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1  | INTRODUC TION

1.1 | Value of biometric data

Collection of length and weight data is fundamental to fishery re-
search and management. These metrics form the foundation of fish 
sample datasets which allow managers to monitor fish populations 
and identify problems as they arise (Anderson & Neuman, 1996) 
and provide important insights into fish ecology (Froese, 2006). 

Length–frequency distributions are commonly used in fishery man-
agement to evaluate health of a fish population and identify prob-
lems such as overharvest (Anderson & Neuman, 1996; Weithman, 
Anderson, & Unit, 1978). Managers often monitor the relative con-
dition of fish populations as an indicator of environmental or food 
supply problems (i.e., diminished prey base). Healthier fish in envi-
ronments that are supported with sufficient food supplies will have 
higher relative conditions factors in comparison to unhealthy or 
starving fish (Anderson & Neuman, 1996; Gabelhouse, 1984). Using 
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Abstract
Simple biometric data of fish aid fishery management tasks such as monitoring the 
structure of fish populations and regulating recreational harvest. While these data 
are foundational to fishery research and management, the collection of length and 
weight data through physical handling of the fish is challenging as it is time consuming 
for personnel and can be stressful for the fish. Recent advances in imaging technol-
ogy and machine learning now offer alternatives for capturing biometric data. To 
investigate the potential of deep convolutional neural networks to predict biomet-
ric data, several regressors were trained and evaluated on data stemming from the 
FishL™ Recognition System and manual measurements of length, girth, and weight. 
The dataset consisted of 694 fish from 22 different species common to Laurentian 
Great Lakes. Even with such a diverse dataset and variety of presentations by the 
fish, the regressors proved to be robust and achieved competitive mean percent er-
rors in the range of 5.5 to 7.6% for length and girth on an evaluation dataset. Potential 
applications of this work could increase the efficiency and accuracy of routine survey 
work by fishery professionals and provide a means for longer-term automated collec-
tion of fish biometric data.
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simple biometric data, managers can determine a fish population's 
structure (i.e., the number in each age or size group) and thus the po-
tential for commercial and recreational opportunities. Harvest regu-
lations are often based on fish length so knowing a population's size 
structure allows managers to track changes in response to harvest 
regulation (Anderson & Neuman, 1996). Weight data enable calcula-
tion of production potential (e.g., kg per hectare) for natural systems 
(Schaefer, 1965) and if used together with length data can provide 
estimates of fish health (Bolger & Connolly, Feb., 1989).

1.2 | Existing approaches to obtain biometric 
data of fish

Conventional length and weight data collection requires physical 
handling of fish which is time consuming for personnel and stressful 
for the fish. Measurements are commonly taken in the field where 
conditions can be suboptimal for ensuring precision and accuracy. 
Something as simple as wind, fish bouncing, or differences in meas-
uring techniques among personnel can impact the accuracy of meas-
urements and introduce variability (Gutreuter & Krzoska, 1994). In 
addition, variability of the fish may introduce error when regres-
sion formulas are used to calculate data post hoc. For example, 
when weight data are unavailable from the field, species-specific 
length–weight regression formulas are used to generate weight 
data (Gerow, Anderson- Sprecher, & Hubert, 2005; Murphy, Brown, 
& Springer, 1990). Unfortunately, morphological variability both 
among fish and seasonally for individual fish can further reduce 
the precision of calculated weight estimates (Adams, Leaf, Wu, & 
Hernandez, 2018; Neumann & Murphy, 1992; Ranney, 2018). Finally, 
the time and effort required to obtain length and weight measure-
ments in the field imposes limitations on the number of fish that can 
be sampled; which reduces the confidence in data capturing indi-
vidual variability (Gutreuter & Krzoska, 1994). For these reasons, a 
tool or method to increase sampling capacity that allows for meas-
urements on more individual fishes that is standardized, reduces 
variability in measurements, and captures additional information to 
calculate weight beyond a simple length–weight relationships would 
benefit both fish managers and researchers alike.

Various approaches have been tested to automate estima-
tion of fish length and weight, and their use in marine science is 
likely to increase (MaldeApr. , Handegard, Eikvil, & Salberg, 2019). 
Ibrahim and Sultana describe image processing such as skeleton-
ization, boundary detection, and machine learning techniques (e.g., 
Support Vector Machine (SVM), fuzzy classification; Ibrahim & 
Sultana, 2006). White et al. employed image processing algorithms 
to determine the orientation of a fish and classify as a flatfish or 
roundfish (White, Svellingen, & Strachan, 2006). The average per-
cent error for these methods generally ranged from 2% to 5%, 
although many of the methods were species-specific or involved 
some manual intervention. Approaches combining optical systems 
with machine learning report similar error ranges for species-spe-
cific length and weight estimates (Saberioon, Gholizadeh, Cisar, 

Pautsina, & Urban, 2017). More recently, regional convolutional 
neural networks (R-CNN) were used to bound European sea bass 
in images from a variety of settings, allowing length to be calcu-
lated from known-size fiducial markers (Monkman, Hyder, Kaiser, 
& Vidal, 2019). Masked R-CNNs successfully located heads of 
European hake in images from which head size and thus subse-
quent overall fish length was estimated (Álvarez-Ellacuría, Palmer, 
Catalán, & Lisani, 2020). Finally, large-segmentation CNNs were 
able to successfully predict the weight of harvested Asian sea bass 
and barramundi (Konovalov, Saleh, Efremova, & Domingos, 2019). 
The use of CNNs for fish biometric data collection is relatively 
novel yet with technology advancements can be accomplished with 
little expense (i.e., using commonly available hardware) and under 
variable conditions (e.g., camera, setting).

Presented here is a deep machine learning approach to pre-
dict the length, girth, and weight for multiple species of fish from 
low-resolution, dewatered images. Specifically, the regressors were 
trained and evaluated on a dataset of images for 22 different spe-
cies common in the Laurentian Great Lakes collected from live fish 
moving past an image capture device. The goal for this proof-of-con-
cept project was to determine whether a deep convolutional neu-
ral network (DCNN) could calculate biometric data (length, weight, 
girth) from fish with limited handling and without a species-specific 
classifier.

2  | METHODS

2.1 | Data collection

Images and biometric measurements (length, width, girth) were 
collected for 694 individual fish (22 species) from 9 tributaries 
(Tittabawassee, Muskegon, Little Manistee, Illinois, Sandusky, Black 
Mallard, Menominee, Cheboygan, and Ocqueoc Rivers) to the Great 

F I G U R E  1   River locations of collected and evaluated fish: 
(1) Illinois, (2) Menominee, (3) Muskegon, (4) Little Manistee, (5) 
Cheboygan, Black Mallard, and Ocqueoc, (6) Tittabawassee, and (7) 
Sandusky
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Lakes and Mississippi River during spring 2019 (Figure 1). Fish were 
collected by local state agencies as part of routine assessment and 
fishery management operations either via electrofishing or netting. 
Fish were held in livecars instream until processed and then immedi-
ately released after images were collected. In the case of silver and 
bighead carp, the fish were collected as part of an invasive species 
capture and removal effort and were dead during image collection 
and measurement. Sea lamprey were collected as part of the Sea 
Lamprey Control Program assessment operations in tributaries 
to northern Lake Huron and housed at Hammond Bay Biological 
Station for other research projects. Fish were identified to spe-
cies when possible, total length measured to the nearest mm using 
a 1 m measuring board and weighed to the nearest gram using an 
electronic scale (MyWeigh model KD-8000 max weight 8 kg; preci-
sion 1 g) or spring scale for fish greater than 8 kg. Girth was meas-
ured by wrapping a segment of static net twine around the deepest 
point of the body, marking where the twine overlapped, and then 
measuring the marked twine to the nearest mm using the measur-
ing board. After measurements were taken, fish were then passed 
once through the FishL™ Recognition System (https://www.whoos 
hh.com/scann ing-sorti ng#OurCo mpone nts-Scanning). Fish were in-
troduced by hand, headfirst, into the imaging system and allowed 
to slide through on a stream of water as images were automatically 
captured in less than 0.5 s. The imaging system consisted of an il-
luminated ramp with six overhead cameras positioned at a fixed 
distance from the slide. Three cameras captured near-infrared (IR) 
images, and three captured color images. Two cameras (one IR and 
one color) were positioned at three fixed-angle locations (directly 
overhead, 45° to left, 45° to right). All images were stored in the 
portable network graphics (PNG) file format. All recorded biometric 

data were digitized and then validated against the images by two 
independent recorders. Table 1 describes key terms and variables 
used in this manuscript.

2.2 | Data preparation

Three pictures were taken in sequence by each of the six cameras 
as the fish slid through the system generating a composite image file 
linking the 18 high-resolution images (see Figure 2).

To increase the number of usable fish images for training and 
testing, each composite image was broken into single-individual im-
ages. This was done with a custom shell script and the ImageMagick 
suite (The ImageMagick Development Team, 2020). As each image 
was extracted, it was rescaled to 75 pixels by 200 pixels, thereby 
reducing the size of the input into the regressors. Figure 3 is a com-
parative representation of the image retained after extraction and 
rescale (B) relative to the original high-definition color image from 
the composite (A).

Individual images were extracted from the composites resulting 
in 6,246 individual images, of which 639 (10%) were randomly se-
lected as the test images. The remaining 5,607 images (90%) were 
used as training and validation images (Table 2). These training and 
validation images were segmented into 10-folds to support a 10-fold 
cross-validation training procedure (def. Table 1). When splitting the 
data between datasets (and folds), care was taken to ensure that all 
images stemming from the same composite image were placed in the 
same dataset (or fold). The test dataset was not used for evaluation 
until the models had been finalized. Figures 4–6 show the frequency 
distribution of lengths, girths, and weights, respectively, of all the 

Name Comment

10-fold cross-validation With 10-fold cross-validation, the dataset is randomly split into 
10 equal subsets. One subset is held out as the validation data, 
and a model is trained on the other 9 subsets. This procedure is 
repeated 10 times to evaluate each fold, and the results of each 
iteration are combined as the final estimate of performance.

composite image The image produced by the FishLTM Recognition System. The 
composite image includes 18 images taken from 6 different 
cameras as a fish passes through the system. The composite 
image contains 9 images from color capture cameras and 9 
images from near-infrared (IR) cameras.

ensemble prediction A prediction for length, girth, or weight of a fish that was 
obtained by individually passing the 9 color images of a 
composite image into a regressor and then averaging the output 
of the regressor for each image.

multi-target regressor A regressor that simultaneously predicts the length, girth, and 
weight of a fish from a single image.

single image One of the 9 images in a composite image that was taken with 
one of the color capture cameras.

single-model prediction A prediction that is made using only one single image.

single-target regressor A regressor that only predicts one of length, girth, or weight.

TA B L E  1   Description of terms used in 
this article

https://www.whooshh.com/scanning-sorting#OurComponents-Scanning
https://www.whooshh.com/scanning-sorting#OurComponents-Scanning


9316  |     BRAVATA eT Al.

fish in the training dataset along with the distributions of the five 
most commonly represented species.

2.3 | Regressor construction

To predict the length, girth, and weight of a fish, several regres-
sors based on DCNN (Dahl & Sainath, 2013; LeCun, Bengio, & 
Hinton, 2015; LeCun, Bottou, Bengio, & Haffner, 1998) were con-
structed. Specifically, they were comprised of three sets of 2D con-
volutional layers followed by a 2D max pooling layer. The filter size 
for the convolutional layers was 3 by 3, and those of the max pool 
layers were 2 by 2. The number of filters was 32 for the first convo-
lutional layer and then 64 for the subsequent layers. The output of 
the convolutions was passed through one layer of 256 nodes that 
made use of a rectified linear unit (relu) (Dahl et al., 2013) as an acti-
vation function, and the final output of the network was a real value 
(Figure 7). The input into the regressor was an individual 75 pixels by 
200 pixels three-channel image (see Figure 2b). While several DCNN 
architectures and training procedures were evaluated, only details 
and results of the selected architectures and training procedures are 
reported here. The selections were based on the performance of the 

regressor to accurately predict the length, girth, and weight of a fish 
as well as the overall complexity of the DCNN, opting for a simpler 
model when possible.

F I G U R E  2   FishL™ Recognition 
composite (a) of 18 images of a silver carp, 
and (b) Sub 3, the extracted and expanded 
third color image

F I G U R E  3   Comparative representation of the original silver 
carp image from the composite (a) and the extracted and rescaled 
image (b) image for a silver carp

TA B L E  2   Size and composition of validation and test datasets

Species

Number of 
composite 
images in the 
Validation Data

Number of 
composite 
images in 
Test Data

Walleye (WYE) 151 20

Common White Sucker (CWS) 109 7

Sea Lamprey (SL) 54 6

Silver Carp (SC) 51 6

Smallmouth Buffalo (BUF) 44 5

Common Carp (CC) 35 5

Quillback Sucker (QBS) 35 5

Longnose Sucker (LNS) 33 3

Redhorse Sucker (RHS) 28 5

While Bass (WB) 21 1

Bighead Carp (BHC) 18 5

Longnose Gar (LNG) 16 1

White Pearch (WP) 5 0

Smallmouth Bass (SMB) 5 0

Grass Carp (GC) 4 0

Channel Catfish (CCF) 4 0

Northern Hogsucker (NHS) 2 0

River Redhorse Sucker (RRS) 2 0

Goldfish (GF) 2 0

Gizzard Shad (GS) 2 2

Freshwater Drum (FWD) 1 0

Northern Pike (NP) 1 0

Total 623 71
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2.4 | Training procedures

Each single-target regressor (i.e., length, girth, weight) was trained 
using the same procedure. The input was a single image, and the 
target was the length, girth, or weight of the fish contained in the 
image. Training took place over 125 epochs with a batch size of 32. 
The Adam optimizer (Kingma & Ba, 2014) for Keras (Chollet, 2015) 
was used to minimize the mean squared error of the target measure-
ment. To increase the effective size of the training data, an image 
augmentation process was applied (Chollet, 2017) and each training 

image was randomly rotated (0–15 degrees) or shifted vertically or 
horizontally (0%–20%). A horizontal flip of the image was also ap-
plied on a random basis. No augmentation was performed on the 
validation nor test images. Additionally, a multi-target regressor 
was trained and evaluated. The multi-target regressor simultane-
ously predicted the length, girth, and weight of a fish. The Adam 
optimizer (Kingma & Ba, 2014) for Keras (Chollet, 2015) was used to 
minimize the average of the mean squared errors across the three 
measurements. Training of the multi-target regressor made use of 
the aforementioned image augmentation process and was done over 

F I G U R E  4   Histograms: Frequency of distribution of fish lengths in the overall training dataset and the top five most abundant species by 
image count
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125 epochs with a batch size of 32. This regressor was developed as 
it has been shown that multi-target regressors tend to produce more 
robust and generalizable models (Collobert & Weston, 2008; Deng 
& Yu, 2012; Girshick, 2015; Ruder, 2017).

All regressors were implemented using Keras version 2.1.4 
(Chollet, 2015) with TensorFlow version 1.15.2 (Abadi et al., 2016) as 
the backend. Training and evaluation took place on a Linux machine 
with twin GeForce GTX 1080Ti graphical processing units. Full de-
tails about the runtime environment along with scripts to configure 

a containerized runtime environment are provided through the links 
in the Data Accessibility Statement.

2.5 | Ensemble predictions

To leverage the full extent of the data available for each fish, an en-
semble prediction was made from the nine color images of the com-
posite taken of each fish as it passed through the scanning device 

F I G U R E  5   Histograms: Frequency of distribution of fish girths in the overall training dataset and the top five most abundant species by 
image count
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F I G U R E  6   Histograms: Frequency of distribution of fish weights in the overall training dataset and the top five most abundant species by 
image count

F I G U R E  7   Schematic of the regressor 
architecture
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(see Figure 2 A, second row). To form the ensemble prediction, each 
of the nine images was passed through a regressor and the output 
was averaged and taken as the final prediction. For the multi-target 
regressor, the averages were taken over the respective targets (i.e., 
length, girth, and weight).

2.6 | Evaluation metrics

Mean absolute error (MAE), mean bias error (MBE), and mean 
percent absolute error (MPAE) were the three metrics used to 
evaluate the performance of the regressors. The mean abso-
lute error is defined as the mean of the absolute error between 
predictions and their respective ground-truth values. More spe-
cifically, MAE = 

∑n

i=1

�
�
�
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�
xi
�
−yi

�
�
�
∕n for a dataset with n images. f(xi) is 
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the variation of the ground-truth values, the MPAE provides a more 
robust measure of performance across metrics (e.g., an absolute 
error of 0.5 cm would represent a percent error of 10% for a fish 
measuring 5 cm in length but that same absolute error would only 
represent a percent error of 2% for a fish measuring 25 cm in length).

3  | RESULTS

The first set of models evaluated were single-target regressors that 
predicted the length, girth, or weight of a fish. On the test data, the 
ensemble predictions from the single-target regressors performed 
comparably to the single-model predictions across all three types of 
measurements in terms of MPAE (i.e., 8.3%–7.6% for length, 17.3%–
16.8% for girth, and 28.6%–26.9% for weight; Table 3).

The second set of models evaluated were multi-target regressors. 
These models were trained to predict the length, girth, and weight of 
a fish (i.e., for one input three separate values were predicted). When 
comparing the results of the multi-target regressors to the single-tar-
get regressors on the test dataset, the MBE is less for the multi-target 

regressors than single-target regressors across all three measurement 
types (i.e., 30.9 mm to 21.6 mm for length, 36.6 mm to 11.53 mm for 
girth, and 0.2 kg to 0.1 kg for weight; Table 4). The MPAE and MAE are 
also less for the multi-target regressors than the single-target regres-
sors across the length and girth outcomes of the test dataset. The trend 
lines drawn through the plotted multi-target regressor data points 
relative to actual measured values visibly highlight the differences in 
the regressor predictions outcomes with a range of values wherein 
the predictions were tight and a range across which regressor biases 
were evident (Figures 8–10).The regressor tends to overpredict length 
for longer fish and underpredict weight for heavier fish. Comparing 
the girth and weight MAE and MPAE versus actual measured values 
shows a much tighter clustering of the data points in the girth plots 
indicating overall reduced error in the multi-target regressor predic-
tions for girth relative to weight (Figures 11 and 12). Body shape and 
size of the different fish species did not influence the performance of 
the multi-target regressor at predicting girth. However, for weight the 
MAE of a portion of Quillback Suckers and Silver Bighead Carps was 
slightly higher. All three of these species share a similar body shape. 
Sea Lamprey, a light weight tubular-shaped species exhibited the most 
significant divergence of MPAE of predicted weight distribution which 
was replicated to a lesser degree by the Common White Sucker, also a 
somewhat tubular-shaped species.

4  | DISCUSSION

It is difficult to draw direct comparisons with the prior work re-
viewed by Ibrahim & Sultana (2006) and Saberioon et al. (2017) as 
those approaches were evaluated on at most a few species. Still, the 
results of our single-target ensemble regressors for the predicted 
length and girth on the cross-validation dataset are comparable to 
the species-specific models. The ground-truth values for length, 
girth, and weight were taken in the field and likely exhibit some in-
herent variability.

The diversity of the dataset in terms of species likely added to 
the difficulty in predicting the weight of the fish from the images. 

Regression tasks 
(model type)

Validation Dataset (n = 623) Test Dataset (n = 71)

MAE MPAE MBE MAE MPAE MBE

Length (single target; 
single model)

30.5 mm 6.7% 0.54 mm 40.1 mm 8.3% 30.9 mm

Length (single target; 
ensemble)

25.4 mm 5.6% 0.54 mm 36.6 mm 7.6% 30.9 mm

Girth (single target; 
single model)

23.8 mm 9.1% −3.47 mm 43.0 mm 17.3% 36.6 mm

Girth (single target; 
ensemble)

20.3 mm 7.7% −3.47 mm 41.3 mm 16.8% 36.6 mm

Weight (single target; 
single model)

0.324 kg 24.3% 0.0 kg 0.661 kg 28.6% 0.2 kg

Weight (single target; 
ensemble)

0.261kg 19% 0.0 kg 0.634 kg 26.9% 0.2 kg

TA B L E  3   Performance of single-target 
regressors on validation and test datasets



     |  9321BRAVATA eT Al.

The length of the fish directly correlates to pixels occupied by 
the fish in the image. For girth and weight, the relationship be-
tween pixels occupied and the girth may vary depending on the 
species of fish (e.g., the side profile of two fish may be similar 
in size in the image but the weight may differ depending on the 
common cross-sectional shape of a species of fish). An additional 
species-specific challenge for weight is the fins. The relationship 
between the surface area of a fish in an image and its weight will 
depend on the percentage of the surface area that relates to fins 
(e.g., images of two fish may occupy the same surface area but 
if the surface area covered by fins is less in one image, then the 
weight of one fish may be greater than the other). Additional data 
or providing species information would likely improve a regres-
sors' performance for girth and weight.

4.1 | Potential use cases for predicted biometrics

An automated approach to collecting length and weight data would 
allow fisheries professionals more time to devote to catching fish 
and processing data. An automated tool could be incorporated into 
routine survey work in which personnel collect and pass fish through 
an image capture device to either store images for later analysis or 
even process images in real time for infield prediction of metrics and 
indices. Image data for this study were collected as part of routine 
fishery management assessment efforts. By far, the most time-con-
suming part of the data collection was measuring and weighting the 
fish, whereas image capture required considerably less time than the 
manual data collection. Beyond routine assessment work, image cap-
ture and analysis tools could be incorporated into scenarios where 

Regression 
tasks

Validation Dataset (n = 623) Test Dataset (n = 71)

MAE MPAE MBE MAE MPAE MBE

Length (multi-
target; single 
model)

31.9 mm 6.8% 8.2 mm 36.3 mm 7.4% 21.6 mm

Length (multi- 
target; 
ensemble)

27.6 mm 6.0% 8.2 mm 32.2 mm 6.5% 21.6 mm

Girth (multi- 
target; single 
model)

23.4 mm 9.2% 8.6 mm 30.0 mm 10.9% 11.53 mm

Girth (multi-
target; 
ensemble)

19.9 mm 7.8% 8.6 mm 26.0 mm 9.2% 11.53 mm

Weight (multi- 
target; single)

0.57 kg 59.8% 0.4 kg 0.68 kg 33% 0.1 kg

Weight 
(multi-target; 
ensemble)

0.5 kg 52.8% 0.4 kg 0.59 kg 24.0% 0.1 kg

TA B L E  4   Performance of multi-target 
regressors on validation and test datasets

F I G U R E  8   Multi-target regressor ensemble predictions for 
length versus measured length on the test dataset

F I G U R E  9   Multi-target regressor ensemble predictions for girth 
versus measured girth on the test dataset
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fish are concentrated and moving past a fixed location such as fish 
passage structures (Garavelli et al., 2019). Automated image capture 
and processing in this context would provide managers an accurate 
assessment of the species being passed and corresponding sizes and 
conditions without the need for personnel on-site, handling every 
fish for weeks or even months. Real-time assessment of length and 
girth at passage scenarios could also be used to sort fish based on 
size (Garavelli et al., 2019).

4.2 | Robustness of predictions across presentations

An advantage of the ensemble prediction approach is that it lever-
ages several images of a fish when making a prediction, reducing the 
likelihood of a poor prediction due to a poor presentation of the fish. 
Using an example of three fish from the test dataset (Figure 13) with 
recorded lengths of 482, 410, and 290 mm, the ensemble approach 
predicted lengths of 497, 409, and 445 mm. In spite of the exten-
sive movement evidenced in the images, two of the predictions were 
within the average MAE reported over all the images from the test 
dataset. Most of the images of the fish in Figure 13 C were taken 
down the length of the fish as it had jumped when the images were 
captured. This presentation did not provide a good lateral view of 
the fish and resulted in a very poor prediction.

4.3 | Limitations

While these results are promising, they should be interpreted with 
caution. As the histograms indicate, most of the data used for the 
construction and evaluation of biometric predictions stem from 
adult fish and therefore do not constitute the full range of lengths, 
weights, and girths possible for the included species. A more uni-
formly distributed dataset across species and age would provide ad-
ditional support for the generalizability of the regressors. Still, bias 
to adult fish is not unique to this project and is a function of standard 

F I G U R E  1 0   Multi-target regressor ensemble predictions for 
weight versus measured weight on the test dataset

F I G U R E  11   Absolute error of multi-
target ensemble predictions for girth 
(a) and predicted weight (b) on the test 
dataset. The predictions for species with 
5 or more samples in the test dataset are 
plotted against the measured girth and 
weight, respectively

F I G U R E  1 2   Absolute percent error 
of multi-target ensemble predictions for 
girth (a) and predicted weight (b) on the 
test dataset. The predictions for species 
with 5 or more samples in the test dataset 
are plotted against the measured girth and 
weight, respectively



     |  9323BRAVATA eT Al.

sampling protocol that typically emphasizes adults (i.e., mesh sizes; 
Pope & Willis, 1996).

The current approach to use all the images for a fish as input to a 
regressor is limited in that it does not make use of the order in which 
the images of the fish were captured. At present, each image is pro-
cessed individually, irrespective of the other eight images or the po-
sition of the camera. If all nine images were used as input, there may 
be information that can be leveraged from the camera angle or the 
movement between frames (i.e., recall that the nine images are taken 
as a series of three images and as a result capture some movement 
patterns). In this particular work, the limited amount of data did not 
support the development of such multi-image regressors. Doing so 
would have reduced the amount of training and evaluation data by 
a factor of nine.

The generalizability of the regressors is likely limited in settings 
beyond the capture technology used in this work. The mostly de-
watered and lateral presentation of the fish provides a high-quality 
input to the DCNN. The uniform background reduces the com-
plexity of the regression task, and multiple images captured by the 
scanning device reduce the error introduced by poor presentations. 
In addition to aiding with the quality of the input, the scanning de-
vice also ensures a constant distance between the camera and the 
fish. The models presented were not architected to accommodate 
variable distances between the camera and the fish and are un-
likely to generalize to other distances. Nevertheless, these results 
demonstrate what is possible with currently available data capture 
technology.

4.4 | Additional directions of study

An additional line of investigation could be the effect of species in-
formation as an additional input to the regressors. While such infor-
mation is not always available, there are situations when it is (e.g., 
during targeted species collection, visual inspection by personnel 
handling the fish) and using this extra information may provide for 
more precise predictions. Using the data available in this study, ad-
ditional regressors were trained that used species information as an 
additional input (data not reported). The models exhibited a large 
amount of overfitting (i.e., the models did not generalize well to the 
data in the test dataset). With additional training data, the value of 
species information could be further investigated.

5  | CONCLUSION

Presented here is an overview and evaluation of a set of novel re-
gressors to predict length, girth, and weight of fish from images of 
mostly dewatered fish. The images stemmed from nine color images 
of a FishL™ Recognition System, captured as a fish passed through a 
1.5 m chute. Single-image target-specific regressors for length, girth, 
and weight achieved a mean percent absolute error of 8.3, 17.3, and 
28.6, respectively, on a test dataset. Ensemble target-specific re-
gressors that utilized all nine images of a fish achieved a mean per-
cent absolute error of 7.6, 16.8, and 26.9, respectively, on the same 
test dataset. A multi-target ensemble regressor was able to achieve 
a mean percent error of 6.5, 9.2, and 24.0. In general, the regressors’ 
predictions for length are robust with respect to the presentation 
of the fish as it passes through the image capture device. Potential 
applications of this work could increase the efficiency and accuracy 
of routine survey work by fishery professionals and provide a means 
for longer-term automated collection of fish biometric data.
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