Skip to main content
. 2020 Sep 10;8:e9920. doi: 10.7717/peerj.9920

Table 11. Model performance: holdout cross-validation.

Sample Method Accuracy AUC MCC Macro Process time Stuart–Maxwell test
F1 Precision Recall
Train SVM 1.000 1.000 1.000 1.000 1.000 1.000 0.23
C5.0 0.950 0.996 0.903 0.933 0.948 0.920 0.59
DNN 0.970 0.997 0.940 0.954 0.970 0.939 1.59
XGB 0.886 0.974 0.775 0.809 0.869 0.770 0.75
RF 0.978 1.000 0.957 0.980 0.989 0.972 0.39
Test SVM 1.000 1.000 1.000 1.000 1.000 1.000
C5.0 1.000 1.000 1.000 1.000 1.000 1.000
DNN 0.814 0.989 0.623 0.739 0.913 0.676 χ2(3) = 205.04, p < 0.001
XGB 0.993 1.000 0.987 0.993 0.996 0.989 χ2(2) = 8.00, p = 0.018
RF 1.000 1.000 1.000 1.000 1.000 1.000

Note:

AUC, area under receiver operating characteristic; SD, standard deviation; MCC, Matthew correlation coefficient; SVM, support vector machine; DNN, deep neural network; XGB, eXtreme gradient boosting; RF, random forest; the second is used to measure process time.