Skip to main content
. 2020 Sep 10;8:e9920. doi: 10.7717/peerj.9920

Table 10. Model performance: leave-one-subject-out cross-validation.

Sample Learner Accuracy (SD) AUC (SD) MCC (SD) Macro Process time Stuart–Maxwell test
F1 (SD) Precision (SD) Recall (SD)
Train SVM 0.999 (0.000) 1.000 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 280.67
C5.0 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 879.37
DNN 0.984 (0.004) 0.998 (0.001) 0.968 (0.008) 0.981 (0.005) 0.983 (0.004) 0.979 (0.005) 2145.94
XGB 0.992 (0.002) 0.999 (0.000) 0.985 (0.005) 0.990 (0.004) 0.994 (0.003) 0.986 (0.005) 1028.34
RF 0.999 (0.000) 1.000 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 0.999 (0.000) 639.22
Test SVM 1.000 1.000 1.000 1.000 1.000 1.000
C5.0 1.000 1.000 1.000 1.000 1.000 1.000
DNN 0.893 0.996 0.802 0.797 0.902 0.781 χ2(3) = 87.45, p < 0.001
XGB 0.993 0.999 0.985 0.989 0.994 0.985 χ2(2) = 5.67, p = 0.06
RF 1.000 1.000 1.000 1.000 1.000 1.000

Note:

AUC, area under receiver operating characteristic, SD, standard deviation, MCC, Matthew correlation coefficient, SVM, support vector machine, DNN, deep neural network, XGB, eXtreme gradient boosting, RF, random forest, the second is used to measure process time.