Skip to main content
. 2020 Aug;10(4):919–938. doi: 10.21037/cdt.2020.01.07

Table 2. Comparison of the studies that performed the ML vs. non-ML CVD/stroke risk assessment.

Author (year) N ML algorithm CVRCStat Imaging modality CCVRF + image phenotypes #F Types of features Ground truth Training protocol FU (years) PE
Narain et al. (105), 2016 689 QNN FRS × × 7 CCVRF From physician K3 ACC: 98.57%
Unnikrishnan et al. (50), 2016 2,406 SVM FRS × × 9 CCVRF CVD events K5 10 AUC: 0.71
Weng et al. (26), 2017 378,256 RF, LR, GBM, & ANN ASCVD × × 30 CCVRF CVD events K4 10 AUC: 0.764
Venkatesh et al. (49), 2017 6,814 RF FRS MRI + CUS 735 CCVRF, image phenotypes, & serum biomarkers CVD events K3 12 C-index: 0.81
Zarkogianni et al. (51), 2017 560 HWNN UKPDS × × 15 CCVRF CVD events K10 5 AUC: 0.71
Kakadiaris et al. (48), 2018 6,459 SVM ASCVD × × 9 CCVRF CVD events K2 13 AUC: 0.92
Han et al. (106), 2019 86,155 Boosted ensemble FRS & ASCVD CT 70 Clinical + laboratory + CAC CVD events Hold-out 4.6 AUC: 0.82
Proposed, 2019 202 SVM 13 CVRC CUS 19 CCVRF + CUSIP EEGS K10 AUC: 0.70 (CCVRF); AUC: 0.88 (CCVRF + CUSIP)

CVD, cardiovascular diseases; QNN, quantum neural network; SVM, support vector machine; RF, random forest; LR, logistic regression; GBM, gradient boosting machines; ANN, artificial neural network; HWNN, hybrid wavelet neural networks; CVRC, cardiovascular risk calculators; CUS, carotid ultrasound; CT, computed tomography; MRI, magnetic resonance imaging; CCVRF, conventional cardiovascular risk factors; ASCVD, atherosclerosis cardiovascular disease; FRS, Framingham risk score; FU, follow-up; PE, performance evaluation; CUSIP, carotid ultrasound image-based phenotypes; AUC, area under the curve.