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Abstract
Over activity of Glycogen synthase kinase-3β (GSK-3β), a serine/threonine-protein kinase has been implicated in a number of 
diseases including stroke, type II diabetes and Alzheimer disease (AD). This study aimed to find novel inhibitors of GSK-3β 
from phyto-constituents of Melissa officinalis with the aid of computational analysis. Molecular docking, induced-fit docking 
(IFD), calculation of binding free energy via the MM-GBSA approach and Lipinski’s rule of five (RO5) were employed to 
filter the compounds and determine their druggability. Most importantly, the compounds pIC50 were predicted by machine 
learning-based model generated by AutoQSAR algorithm. The generated model was validated to affirm its predictive model. 
The best model obtained was Model kpls_desc_38 (R2 = 0.8467 and Q2 = 0.8069), and this external validated model was 
utilized to predict the bioactivities of the lead compounds. While a number of characterized compounds from Melissa offici-
nalis showed better docking score, binding free energy alongside adherence to RO5 than co-cystallized ligand, only three 
compounds (salvianolic acid C, ellagic acid and naringenin) showed more satisfactory pIC50. The results obtained in this 
study can be useful to design potent inhibitors of GSK-3β.
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Introduction

Glycogen synthase kinase-3β (GSK-3β) is a serine/threo-
nine-protein kinase, primarily located in cytosol demon-
strates important roles in different disease molecular patho-
physiology (Mancinelli et al. 2017). Owing to its role in type 
2 diabetes and obesity as determined by in vitro and in vivo 
studies, GSK-3β has gained popularity as a possible drug 
target (Gum et al. 2003; Ring et al. 2003). It’s also related 
to Alzheimer’s disease (AD) and mood disorders (Hsiung 
et al. 2003), osteoporosis (Smith and Frenkel 2005), arte-
riosclerosis (Robertson et al. 2006), and cancer (Inoki et al. 
2006). Unlike other protein kinases, GSK-3β under normal 
conditions is constitutively active and undergoes a rapid and 
temporary inhibition in response to a variety of external sig-
nals (Dorm 2005).

GSK-3β has been explored as a therapeutic target for a 
range of human diseases including cancer due to its diverse 
cellular functions (Yuki and Chikashi 2015). It is thus 
regarded as an obvious target for disease drug development, 
including neurodegenerative diseases such as Alzheimer’s 
diseases, diabetes mellitus, and cancer (Takahashi and Sasa-
guri 2009; Gao et al. 2013). This target is unique in that it 
is constitutively active in cells and its inhibition is liable for 
cell signalling (Inoki et al. 2006). GSK-3β plays significant 
roles in numerous signalling pathways that regulate a variety 
of cellular processes (Xu et al. 2009; Cheng et al. 2011).

Melissa officinalis L. also known as lemon balm, a peren-
nial herb in the family Lamiaceae (Fig. 1) occurs naturally 
in the Mediterranean and West Asia but is widely cultivated 
in Europe and North America (Moradkhani et al. 2010). Its 
leaf contains several phyto-compounds, such as flavonoids, 
polyphenolic compounds, monoterpenoid aldehyde, tannins, 
monoterpene glycosides, triterpenesesquiterpenes and essen-
tial oils (Sofowora et al. 2013). The usage of M. Officinalis 
as a supplement ingredient and functional food has increased 
over time due to its many medicinal properties including 
sedative, carminative and antispasmodic effects (Ożarowski 
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et al. 2016). Lemon balm leaf, plant, and essential oil are 
used in herbal medicine (Senderski 2009).

A number of researches have been geared towards the 
discovery and design of selective GSK-3β inhibitors. Some 
identified GSK-3 inhibitors include small molecules iso-
lated from organic and aquatic sources or obtained from 
chemical synthesis. They can function through numerous 
mechanisms, including competitive or non-competitive ATP 
inhibition. Attempts have been made to evolve and develop 
novel GSK-3β inhibitors in academia and industry (Xie et al. 
2017). Many chemical families are known to emerge as 
GSK-3 inhibitors, with great structural diversity. Therefore 
GSK-3 is regarded as an ideal target for new drug discovery.

Molecular docking is a very fitting and low-cost method 
to understand the reaction mechanism of proteins or 
enzymes with ligands with high accuracy for rational drug 
design and discovery by analyzing the conformation and 
orientation of molecules into a molecular target binding site 
(Liu et al. 2018; Kitchen et al. 2004). As a result of the 
development of the first algorithms in the 1980s, molecular 
docking is now an important tool in drug discovery (Meng 
et al. 2011), and the most frequently used technique to pre-
dict the binding orientation of potential drugs against protein 
targets (Kapetanovic 2008). Hence, this study aimed at the 
use of molecular docking to predict the most potent Gly-
cogen synthase 3-beta (GSK-3β) inhibitors with drug-like 
properties from M. officinalis.

Materials and methods

Preparation of crystal protein

The crystal structure of GSK-3β (PDB ID-1UV5) was down-
loaded via the protein preparation wizard of maestro v11.8. 

The protocol described in our previous studies was used to 
prepare crystal structure of the protein (Iwaloye et al. 2020a, 
b). The protein was preprocessed by creating zero bonds to 
metals, deleting waters from 5.0 Å of het groups, adjust-
ing bond orders and setting the het states at pH 7.0 ± 2.0 
(Schrödinger Suite 2012). The protein was refined by opti-
mizing the H-bond network using PROPKA and removing 
water molecules with less than 3 H-bonds to non-waters 
(Olsson et al. 2011). The retrained minimization was carried 
out using the OPLS3 force field to avoid steric clashes that 
may exist in the structure. The minimization was terminated 
while the RMSD of non-hydrogen atoms reached 0.30 Å.

Preparation of the phyto‑compounds

The library of compounds was built by drawing character-
ized compounds of Melissa officinalis using Marvinsketch 
(version 19.26) as documented in a different literature review 
(Triantaphyllou et al. 2001; Patora and Klimek 2002; Heitz 
et al. 2000; Tagashira and Ohtake 1998). The compounds 
were prepared using Ligprep. The Ligprep panel enables the 
conversion of structures; generate variations of structures 
and elimination of unwanted structures. After stereoisomer 
computation was left to generate at most 32 per ligand and 
the output format was left as maestro, the OPLS3 force field 
was left at pH 7.0 ± 2.0 using epik (Schrödinger Suite 2012).

Receptor grid generation

The receptor grid file was generated using a receptor grid 
generation panel, which represents the active sites of the 
receptor for glide ligand docking jobs. The ligand-binding 
site was defined by picking the co-crystallized ligand of the 
protein structure on the workspace. The van der Waals radii 
of the receptor atoms with partial atomic charge was set 

Fig. 1   Aerial parts of Melissa 
officnialis (Zarei et al. 2015)
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scaling factor of 1.0 and partial cutoff of 0.25 to soften the 
potential for non-polar parts of the receptor. The receptor 
grid box resolution was centered at coordinates 93.91, 68.0 
and 9.8 in respect to x, y, and z-axis.

Glide extra precision docking

The prepared library of compounds was docked into the 
active site of the protein crystal using extra precision with 
the ligand sampling set generated as flexible. The choice of 
the best-docked structure for each ligand was made using 
model energy score (emodel) that combines glide score, 
the non-bonded interaction energy and the excess internal 
energy of the generated ligand conformation.

Induced fit docking (flexible docking)

To accurately predict the binding affinity of the novel 
inhibitors to the prepared protein crystal, Induced fit dock-
ing (IFD) was implemented. IFD is an in silico approach 
that uses Glide and the Refinement module in Prime that 
accurately predicts ligand binding modes and concomitant 
structural changes in the receptor (Sherman et al. 2006).

Calculation of binding free energy

The Prime MM-GBSA panel was used to calculate bind-
ing free energy for the ligand-receptor complex using the 
MM-GBSA technology available with Prime (2018). MMG-
BSA quantifies the difference in energy between the free 
and the complex state of both the ligand and the protein 
after energy minimization. In the prime MM-GBA panel, the 
OPLS3 force field was selected and VSGB was used as the 
continuum solvent model. Other options were set to default.

The equations for calculating binding energy are as 
follows.

where Ecomplex, Eprotein, and Eligand indicate the mini-
mized energies for protein-inhibitor complex, protein, and 
inhibitor, respectively.

where ∆GSA is the non-polar contribution to the solvation 
energy due to the surface area. GSA (complex), GSA (pro-
tein) and GSA (ligand) are the surface energies of complex, 
protein and ligand respectively.

(1)ΔG bind = ΔE + ΔGsolv + ΔGSA

(2)ΔE = Ecomplex − E protein − Eligand

(3)
ΔGsolv = ΔGsolv (complex) −ΔGsolv (protein) −ΔGsolv (ligand)

(4)
ΔGSA = ΔGSA (complex) −ΔGSA (protein) −ΔGSA (ligand)

Drug‑likeness test of the phytochemicals

Lipinski’s rule of five was used to determine the drug-like-
ness of the compounds and this parameter was predicted by 
Canvas (Duan et al. 2010a, b).

Validation of molecular docking results

The protocol for docking in this study was validated by 
docking the prepared inhibitors of GSK-3β downloaded 
from database server of the CHEMBL. Extra precision (XP) 
docking score of selected compounds were plot against their 
pChEMBL value to obtain r2 spearman correlation. The plot-
ted graph is illustrated in Fig. 2. The docking protocol was 
further validated by docking native ligand (co-crystal ligand) 
with the prepared crystal structure of GSK-3β to determine 
the root mean square deviation (RMSD). A RMSD value of 
0.39 Å (Fig. 3) showed the docking procedure is reproduc-
ible (Elekofehinti et al. 2018).

Machine learning principles using 
automated QSAR

Generation and preparation of dataset

The experimental dataset containing GSK-3β inhibitors were 
retrieved from CHEMBL database online server (www.
ebi.ac.uk/chemb​l/), by blasting the FASTA sequence of the 
GSK-3β with online sever (CHEMBL262). Bioactivities of 
116 inhibitors of GSK-3β were retrieved with their respective 

Fig. 2   The correlation coefficient graph between the experimentally 
determined pIC50 of GS3K-3β their docked score with R2 of 0.88 
indicating that the docking experiment can replicate the experimen-
tally determined values of the inhibitors

http://www.ebi.ac.uk/chembl/
http://www.ebi.ac.uk/chembl/
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pIC50 were compiled from literatures Olesen et al. (2003), 
Terrence et al. (2006), Saitoh et al. (2009), Luo et al. (2016) 
and Cociova et al. (2017). Compounds without pIC50 were 
deleted from excel sheet before conversion to sdf (structure 
data file) format using data-warrior package (v.2) (Sander 
et al. 2005). The sdf format was exported to the workspace of 
maestro for preparation by ligprep (Schrödinger Suite 2012). 
The prepared compounds were eventually exported to Can-
vas cheminformatics (Duan et al. 2010a, b). Canvas clusters 
the inhibitors based on their Tanimoto similarity between sets 
of Hashed linear binary fingerprint descriptors, to determine 
the structural diversity among the inhibitor, and to select rep-
resentatives from each resulting cluster. This computational 
study generated a total of 49 clusters and one representative 
was selected from each cluster to develop our QSAR model.

Principle of autoQSAR

AutoQSAR is a machine-learning algorithm provided by 
Schrödinger suite that builds and applies QSAR models 
through automation (Dixon et al. 2016). In order to build a 
predictive model, AutoQSAR takes the 1D, 2D and 3D struc-
tural data of a molecule along with a property (eg: IC50) to be 
modeled, as an input. It will then compute the fingerprints and 
descriptors using machine-learning statistical methods for cre-
ating a predictive QSAR model. The predictive accuracy of the 
model is evaluated using various parameters such as ranking 
score, Root Mean Square Error (RMSE), Standard Deviation 
(SD), Q2 and R2 values (de Oliveira and Katekawa 2017).

Validation methods for QSAR models

External validation

The predictive power of a QSAR model can be estimated by 
the following statistical characteristics of the test set which 
was recommended by Golbraikh and Tropsha (2002):

	 i.	 Correlation coefficient R between the predicted and 
observed activities

	 ii.	 Coefficients of determination (R2) (predicted vs. 
observed activities r0

2
 , and observed vs. predicted 

activities r0′
2

 ) (Sachs 1984).
	 iii.	 Slopes k and k′ of the regression lines through the 

origin.

A model is considered robust if it meets the following 
criteria (Golbraikh and Tropsha 2002):

Results and discussion

Molecular docking studies

In the context of therapeutic application, GSK-3β has 
become an interesting drug target due to its exclusive and 
central role in the pathogenesis of varieties of disease. Sev-
eral studies have documented that over-expression of Gly-
cogen synthase kinase-3β accounts for memory impairment/
increased β-amyloid production, diabetic type II, stroke, 
cancer and chronic inflammatory disease (Eldar-Finkelman 
2002; Beurel 2011; Liu 2014).

An extensive literature survey was done to identify and 
select phyto-compounds against GSk-3β based on their 
medicinal properties for drug designing using molecular 
docking studies. Melissa officinalis became the ideal plant 
due to its medicinal strength (Kamdem et al. 2013; Ammon 
et al. 2006) and the small molecular weight of its photo-
constituents. The present study utilized glide XP docking 
and induced fit docking to painstakingly and accurately pre-
dict the binding affinity and docking score of the compounds 
with GSk-3β, thereby denoting compounds with favourable 
interaction. Table 1 presented the molecular docking results 
and the interacting residues of the respective ligand–pro-
tein complex. The docking score of the hit compounds 
ranged from − 7.289 to − 17.284 kcal/mol. Luteoin 3′-O-β-
d-glucoronopyranoside(VI) attained the highest binding 
affinity with a score of − 17.284 kcal/mol. The next ranked 
compounds are luteoin 7-O-β-d-glucoronopyranoside(V), 
chlorogenic acid and salvianolic acid F with docking scores 
of − 17.199 kcal/mol, − 15.650 kcal/mol and − 14.285 kcal/
mol respectively. However, the co-crystallized, our ligand 
choice of comparison attained the least docking score 
(− 4.638 kcal/mol). This suggests that the hit compounds 
derived from Melissa officnialis are promising agents as 
GSk-3β inhibitors. Induced fit docking (IFD) offered a more 

R
2
pred

> 0.6, r2 − r2
0
∕ r2 < 0.1,

r2− r2
0�
∕ r2 < 0.1 and

0.85 < k < 1.15 or 0.85 < k� < 1.15

Fig. 3   Superposition of the co-crystal ligand with its docked pose
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accurate prediction of binding affinity by allowing the pro-
tein to undergo rotation on binding to a ligand. The results 
of the IFD score of the hit compounds did not follow the 
same trend with the docking score. While luteoin 3′-O-b-d-
glucoronopyranoside(VI) still retained the most favourable 
interaction with the IFD score of − 716.889 kcal/mol, Narin-
genin and apigenin have more favourable interaction than the 
other compounds by recording IFD score of − 716.819 kcal/
mol and − 715.304 kcal/mol respectively.

Hydrogen bonding interaction

The binding site of GSk-3β is known to contain a group 
of polar residues such as LYS85, ASP200, and GLU51 
that play a leading role in the ligand-ATP recognition; 
ASP200 specifically interacts with the phosphate group 
of ATP (De Bondt et  al. 1993). The interacting resi-
dues of the protein with lead compounds were listed in 
Table 1. Our results revealed that few of the inhibitors 
were involved in hydrogen bond interaction with LYS85 
and ASP200. Yunnaneic acid, ellagic acid, and meli-
tric acid A formed hydrogen interaction with LYS85. 

Consequently, chlorogenic acid appeared to form inter-
action with ASP200. A similar interaction with potential 
inhibitors was also reported by Padavala et al. (2010). 
Several studies have recognized VAL135 and ASP133 as 
key residues for H-bond interaction with a diverse range 
of GSk-3β inhibitors (Smith et al. 2001; Padavala et al. 
2010), in addition to GLN185, LYS183, ILE62, ASN186 
and ARG141 (Witherington et al. 2003; Bertrand et al. 
2003; Buescher and Phiel 2010). Interestingly all the lead 
compounds showed interaction with most of these amino 
acid residues. Figures 4, 5, 6 depicted the docking con-
formation of the compounds with the three most favora-
ble interactions with GSk-3β. The residues present in 
the active site of GSk-3β interacted with luteoin 3′-O-β-
d-glucoronopyranoside(VI) were VAL135, ASN64, 
2[LYS183], and GLY68, with the hydrogen bonding dis-
tance between the compound and GSk-3β were found to 
be 2.50 Å, 1.68 Å, 1.78 Å, 2.91 Å and 2.72 Å. Naringenin 
showed interaction with ASP133 and PRO136 using the 
hydroxyl group attached to its phenyl rings. The hydro-
gen-bonding distance between naringenin and GSk-3β is 
estimated to be 1.99 Å and 1.93 Å.  

Table 1   Molecular docking results and Interacting residues of the respective ligand–protein complex

Compounds Docking 
score (kcal/
mol)

Induced fit dock-
ing score (kcal/
mol)

H-bond H-bonding distance (Å) Predicted pIC50

Luteoin 3′-O-β-d-
glucoronopyranoside(VI)

− 17.284 − 716.889 VAL135, ASN64, 2[LYS183], 
GLY68

2.50, 1.68
1.78, 2.91
2.72

6.452

Luteoin 7-O-β-d-
glucoronopyranoside(V)

− 17.199 − 713.219 PRO136, ILE62
2[LYS183]
ASN64, ASN186

2.21, 2.02
4.42, 4.51
1.95, 1.75

6.415

Chlorogenic acid − 15.650 − 709.342 ASP200, LYS183, ASN64
2[VAL135]

2.02, 4.15, 2.29
1.82, 2.28

6.643

Salvianolic acid F − 14.285 − 708.102 PHE67, VAL135 1.77, 2.22 6.453
Salvianolic acid C − 14.140 − 711.207 2[LYS183], ASN186, 

2[VAL135]
ARG141

1.66, 3.76, 2.23
2.01, 2.09
2.41

7.770

Salvianolic acid A − 13.213 − 709.096 ILE62, PRO136 2.09, 2.16 6.744
Melitric acid A − 12.445 − 710.219 VAL135, GLN185

2[LYS183]
2[LYS85], ASN64

2.08, 2.99, 3.64
2.02, 2.65
4.85

6.427

Yunnaneic acid − 12.173 − 709.805 ASN64, LYS183
2[GLN185]
LYS85

1.77, 2.95
1.95, 1.86
3.22

6.190

Ellagic acid − 10.439 − 705.418 LYS85, VAL135 2.27, 1.83 8.169
Naringenin − 8.182 − 716.819 ASP133, PRO136 1.99, 1.93 7.850
Decadienal − 7.289 − 705.512 VAL135 1.94 4.178
Rosmarinic acid − 9.465 − 712.618 ASN64, VAL135, ASP133 2.92, 2.61, 2.22 6.855
Apigenin − 9.671 − 715.304 ASP133, PRO136 1.88, 1.99 6.811
Co-cyrstallized ligand − 4.638 − 704.432 ASN64, LYS183, ASN186, 

GLN185
2.24, 5.38, 1.80, 1.84 7.487
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Binding energy assessment

To validate the docking scores, the free energy of binding 
was calculated via the MMGBSA post docking program, 
which predicts binding free energies for compounds/ligands 
by utilizing the combination of molecular mechanics calcu-
lations and salvation models. It has been demonstrated in 
many studies that the MMGBSA post docking method is 
the most reliable for rating the affinity of a ligand on binding 
to its protein target (Maffucci et al. 2018; Sun et al. 2014) 
since results obtained through MMGBSA for binding ener-
gies calculations were found to be highly reproducible (Gen-
heden and Ryde 2015). The accuracy of the docking was 
affirmed by examining the lowest energy poses predicted by 
the scoring function. The evaluation of binding free energy 
is listed in Table 2. Interestingly, compounds with the good 

docking score showed favorable binding energy. In terms 
of binding free energy, the major energy contributors were 
identified as van der Waals (∆Gvdw), Coulomb interaction 
(∆GColulomb), Hydrogen bond (ΔGHbond) and lipophilic 
energy (∆GsolLipo) that enhance the binding affinity of the 
compounds towards the binding pocket of the protein.

ADME studies

The predicted ADME properties (Table 3) include a num-
ber of rotatable bonds, the molecular weight of the mol-
ecule, number of hydrogen bond acceptors, prediction of 
binding to human serum albumin, number of hydrogen 
bond donors, predicted octanol–water partition coefficient 
and number of violations of Lipinski’s rule of five (RO5). 
Lipinski’s RO5 helps to evaluate the drug-likeness, and 

Fig. 4   Binding pose of luteoin 3′-O-β-d-glucoronopyranoside(VI) with GS3K-3β revealing interacting amino acid residues within the active site 
of GS3K-3β in 2D
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determine the prospect of small molecules in becoming an 
orally active drug for humans. The rule permits a molecu-
lar weight < 500 Da, octanol–water partition coefficient < 5, 
hydrogen bond donor ≤ 5 and hydrogen bond acceptor ≤ 10 
(Lipinski et al. 2001). Prospective drug candidate that obey 
the Ro5 tend to have lower attrition rates at the stage of 
clinical trials and for this reason, it has an increased chance 
of becoming and staying marketable (Gombar et al. 2003). 
Compounds of Melissa officinalis have shown excellent 
results and are in accordance with this rule. In view of this, 
they can be developed as a promising lead in the design of 
GSk-3β inhibitors.

Automated QSAR analysis

The screening process further continued with the aid 
of machine learning-based predictive model (pIC50 

Calculation) generated by AutoQSAR panel of Schrodinger. 
Given a learning set of chemical structures and an activity 
property from CHEMBL database, a total of 497 physico-
chemical and topological descriptors are computed, together 
with a variety of Canvas fingerprints (Dixon et al. 2016), 
giving out a large pool of independent variables from which 
to build models. The automated module split the dataset 
randomly into 80% training set, and 20% test set. Models 
are built on each training set from all possible combina-
tion of machine learning method, and sets of independ-
ent variables that are supported by each machine learning 
methods. The observed activities and predicted activities 
of training set and test set in negative logarithm of inhibi-
tor concentration(pIC50) was represented in Table 4. The 
algorithm generated 10 best models and the results of the 
top 5 models are shown in Table 5. The best model Model 
kpls_desc_38 recorded a standard deviation (S.D) of 0.5505, 

Fig. 5   Binding pose of Naringenin with GS3K-3β revealing interacting amino acid residues within the active site of GS3K-3β in 2D
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R2 of 0.8467, root mean square error (RMSE) 0.5366 and 
Q2 of 0.8069. The best model was computed from kernel 
based partial least square regression (KPLS), which sup-
ports the use of descriptors and fingerprints as independent 
variables, and fingerprint desc_38, a model code generated 
from a combination of the machine learning method (MLM). 
The scatter plot depicting predicted pIC50 versus experimen-
tal pIC50 for best generated model is shown in Fig. 7. The 
Predicted pIC50 using the best model for the data set of the 
lead compounds and co-ligand are tabulated in Table 1. It 
is worth noting that three of the compounds are observed to 
have better predicted pIC50 than co-ligand.

External validation of QSAR model

Validation methods are required to affirm the robustness of 
a model on unseen data. The method of root mean-squared 

error (RMSE) is one of the internal methods of validating 
a model (Wold and Ericksson 1998; Yasri and Hartsough 
2001).

Strategies for external validation are important and it is 
of great interest to adopt all available validation strategies 
to check robustness of the model. All the parameters for 
external validation of structure based pharmacophore 
model are presented in Table 6. Cross validation (Q2) 
value of 0.8069, the correlation coefficient (R2) value of 
0.8467. The slopes of regression lines through origin (K 
and K0 value) and substantial values of correlation coef-
ficients ( R2

0
 and R2

0′
 ) were obtained from Observed pIC50 

and Predicted pIC50 activity of the dataset. The predictive 
ability of the selected model was also confirmed by exter-
nal. A value of r2

pred
 is greater than 0.6 may be taken as an 

indicator of good external predictability. All these values 

Fig. 6   Binding pose of Apigenin with GS3K-3β revealing interacting amino acid residues within the active site of GS3K-3β in 2D
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Table 2   Calculation of binding free energy

a MM-GBSA free energy (kcal/mol) of binding
b Contribution to the MM-GBSA free energy of binding (kcal/mol) from the Coulomb energy
c Contribution to the MMGBSA free energy of binding (kcal/mol) from the van der Waals energy
d Contribution to the MM-GBSA free energy of binding (kcal/mol) from lipophilic binding
e Contribution to the MM-GBSA free energy of binding (kcal/mol) from hydrogen bonding

Compounds ΔGBind
a ΔGBind

bcoulomb ΔGBind
cvdw ΔGBind

dlipo ΔGBind
eHbond

Luteoin 3′-O-β-d-glucoronopyranoside(VI) − 36.58 − 169.83 − 28.09 − 12.62 − 3.64
Luteoin 7-O-β-d-glucoronopyranoside(V) − 55.08 − 193.71 − 46.00 − 14.57 − 3.26
Chlorogenic acid − 59.06 − 184.44 − 21.64 − 14.12 − 4.40
Salvianolic acid F − 42.75 − 156.21 − 30.74 − 15.54 − 2.19
Salvianolic acid C − 40.79 − 317.24 − 48.20 − 14.76 − 3.57
Salvianolic acid A − 58.63 − 181.40 − 42.68 − 13.74 − 2.12
Melitric acid A − 31.41 − 157.46 − 46.40 − 14.60 − 3.97
Yunnaneic acid − 38.46 − 209.02 − 47.16 − 14.92 − 2.78
Ellagic acid − 51.04 − 23.18 − 35.39 − 15.55 − 2.45
Naringenin − 45.00 − 26.40 − 37.05 − 9.82 − 1.12
Decadienal − 37.36 − 11.50 − 20.55 − 16.15 − 0.97
Rosmarinic acid − 7.04 − 107.38 − 32.52 − 16.55 − 1.91
Apigenin − 44.98 − 26.40 − 37.05 − 9.82 − 1.12
Co-cyrstallized Ligand − 31.11 − 66.33 − 31.46 − 11.73 − 1.72

Table 3   Prediction of ADME 
properties

a Lipinski rule of five
b Molecular weight
c Predictedoctanol/water partition coefficient
d Hydrogen bond acceptor
e Hydrogen bon donor
f Rotatable bond
g Polar surface area

Compounds name aROF bMW cAlogP dHBA eHBD fRB gPSA

Luteoin 3′-O-β-d-glucoronopyranoside(VI) 0 460.344 − 0.359 9 5 4 213.010
Luteoin 7-O-β-d-glucoronopyranoside(V) 1 461.353 0.318 10 6 4 210.180
Chlorogenic acid 0 353.301 − 1.200 7 5 5 167.580
Salvianolic acid F 0 329.324 1.172 4 4 5 121.050
Salvianolic acid C 0 476.389 2.552 7 4 7 183.550
Salvianolic acid A 0 493.439 2.704 7 5 9 190.640
Melitric acid A 1 536.441 2.187 8 5 11 216.940
Yunnaneic acid 0 359.307 1.795 6 4 7 147.350
Ellagic acid 0 301.185 0.744 8 4 0 141.340
Naringenin 0 272.253 1.620 4 2 1 89.820
Decadienal 0 150.218 3.243 1 1 1 20.230
rosmarinic acid 0 359.307 1.795 6 4 7 147.350
Apigenin 0 271.245 1.620 4 2 1 89.820
Co-cyrstallized ligand 0 376.332 − 1.167 2 4 1 85.710



	 In Silico Pharmacology             (2020) 8:2 

1 3

    2   Page 10 of 13

Table 4   Details of AutoQSAR 
predicted activities compared 
with the observed activities

S/n CHEMBL CID Set Observed pIC50 Predicted pIC50 Residue error

1 CHEMBL68397 Train 7.4000 6.6281 − 0.7719
2 CHEMBL67799 Train 7.8000 7.6181 − 0.1819
3 CHEMBL76427 Train 4.7500 4.3437 − 0.4063
4 CHEMBL76427 Train 4.7500 4.3437 − 0.4063
5 CHEMBL250714 Train 6.0600 5.9896 − 0.0704
6 CHEMBL109944 Train 7.3500 7.7096 0.3596
7 CHEMBL111620 Train 7.5800 7.5083 − 0.0717
8 CHEMBL112564 Train 5.1600 5.9676 0.8076
9 CHEMBL1957099 Train 7.2000 6.2389 − 0.9611
10 CHEMBL1957078 Train 6.5000 6.1836 − 0.3164
11 CHEMBL1957942 Train 5.5500 6.0766 0.5266
12 CHEMBL326208 Train 7.8500 7.6141 − 0.2359
13 CHEMBL497398 Train 4.6000 5.0189 0.4189
14 CHEMBL188938 Train 8.3000 7.3258 − 0.9742
15 CHEMBL576540 Train 7.0900 7.2598 0.1698
16 CHEMBL183171 Train 6.2600 6.6905 0.4305
17 CHEMBL1834116 Train 5.4700 5.6292 0.1592
18 CHEMBL1834122 Train 4.7700 4.8932 0.1232
19 CHEMBL1957096 Train 4.5000 5.5342 1.0342
20 CHEMBL1957089 Test 5.6000 5.9919 0.3919
21 CHEMBL1940983 Train 6.7500 7.0294 0.2794
22 CHEMBL1801622 Train 5.8200 6.2720 0.4520
23 CHEMBL1801637 Train 8.3000 8.5850 0.2850
24 CHEMBL399078 Test 5.3400 6.1300 0.7900
25 CHEMBL398670 Train 6.0400 5.5198 − 0.5202
26 CHEMBL249141 Train 5.4500 5.6634 0.2134
27 CHEMBL426587 Train 5.3200 5.8617 0.5417
28 CHEMBL461139 Train 6.5200 6.6372 0.1172
29 CHEMBL1801625 Train 5.7000 5.6008 − 0.0992
30 CHEMBL251886 Test 6.5000 5.7403 − 0.7597
31 CHEMBL179725 Test 7.8900 7.3075 − 0.5825
32 CHEMBL458210 Train 6.2700 6.2182 − 0.0518
33 CHEMBL270265 Train 9.1500 10.1193 0.9693
34 CHEMBL156987 Train 7.1200 7.2798 0.1598
35 CHEMBL408564 Train 8.1500 6.9164 − 1.2336
36 CHEMBL270473 Train 8.8200 8.0888 − 0.7312
37 CHEMBL576165 Train 7.1600 6.6797 − 0.4803
38 CHEMBL573933 Test 6.8000 6.4804 − 0.3196
39 CHEMBL334084 Train 6.6200 6.8859 0.2659
40 CHEMBL1081616 Test 7.5100 7.1326 − 0.3774
41 CHEMBL471430 Test 8.3100 7.7477 − 0.5623
42 CHEMBL470566 Train 7.0300 6.7009 − 0.3291
43 CHEMBL513576 Test 6.1700 6.5270 0.3570
44 CHEMBL26241 Train 5.1500 5.6899 0.5399
45 CHEMBL26101 Train 4.7000 4.5452 − 0.1548
46 CHEMBL142327 Train 4.1200 4.0730 − 0.0470
47 CHEMBL359135 Test 4.3000 3.8430 − 0.4570
48 CHEMBL596364 Train 4.1200 4.7567 0.6367
49 CHEMBL405759 Train 7.5200 7.0731 − 0.4469
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met the necessary criteria for a robustness of QSAR 
model.

Conclusion

Glycogen synthase kinase-3β is a drug target for Alzhei-
mer’s, type II diabetes and other diseases. This study shows 
the binding ability of a library of compounds generated 
from Melissa officinalisas potential inhibitors of GSk-3β. 
It is important to emphasize that three compounds which 
are salvianolic acid C, ellagic acid and naringenin are found 
to have better docking score, binding free energy and pre-
dicted pIC50 values alongside satisfactory drug likeness than 

Table 5   Parameters corresponds to five best model generated by 
AutoQSAR

Model code Score SD R2 RMSE Q2

Kpls_desc_38 0.8224 0.5505 0.8467 0.5366 0.8069
Pls_38 0.7846 0.6662 0.7756 0.5444 0.8013
Kpls_radial_31 0.7652 0.6530 0.7631 0.6276 0.7458
Kpls_dendritic 0.7444 0.6250 0.7830 0.6427 0.7334
Kpla_linear_31 0.7058 0.6033 0.7978 0.6639 0.7156

Fig. 7   Scatter plot analysis 
of best model predicted from 
AutoQSAR

Table 6   External validation parameters for QutoQSAR

a Cross-validated coefficient
b Correlation coefficient between actual and predicted values
c Slope values of regression lines
d Coefficient for regression through origin values
e Slope values of regression lines
f Coefficient for regression through origin values g. modified squared 
correlation coefficient using LOO method
h Predictive correlation coefficient value

External validation param-
eters

Model kpls_desc_38 Limitations

Q2a 0.8069 Q^2 > 0.5
R2b 0.8467 R^2 close to 1
K valuec 0.9444 0.85 ≤ k ≤ 1.15
R0

2d 0.8412 Close to R^2
K’ valuee 1.0040 0.85 ≤ k ≤ 1.15
R0′2f 0.8412 Close to R^2
Rm(Loo)2 g 0.7763 Rm(Loo)2 > 0.5
rpred

2h 0.6979 r2
pred

 > 0.5

co-crystallized native compounds. Therefore, we recom-
mend data provided in this study should further be validated 
by in vivo and in vitro studies.
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