Skip to main content
. 2020 Sep 10;8:e9920. doi: 10.7717/peerj.9920

Table 9. Model performance: 10-fold cross-validation.

Sample Learner Accuracy (SD) AUC (SD) MCC (SD) Macro Process time Stuart–Maxwell test
F1 (SD) Precision (SD) Recall (SD)
Train SVM 0.998 (0.006) 1.000 (0.000) 0.995 (0.011) 0.994 (0.012) 0.997 (0.008) 0.991 (0.015) 2.22
C5.0 0.984 (0.015) 0.999 (0.001) 0.969 (0.031) 0.981 (0.020) 0.987 (0.015) 0.975 (0.026) 6.74
DNN 0.947 (0.019) 0.985 (0.016) 0.896 (0.033) 0.935 (0.027) 0.956 (0.031) 0.922 (0.028) 13.56
XGB 0.943 (0.021) 0.992 (0.008) 0.885 (0.044) 0.918 (0.050) 0.946 (0.036) 0.894 (0.058) 7.86
RF 0.986 (0.010) 1.000 (0.000) 0.972 (0.017) 0.985 (0.011) 0.992 (0.006) 0.978 (0.016) 4.59
Test SVM 1.000 1.000 1.000 1.000 1.000 1.000
C5.0 1.000 1.000 1.000 1.000 1.000 1.000
DNN 0.855 0.985 0.730 0.678 0.876 0.684 χ2(3) = 253.20, p < 0.001
XGB 0.989 1.000 0.979 0.985 0.992 0.978 χ2(2) = 13.00, p = 0.002
RF 1.000 1.000 1.000 1.000 1.000 1.000

Note:

AUC, area under receiver operating characteristic; SD, standard deviation; MCC, Matthew correlation coefficient; SVM, support vector machine; DNN, deep neural network; XGB, eXtreme gradient boosting; RF, random forest, the second is used to measure process time.