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ABSTRACT:

The challenging structural motif of dictyospiromide (1), a spirosuccinimide alkaloid with 

antioxidant properties that are associated with activation of the Nrf2/ARE signaling pathway, was 

assigned using contemporary NMR experiments complemented with anisotropic NMR, 

chiroptical, and computational methodologies. Anisotropic NMR parameters provided critical 

orthogonal verification of the configuration of the difficult to assign spiro carbon and the other 

stereogenic centers in 1.
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Recent advances in spectroanalytical techniques and computational methods have improved 

the accuracy and ability to make structure assignments for small molecules of unknown 

constitution. These advanced capabilities are particularly important in the structural 

definition of new natural products, which often contain novel molecular architecture and 

functional group arrays. NMR experiments utilizing newly developed pulse sequences have 

provided additional tools for structure elucidation,1 while modifications in 2D data 

acquisition and processing such as nonuniform sampling (NUS) techniques increase both the 

resolution and sensitivity of these experiments.2 In addition to conventional NMR 

approaches, anisotropy-based NMR measurements of residual dipolar coupling (RDC) and 

residual chemical shift anisotropy (RCSA) provide an orthogonal means to define and 

confirm both the structural framework and configuration of new compounds.3 Improved 

quantum mechanics based computational methods such as density functional theory (DFT) 

calculations of chemical shifts,4 coupling constants,5 chiroptical properties,6 and anisotropy 

parameters7 can be employed in combination with experimental spectroscopic 

measurements to define challenging structures that previously required an alternative 

approach such as X-ray analysis or synthesis.3e,f

Marine brown algae of the genus Dictyota are a rich source of unusual diterpenes with 

diverse skeletons, many of which are biologically active.8 The potential of these metabolites 

as cytoprotectants against oxidative stress has generally not been evaluated, so specimens of 

Dictyota coriacea from the East China Sea were collected and analyzed. Fractionation of the 

EtOAc extract provided a diterpenoid metabolite with a unique carbon and nitrogen 

structural scaffold (Figure 1a) that was named dictyospiromide (1). Compound 1 had a 

molecular formula of C22H33NO4 based on HRMS data, which required seven degrees of 

unsaturation. The 13C NMR spectrum displayed 22 carbon signals including two carbonyls 

and six additional sp2 carbons, which indicated that 1 was bicyclic. Comprehensive 1D and 

2D NMR analysis (see the Supporting Information for details) allowed assignment of a 

substituted 2-azaspiro[4.4]nonane-1,3-dione moiety for dictyospiromide (1), which 

represents a novel diterpenoid skeleton.

The relative configurations at C-3, C-4, C-6, and C-10 in 1 were determined by NOESY 

analysis (Figure 1b). NOESY correlations between H-3/H3-17, H-4/H3-17, and 4-OH/H-10 

suggested the 3S*,4R*,10R* configuration—the latter was also supported by an observed 

NOE between H-9/H-11a/b, while a correlation between H-7/H-3 was indicative of 6S*. The 

large coupling (12.0 Hz) between 4-OH (δH 3.79, d, J = 12.0 Hz) and H-4 implied that 

rotation around the C-4/O bond was restricted due to a hydrogen bond between 4-OH and 

the C-18 carbonyl. This required that C-18 and 4-OH were oriented on the same face of the 

cyclopentane ring in 1; thus, the relative configuration at C-2 was assigned as R*. The 

geometry of the exocyclic C-1/C-9 double bond was suggested to be E based on the 
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deshielded chemical shift of H-9 (δH 7.33, s) and the absence of any NOE correlations 

between H-9/H-3, H-9/H-7, or H-9/H3-20. With these data, it was possible to propose the 

constitution and configuration of 1, but a more rigorous analysis was needed.

Advances in DFT calculations and anisotropic NMR methods provided the means to 

orthogonally verify both the structure and relative stereochemistry of 1.3,4 The 1H and 13C 

chemical shifts of four isomers, a pair of diastereomers with different stereochemistry at the 

C-2 spiro carbon and the E/Z isomers of the 1-ene, i.e., 1E,2S (1a), 1Z,2S (1b), 1E,2R (1c), 

and 1Z,2R (1d), were calculated by DFT9 at the mPW1PW91/6–311+G(2d,p)//M06–2X/6–

31+G(d,p) level of theory. The results (Table 1) indicated that the root-mean-square 

deviation (RMSD) and mean absolute error (MAE) values of the calculated 1H chemical 

shifts of 1a, 1b, and 1c were very similar (0.16 and 0.12–0.13 ppm, respectively), while 

RMSD and MAE for 1d were significantly higher (0.33 and 0.21 ppm, respectively). Thus, 

on the basis of calculated 1H chemical shifts, the stereochemistry remained ambiguous. 

Conversely, the RMSD and MAE of the calculated 13C chemical shifts gave better 

differentiating power, suggesting 1c as the best candidate, but the difference between the 13C 

RMSD of 1a and 1c (∼0.4 ppm) was not significant enough to draw an unambiguous 

conclusion. For a more rigorous chemical shift analysis DP4+ was utilized.10 Using only 1H 

chemical shifts, the DP4+ analysis again afforded ambiguous results, but when 13C chemical 

shifts were incorporated the results clearly favored 1c as the correct isomer. However, the 

rather high 13C RMSD observed for all four isomers (1.91–2.65 ppm), coupled with the fact 

that both 1a and 1c have similar DP4+ probabilities when using only 1H data, led us to 

conclude that stereochemical discrimination could not be considered definitive. Since DP4+ 

can sometimes produce false positives, we utilized anisotropic NMR methods to provide 

orthogonal confirmation of the stereochemistry at the spiro carbon and the exocyclic olefin.

RCSA data can provide key stereochemical discrimination for quaternary carbons;11 hence, 

the RCSA values of 1 were measured using PBLG [poly-γ-(benzyl-L-glutamate)] as the 

alignment medium,12 and the chemical shift anisotropy tensors were calculated for all four 

isomers 1a, 1b, 1c, and 1d. Upon inspection of the 3D structures of the lowest energy 

conformers of each isomer (cutoff was set to ≥2% Boltzmann population) obtained from the 

DFT calculations, we observed that the core of the molecule was conformationally rigid, 

allowing a high degree of alignment among the selected superimposed conformers if the 

flexible side chains were not included in the analysis (Supporting Information). Thus, Q 
factors for each isomer were calculated using single tensor fitting of the experimental RCSA 

values of C-1–C-6, C-9–C-12, and C-17–C-20 vs the back-calculated RCSA values for the 

lowest energy conformer of each respective isomer. As illustrated in Figure 2, the lowest Q 
factor was obtained for isomer 1E,2R (1c) with a value of 0.097, followed by 1Z,2S (1b) 

with a Q factor of 0.138 (ratio 1b/1c = 1.423), 1E,2S (1a) with a Q factor of 0.196 (ratio 1a/

1c = 2.021) and 1Z,2R (1d) with a Q factor of 0.234 (ratio 1d/1c = 2.412). These RCSA 

results further support that 1c is the correct structure for dictyospiromide, providing 

orthogonal evidence of the relative stereochemistry at the spiro carbon and the 1-ene double 

bond. The combined application of RCSA measurements, DFT chemical shift calculations, 

and analysis of proton coupling constant and NOE data provided consistent and 

complementary verification of the constitution and configuration of 1.
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The absolute configuration at C-4 was determined by in situ generation of a metal-

complexed auxiliary chromophore after addition of Rh2(OCOCF3)4 to a CHCl3 solution of 1 
and measurement of the induced CD (ICD) spectrum. The sign of the E band (350 nm) in 

the ICD spectrum is indicative of the absolute configuration of secondary alcohols by 

applying Snatzke’s bulkiness rule;13 thus, the negative Cotton effect observed at 350 nm 

(Supporting Information) was in agreement with a 4R configuration. With these findings in 

hand, the absolute configurations at C-2, C-3, C-6, and C-10 were established as R, S, S, and 

R, respectively. Support for this assignment was provided by comparison of the 

experimentally recorded ECD spectrum of dictyospiromide (1) with DFT-calculated ECD 

spectra at the B3LYP/def2-TZVP level of theory for the four isomers of 1 [1a (1E,2S), 1b 
(1Z,2S), 1c (1E,2R), and 1d (1Z,2R)]. The measured ECD spectrum of 1 was very similar to 

the calculated spectrum for 1c (Figure 3).

Cells in aerobic environments have to contend with reactive oxygen species (ROS) and the 

resultant oxidative damage they produce, so numerous oxidative stress response mechanisms 

have evolved, including the production of antioxidant secondary metabolites. The 

cytoprotective effect of dictyospiromide (1) against H2O2-induced oxidative damage and 

toxicity in neuron-like PC12 cells was evaluated, and cell survival following treatment with 

1 increased in a dose-dependent manner (Figure 4a). This was coupled with a reduction in 

H2O2-induced lactate dehydrogenase (LDH) production in cells treated with 1 at a 

concentration as low as 0.5 μM (Figure 4b). Release of LDH is an index of cell injury; thus, 

1 is a potent cytoprotectant with antioxidant properties. Compound 1 was also investigated 

for activation of the Nrf2/ARE signaling pathway, which regulates the expression of genes 

involved in cellular antioxidant defense and is recognized as an important mediator of 

neuroprotection. The effect of 1 on nuclear translocation of Nrf2 was assessed, and both 1 (2 

μM) and the positive control tert-butylhydroquinone (TBHQ, 2 μM) significantly enhanced 

accumulation of Nrf2 in the nucleus (Figure 4c), suggesting that 1 is a potent Nrf2 activator. 

In a Western blot assay for up-regulation of heme oxygenase-1 (HO-1) expression, an 

antioxidant protein regulated by Nrf2, 1 promoted HO-1 production in a dose-dependent 

manner comparable to that of TBHQ (Figure 4d). Nrf2 siRNA was applied to investigate if 

the antioxidant effect of 1 in PC12 cells is dependent on Nrf2. Cell viability in the control 

siRNA group (si Con) was increased by 1, while the cytoprotection was reversed by 

knockdown of Nrf2 (Figure 4e), indicating that Nrf2 contributes to the antioxidant effect of 

1. Finally, the role of HO-1 in the cytoprotective effect of 1 was investigated using the HO-1 

inhibitor zinc protoporphyrin (ZnPP). Cytoprotection provided by 1 was partially suppressed 

when 1 and the maximum noncytotoxic concentration of ZnPP were applied together, 

implying that HO-1 contributes to the antioxidant activity of 1 (Figure 4f). Thus, 

dictyospiromide (1) demonstrated a cytoprotective antioxidant effect in PC12 cells that 

involved activation of the Nrf2/ARE signaling pathway and enhanced expression of HO-1.

In summary, combined application of contemporary spectroscopic and computational 

methods allowed unambiguous assignment of the constitution and configuration of the novel 

marine alkaloid dictyospiromide (1). Anisotropic NMR experiments provided orthogonal 

evidence for defining the stereochemistry of the difficult to define spiro ring junction and 

exocyclic olefin. Dictyospiromide (1) showed potent cytoprotective and antioxidant 
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properties associated with activated Nrf2/ARE signaling, so its novel molecular scaffold 

could serve as a lead structure for the development of neuroprotective agents that reduce 

cellular oxidative stress.
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Figure 1. 
(a) Structure of dictyospiromide (1) and (b) key NOEs.
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Figure 2. 
Back-calculated vs experimentally measured 13C RCSA values for the (a) 1a, (b) 1b, (c) 1c, 

and (d) 1d isomers.
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Figure 3. 
ECD spectrum of dictyospiromide (1) and calculated ECD spectra of four possible 

configurations 1a (1E, 2S), 1b (1Z, 2S), 1c (1E, 2R), and 1d (1Z, 2R).
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Figure 4. 
Dictyospiromide (1) protects PC12 cells from oxidative damage by activating the Nrf2 

signaling pathway. (a) 1 increased cell survival in a H2O2 damage model. TBHQ (2 μM) was 

used as the positive control. (b) 1 decreased LDH production after treatment with H2O2. (c) 

1 induced Nrf2 nuclear translocation in cells stained with DAPI (blue) and Nrf2 antibody 

(red). (d) 1 up-regulated the expression of HO-1 protein in PC12 cells. (e) Down-regulation 

of Nrf2 expression by siRNA decreased the cytoprotective effect of 1. (f) Pretreatment with 

HO-1 inhibitor ZnPP suppressed the cytoprotective effects of 1.
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Table 1.

Summary of DFT Chemical Shift RMSD and MAE Values Obtained for 1a–1d and DP4+ Probabilities for the 

Isomers

1a: 1E,2S 1b: 1Z,2S 1c: 1E,2R 1d: 1Z,2R

1H RMSD (ppm) 0.16 0.16 0.16 0.33

1H MAE (ppm) 0.12 0.13 0.12 0.21

13C RMSD (ppm) 2.29 2.44 1.91 2.65

13C MAE (ppm) 1.74 1.74 1.34 1.93

DP4+ (1H) (%) 43.03 4.01 52.96 0

DP4+ (13C) (%) 0.06 0.06 99.88 0

DP4+ (1H + 13C) (%) 0.05 0 99.95 0
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