avoid [1]. Knowledge of the tools and workflows used, the properties of 

the data and meta data available, and applying an objective interpretation can help 

investigators to avoid the trap. Such knowledge is particularly important when approaching 

the published literature and the data and analyses of others.

While cell context is rarely captured fully in most gene ontology databases, cell context is 

present in the primary data being explored. If the primary data are from treated and untreated 

breast tumors then the differential expression of the genes, proteins, or metabolites reflect 

that cellular context. Investigators can then use prior knowledge of the system and cell 

context to try to determine which of a series of implied pathways are most likely to be 
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relevant to their primary hypothesis. Hence, some of the limitations in using canonical 

pathways can be addressed by applying careful judgment and meta data from other sources 

to determine whether to retain or reject those canonical features that do not apply or are 

inconsistent with the cell context specific data. It is hoped that newer generations of pathway 

analysis tools will make good use of directional changes in nodes and the likely presence or 

absence of edges to help provide greater clarity and accuracy on which pathways are most 

likely to be biologically relevant when differentially expressed nodes implicate several 

pathways with high statistical significance. Perhaps these tools also will begin to incorporate 

prior cell context-specific knowledge.

To date, most of the omics data used for signaling has been from genome and transcriptome 

analyses. The limitations in these data are clearly noted above. Some of these limitations 

will be overcome by better analytical tools and work flows. However, as the sensitivity and 

specificity of other omic platforms improve, greater insights may be gained from multiscale 

modeling that incorporates high quality and high resolution data from the proteome and 

metabolome. From a signaling and systems perspective, many of the most important 

interactions are metabolic in nature, whether they represent the transfer of a phosphate group 

to another protein by a kinase or a methyl group to DNA. Consequently, some of the greatest 

insights may be gained when technologies with high depth, sensitivity, and specificity are 

available to fully sample the proteome and metabolome of single cells.

References

1. Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, & Wang Y (2008). The properties of 
very high dimensional data spaces: implications for exploring gene and protein expression data. 
Nature Rev Cancer, 8, 37–49. [PubMed: 18097463] 

2. Hunter KW, Amin R, Deasy S, Ha NH, & Wakefield L (2018). Genetic insights into the morass of 
metastatic heterogeneity. Nat. Rev. Cancer, 18, 211–223. [PubMed: 29422598] 

3. Sethi N & Kang Y (2011). Unravelling the complexity of metastasis - molecular understanding and 
targeted therapies. Nat. Rev. Cancer, 11, 735–748. [PubMed: 21941285] 

4. Steeg PS (2016). Targeting metastasis. Nat. Rev. Cancer, 16, 201–218. [PubMed: 27009393] 

5. Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, Yang Y, Maurer D, Lefebvre 
AEYT, Alshetaiwi H, Xiao Z, Liu J, Locasale JW, Digman MA, Mjolsness E, Kong M, Werb Z, & 
Lawson DA (2020). Transcriptional diversity and bioenergetic shift in human breast cancer 
metastasis revealed by single-cell RNA sequencing. Nat. Cell Biol, 22, 310–320. [PubMed: 
32144411] 

6. Clarke R, Tyson JJ, Tan M, Baumann WT, Xuan J, & Wang Y (2019). Systems biology: perspectives 
on multiscale modeling in research on endocrine-related cancers. Endoc Relat Cancer, 26, R345–
R368.

7. Katt ME, Placone Amanda L., Wong Andrew D., Xu Zinnia S., & Searson Peter C. (2016). In vitro 
tumor models: advantages, disadvantages, variables, and selecting the right platform. Frontiers in 
Bioengineering and Biotechnology, 4, 12. [PubMed: 26904541] 

8. Friedl P, Locker J, Sahai E, & Segall JE (2012). Classifying collective cancer cell invasion. Nat. Cell 
Biol, 14, 777–783. [PubMed: 22854810] 

9. Ni BS, Tzao Ching, & Huang Jen Huang (2019). Plug-and-Play in vitro metastasis system toward 
recapitulating the metastatic cascade. Scientific Reports, 9, 18110. [PubMed: 31792319] 

10. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, Ibbs M, Blizniak 
R, Luczewski L, & Lamperska K (2018). 2D and 3D cell cultures - a comparison of different types 
of cancer cell cultures. Arch. Med. Sci, 14, 910–919. [PubMed: 30002710] 

Clarke et al. Page 20

Cancer Metastasis Rev. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



11. Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, & Clarke R 
(2011). Dynamic modeling of oestrogen signalling and cell fate in breast cancer cells. Nature Rev 
Cancer, 11, 523–532. [PubMed: 21677677] 

12. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B , Kaplan RN, 
Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, & 
Lyden D (2017). Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer, 17, 
302–317. [PubMed: 28303905] 

13. Tyson JJ & Novak B (2020). A dynamical paradigm for molecular cell biology. Trends Cell Biol, 
30, 504–515. [PubMed: 32362451] 

14. Ferrell JE Jr., Tsai TY, & Yang Q (2011). Modeling the cell cycle: why do certain circuits oscillate? 
Cell, 144, 874–885. [PubMed: 21414480] 

15. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, & Tyson JJ (2004). Integrative 
analysis of cell cycle control in budding yeast. Mol Biol Cell, 15, 3841–3862. [PubMed: 
15169868] 

16. Kraikivski P, Chen KC, Laomettachit T, Murali TM, & Tyson JJ (2015). From START to FINISH: 
computational analysis of cell cycle control in budding yeast. NPJ. Syst. Biol. Appl, 1, 15016. 
[PubMed: 28725464] 

17. Gerard C & Goldbeter A (2009). Temporal self-organization of the cyclin/Cdk network driving the 
mammalian cell cycle. Proc. Natl. Acad. Sci. U. S. A, 106, 21643–21648. [PubMed: 20007375] 

18. Nelander S, Wang W, Nilsson B, She QB, Pratilas C, Rosen N, Gennemark P, & Sander C (2008). 
Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst. Biol, 4, 
216. [PubMed: 18766176] 

19. Molinelli EJ, Korkut A, Wang W, Miller ML, Gauthier NP, Jing X, Kaushik P, He Q, Mills G, Solit 
DB, Pratilas CA, Weigt M, Braunstein A, Pagnani A, Zecchina R, & Sander C (2013). 
Perturbation biology: inferring signaling networks in cellular systems. PLoS. Comput. Biol, 9, 
e1003290. [PubMed: 24367245] 

20. Jung Y & Kraikivski P (2020). DNA damage checkpoint regulation in normal and p53-null cancer 
cells. BioRxiv, 2020.06.17.158246.

21. Zhang T, Brazhnik P, & Tyson JJ (2009). Computational analysis of dynamical responses to the 
intrinsic pathway of programmed cell death. Biophys. J, 97, 415–434. [PubMed: 19619456] 

22. Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, & Sorger PK (2008). Modeling a snap-
action, variable-delay switch controlling extrinsic cell death. PLoS. Biol, 6, 2831–2852. [PubMed: 
19053173] 

23. Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, & Tyson JJ (2015). Dynamic 
modeling of the interaction between autophagy and apoptosis in mammalian cells. CPT. 
Pharmacometrics. Syst. Pharmacol, 4, 263–272. [PubMed: 26225250] 

24. Zhang J, Tian XJ, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, & Xing J (2014). TGF-beta-
induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple 
feedback loops. Sci. Signal, 7, ra91. [PubMed: 25270257] 

25. Geske FJ, Lieberman R, Strange R, & Gerschenson LE (2001). Early stages of p53-induced 
apoptosis are reversible. Cell Death & Differentiation, 8, 182–191. [PubMed: 11313720] 

26. Kim JK & Forger DB (2012). A mechanism for robust circadian timekeeping via stoichiometric 
balance. Mol. Syst. Biol, 8, 630. [PubMed: 23212247] 

27. Dovzhenok AA, Baek M, Lim S, & Hong CI (2015). Mathematical modeling and validation of 
glucose compensation of the neurospora circadian clock. Biophys. J, 108, 1830–1839. [PubMed: 
25863073] 

28. Tyson JJ, Hong CI, Thron CD, & Novak B (1999). A simple model of circadian rhythms based on 
dimerization and proteolysis of PER and TIM. Biophys. J, 77, 2411–2417. [PubMed: 20540926] 

29. Jerby L, Shlomi T, & Ruppin E (2010). Computational reconstruction of tissue-specific metabolic 
models: application to human liver metabolism. Mol. Syst. Biol, 6, 401. [PubMed: 20823844] 

30. Bier M, Teusink B, Kholodenko BN, & Westerhoff HV (1996). Control analysis of glycolytic 
oscillations. Biophys. Chem, 62, 15–24. [PubMed: 8962468] 

Clarke et al. Page 21

Cancer Metastasis Rev. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



31. Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, & Levine H (2017). Epithelial/mesenchymal 
plasticity: how have quantitative mathematical models helped improve our understanding? Mol. 
Oncol, 11, 739–754. [PubMed: 28548388] 

32. Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B Jr., Assad-Garcia N, Glass 
JI, & Covert MW (2012). A whole-cell computational model predicts phenotype from genotype. 
Cell, 150, 389–401. [PubMed: 22817898] 

33. Sanghvi JC, Regot S, Carrasco S, Karr JR, Gutschow MV, Bolival B Jr., & Covert MW (2013). 
Accelerated discovery via a whole-cell model. Nat. Methods, 10, 1192–1195. [PubMed: 
24185838] 

34. Tyson JJ, Laomettachit T, & Kraikivski P (2019). Modeling the dynamic behavior of biochemical 
regulatory networks. J. Theor. Biol, 462, 514–527. [PubMed: 30502409] 

35. Mendoza L & Xenarios I (2006). A method for the generation of standardized qualitative 
dynamical systems of regulatory networks. Theor. Biol. Med. Model, 3, 13. [PubMed: 16542429] 

36. Jalihal AP, Kraikivski P, Murali TM, & Tyson JJ (2020). Modeling and Analysis of the 
Macronutrient Signaling Network in Budding Yeast. BioRxiv, 2020.02.15.950881.

37. Wu WH, Wang FS, & Chang MS (2008). Dynamic sensitivity analysis of biological systems. 
BMC. Bioinformatics, 9 Suppl 12, S17.

38. Wang Y, Miller DJ, & Clarke R (2008). Approaches to working in high-dimensional data spaces: 
gene expression microarrays. Br. J. Cancer, 98, 1023–1028. [PubMed: 18283324] 

39. Nguyen QH, Pervolarakis N, Nee K, & Kessenbrock K (2018). Experimental Considerations for 
Single-Cell RNA Sequencing Approaches. Front Cell Dev. Biol, 6, 108. [PubMed: 30234113] 

40. Vogel C & Marcotte EM (2012). Insights into the regulation of protein abundance from proteomic 
and transcriptomic analyses. Nat. Rev. Genet, 13, 227–232. [PubMed: 22411467] 

41. Barberis M & Verbruggen P (2017). Quantitative systems biology to decipher design principles of 
a dynamic cell cycle network: the “Maximum Allowable mammalian Trade-Off-Weight” 
(MAmTOW). NPJ. Syst Biol Appl, 3, 26. [PubMed: 28944079] 

42. Dimitrova N, Nagaraj AB, Razi A, Singh S, Kamalakaran S, Banerjee N, Joseph P, Mankovich A, 
Mittal P, DiFeo A, & Varadan V (2017). InFlo: a novel systems biology framework identifies 
cAMP-CREB1 axis as a key modulator of platinum resistance in ovarian cancer. Oncogene, 36, 
2472–2482. [PubMed: 27819677] 

43. Masoudi-Nejad A, Bidkhori G, Hosseini Ashtiani S., Najafi A, Bozorgmehr JH, & Wang E (2015). 
Cancer systems biology and modeling: microscopic scale and multiscale approaches. Semin. 
Cancer Biol, 30, 60–69. [PubMed: 24657638] 

44. Tape CJ (2016). Systems biology analysis of heterocellular signaling. Trends Biotechnol, 34, 627–
637. [PubMed: 27087613] 

45. Leiserson MD, Vandin F, Wu HT, Dobson JR, Eldridge JV, Thomas JL, Papoutsaki A, Kim Y, Niu 
B, McLellan M, Lawrence MS, Gonzalez-Perez A, Tamborero D, Cheng Y, Ryslik GA, Lopez-
Bigas N, Getz G, Ding L, & Raphael BJ (2015). Pan-cancer network analysis identifies 
combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet, 47, 
106–114. [PubMed: 25501392] 

46. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MDM, Niu B, 
McLellan MD, Uzunangelov V, Zhang J, Kandoth C, Akbani R, Shen H, Omberg L, Chu A, 
Margolin AA, Van’t Veer LJ, Lopez-Bigas N, Laird PW, Raphael BJ, Ding L, Robertson AG, 
Byers LA, Mills GB, Weinstein JN, Van Waes C., Chen Z, Collisson EA, Benz CC, Perou CM, & 
Stuart JM (2014). Multiplatform analysis of 12 cancer types reveals molecular classification within 
and across tissues of origin. Cell, 158, 929–944. [PubMed: 25109877] 

47. Shelanski M, Shin W, Aubry S, Sims P, Alvarez MJ, & Califano A (2015). A systems approach to 
drug discovery in Alzheimer’s disease. Neurotherapeutics., 12, 126–131. [PubMed: 25608936] 

48. Lachmann A, Giorgi FM, Lopez G, & Califano A (2016). ARACNe-AP: gene network reverse 
engineering through adaptive partitioning inference of mutual information. Bioinformatics., 32, 
2233–2235. [PubMed: 27153652] 

49. Cheng F, Zhao J, Hanker AB, Brewer MR, Arteaga CL, & Zhao Z (2016). Transcriptome- and 
proteome-oriented identification of dysregulated eIF4G, STAT3, and Hippo pathways altered by 

Clarke et al. Page 22

Cancer Metastasis Rev. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PIK3CA (H1047R) in HER2/ER-positive breast cancer. Breast Cancer Res. Treat, 160, 457–474. 
[PubMed: 27771839] 

50. Reiter JG, Baretti M, Gerold JM, Makohon-Moore AP, Daud A, Iacobuzio-Donahue CA, Azad NS, 
Kinzler KW, Nowak MA, & Vogelstein B (2019). An analysis of genetic heterogeneity in 
untreated cancers. Nat. Rev. Cancer, 19, 639–650. [PubMed: 31455892] 

51. Wang N, Gong T, Clarke R, Chen L, Shih leM, Zhang Z, Levine DA, Xuan J, & Wang Y (2015). 
UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in 
tumor samples. Bioinformatics, 31, 137–139. [PubMed: 25212756] 

52. Wang N, Hoffman EP, Chen L, Chen L, Zhang Z, Liu C, Yu G, Herrington DM, Clarke R, & Wang 
Y (2016). Mathematical modelling of transcriptional heterogeneity identifies novel markers and 
subpopulations in complex tissues. Sci. Rep, 6, 18909. [PubMed: 26739359] 

53. Herrington DM, Mao C, Parker SJ, Fu Z, Yu G, Chen L, Venkatraman V, Fu Y, Wang Y, Howard 
TD, Jun G, Zhao CF, Liu Y, Saylor G, Spivia WR, Athas GB, Troxclair D, Hixson JE, Vander 
Heide RS, Wang Y, & Van Eyk JE (2018). Proteomic Architecture of Human Coronary and Aortic 
Atherosclerosis. Circulation, 137, 2741–2756. [PubMed: 29915101] 

54. Avila CF, Vandesompele J, Mestdagh P, & De Preter K. (2018). Computational deconvolution of 
transcriptomics data from mixed cell populations. Bioinformatics., 34, 1969–1979. [PubMed: 
29351586] 

55. Houseman EA, Kile ML, Christiani DC, Ince TA, Kelsey KT, & Marsit CJ (2016). Reference-free 
deconvolution of DNA methylation data and mediation by cell composition effects. BMC. 
Bioinformatics., 17, 259- [PubMed: 27358049] 

56. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, 
Sun P, & Narod SA (2007). Triple-negative breast cancer: clinical features and patterns of 
recurrence. Clin. Cancer Res, 13, 4429–4434. [PubMed: 17671126] 

57. Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, & Segall JE 
(2012). Dormancy signatures and metastasis in estrogen receptor positive and negative breast 
cancer. PLoS. ONE, 7, e35569. [PubMed: 22530051] 

58. Uhr JW & Pantel K (2011). Controversies in clinical cancer dormancy. Proc. Natl. Acad. Sci. U. S. 
A, 108, 12396–12400. [PubMed: 21746894] 

59. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, Soria JC, Dien AT, Adnani 
Y, Kamal M, Garnier S, Meurice G, Jimenez M, Dogan S, Verret B, Chaffanet M, Bachelot T, 
Campone M, Lefeuvre C, Bonnefoi H, Dalenc F, Jacquet A, De Filippo MR, Babbar N, Birnbaum 
D, Filleron T, Le TourneauC., & Andre F (2019). Genomic characterization of metastatic breast 
cancers. Nature, 569, 560–564. [PubMed: 31118521] 

60. Stanton SE, Adams S, & Disis ML (2016). Variation in the incidence and magnitude of tumor-
infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol, 2, 1354–
1360. [PubMed: 27355489] 

61. Perou CM, Sorlie T, Eisen MB, Van de Rijn M., Jeffrey SS, Rees CA, Pollack JR, Ross DT, 
Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, 
Borresen-Dale AL, Brown PO, & Botstein D (2000). Molecular portraits of human breast tumours. 
Nature, 406, 747–752. [PubMed: 10963602] 

62. Angus L, Smid M, Wilting SM, van Riet J., Van Hoeck A., Nguyen L, Nik-Zainal S, Steenbruggen 
TG, Tjan-Heijnen VCG, Labots M, van Riel JMGH, Bloemendal HJ, Steeghs N, Lolkema MP, 
Voest EE, van de Werken HJG, Jager A, Cuppen E, Sleijfer S, & Martens JWM (2019). The 
genomic landscape of metastatic breast cancer highlights changes in mutation and signature 
frequencies. Nat. Genet, 51, 1450–1458. [PubMed: 31570896] 

63. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, 
Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin 
CP, Toner M, Haber DA, & Maheswaran S (2014). Circulating tumor cell clusters are oligoclonal 
precursors of breast cancer metastasis. Cell, 158, 1110–1122. [PubMed: 25171411] 

64. Loeb LA, Kohrn BF, Loubet-Senear KJ, Dunn YJ, Ahn EH, O’Sullivan JN, Salk JJ, Bronner MP, & 
Beckman RA (2019). Extensive subclonal mutational diversity in human colorectal cancer and its 
significance. Proc. Natl. Acad. Sci. U. S. A, 116, 26863–26872.

Clarke et al. Page 23

Cancer Metastasis Rev. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



65. Enriquez-Navas PM, Wojtkowiak JW, & Gatenby RA (2015). Application of evolutionary 
principles to cancer therapy. Cancer Research, 75, 4675–4680. [PubMed: 26527288] 

66. Stuelten CH, Parent CA, & Montell DJ (2018). Cell motility in cancer invasion and metastasis: 
insights from simple model organisms. Nat. Rev. Cancer, 18, 296–312. [PubMed: 29546880] 

67. Pearson GW (2019). Control of invasion by epithelial-to-mesenchymal transition programs during 
metastasis. J. Clin. Med, 8, 646.

68. Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y, & Pearson 
GW (2015). An epigenetically distinct breast cancer cell subpopulation promotes collective 
invasion. J. Clin. Invest, 125, 1927–1943. [PubMed: 25844900] 

69. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, & Tyson JJ (2000). Kinetic analysis of a 
molecular model of the budding yeast cell cycle. Mol Biol Cell, 11, 369–391. [PubMed: 
10637314] 

70. Novak B & Tyson JJ (2004). A model for restriction point control of the mammalian cell cycle. J 
Theor. Biol, 230, 563–579. [PubMed: 15363676] 

71. Hanahan D & Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674. 
[PubMed: 21376230] 

72. Hanahan D & Weinberg RA (2000). The hallmarks of cancer. Cell, 100, 57–70. [PubMed: 
10647931] 

73. Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicol. Pathol, 35, 495–516. 
[PubMed: 17562483] 

74. Tyson JJ, Chen KC, & Novak B (2003). Sniffers, buzzers, toggles and blinkers: dynamics of 
regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol, 15, 221–231 [PubMed: 
12648679] 

75. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, 
Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, 
Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, 
Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan 
FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, 
Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi, V De, 
Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N., Di Virgilio F., Dixit VM, 
Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez 
AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, 
Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo 
H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, 
Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, 
Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, Macfarlane M, Madeo F, 
Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, 
Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, 
Oberst A, Oren M , Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, 
Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich 
GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, 
Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, 
Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, 
Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, 
Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, 
Melino G, & Kroemer G (2018). Molecular mechanisms of cell death: recommendations of the 
Nomenclature Committee on Cell Death 2018. Cell Death. Differ, 25, 486–541. [PubMed: 
29362479] 

76. Voskoboinik I, Whisstock JC, & Trapani JA (2015). Perforin and granzymes: function, dysfunction 
and human pathology. Nat. Rev. Immunol, 15, 388–400. [PubMed: 25998963] 

77. Ikushima H & Miyazono K (2010). TGFbeta signalling: a complex web in cancer progression. Nat. 
Rev. Cancer, 10, 415–424. [PubMed: 20495575] 

78. Batlle E & Massague J (2019). Transforming Growth Factor-beta Signaling in Immunity and 
Cancer. Immunity., 50, 924–940. [PubMed: 30995507] 

Clarke et al. Page 24

Cancer Metastasis Rev. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



79. Meng XM, Nikolic-Paterson DJ, & Lan HY (2016). TGF-beta: the master regulator of fibrosis. 
Nat. Rev. Nephrol, 12, 325–338. [PubMed: 27108839] 

80. Zhang H, Liu T, Payne SH, Zhang B, McDermott JE, Zhou J-Y, Petyuk VA, Chen L, Ray D, Sun S, 
Yang F, Chen L, Wang J, Shah P, Cha SW, Aiyetan P, Woo S, Tian Y, Gritsenko MA, Clauss TR, 
Choi C, Monroe ME, Thomas S, Nie S, Wu C, Moore RJ, Yu K-H, Tabb DL, Fenyo D, Bafna V, 
Wang Y, Rodriguez H, Boja ES, Hiltke T, Rivers RC, Sokoll L, Zhu H, Shih I-E, Cope L, Pamdey 
A, Zhang B, Snyder MP, Levine DA, Smith RD, Chan DW, Rodland KD, & CPTAC Investigators 
(2016). Integrated proteogenomic characterization of human high grade serous ovarian cancer. 
Cell, 166, 755–765. [PubMed: 27372738] 

81. Hudson NJ, Reverter A, & Dalrymple BP (2009). A differential wiring analysis of expression data 
correctly identifies the gene containing the causal mutation. PLoS. Comput. Biol, 5, e1000382. 
[PubMed: 19412532] 

82. Zhang B, Li H, Riggins R, Zhan M, Xuan J, Zhang Z, Hoffman EP, Clarke R, & Wang Y (2009). 
Differential dependency network analysis to identify condition-specific topological changes in 
biological networks. Bioinformatics, 25, 526–532. [PubMed: 19112081] 

83. Metzcar J, Wang Y, Heiland R, & Macklin P (2019). A review of cell-based computational 
modeling in cancer biology. JCO. Clin. Cancer Inform, 3, 1–13.

Clarke et al. Page 25

Cancer Metastasis Rev. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Sequential versus stochastic acquisition of the features necessary for a function to be 

executed successfully. Features could represent signaling events necessary to regulate and 

execute a function, such as a specific node or edge in a signaling network. Alternatively, 

features could represent a series of independent functions needed to execute the entire 

system, for example, invasion or extravasation.
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Figure 2: 
Simple representation of the relationship between the regulatory and executory activities of a 

process. Some level of hierarchical relationships is implied where most regulatory activities 

are upstream of most executory activities. The representation is not intended to exclude the 

potential for feedforward and feedback activities that may limit the process and/or induce 

oscillations in process execution.
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Figure 3: 
Mutation patterns in early compared with late dissemination. Simple representation based on 

the concept of a single clone of origin for the metastasis.
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Figure 4: 
Intrinsic and extrinsic factors in molecular signaling. Within the tumor microenvironment, 

intrinsic signaling occurs within the cancer cell whereas extrinsic activities are external to 

the cancer cell but can regulate the activity of intrinsic signals, for example, by interacting 

with receptors exposed on the plasma membrane or by uptake into the cancer cell and 

interacting internally with other factors present in the cancer cell. ECM = extracellular 

matrix
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Figure 5: 
Simple representation of a feature within a molecular signaling network comprised of nodes 

(for example, genes, protein, metabolites, DNA) and their interconnecting edges.
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