
Zhang et al. J Transl Med          (2020) 18:342  
https://doi.org/10.1186/s12967-020-02492-9

RESEARCH

A hypoxia‑related signature for clinically 
predicting diagnosis, prognosis and immune 
microenvironment of hepatocellular carcinoma 
patients
Baohui Zhang1†, Bufu Tang2†, Jianyao Gao3, Jiatong Li4, Lingming Kong5 and Ling Qin1* 

Abstract 

Background:  Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, 
there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aim to iden-
tify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC 
patients as well as exploring the potential mechanism.

Methods:  Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. 
Three DEGs closely related to overall survival (OS) were identified using Cox regression and LASSO analysis. Then the 
hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) 
database. The Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the 
signature. CIBERSORT was used for estimating the fractions of immune cell types.

Results:  A total of 397 hypoxia-related DEGs in HCC were detected and three genes (PDSS1, CDCA8 and SLC7A11) 
among them were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided 
into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and 
higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. 
Furthermore, the hypoxia-related signature could positively regulate immune response. Meanwhile, the high-risk 
group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expres-
sion of immunocheckpoints such as PD1and PDL1.

Conclusions:  Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagno-
sis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized 
therapies.
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Background
Hepatocellular carcinoma (HCC) accounts for 85% 
of liver cancers, and the disease burden of HCC is 
increasing globally [1]. Although progress on treat-
ment strategies for HCC has been made, the overall 
5-year survival rate for HCC patients remains less than 
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20% [2]. Nowadays, the research of molecular mecha-
nism based on bioinformatics analysis has become 
one of the most important tools for cancer research 
[3, 4]. Therefore, it is of great significance to search for 
molecular markers for early diagnosis, survival predic-
tion and recurrence monitoring of HCC, which can 
improve patients’ stratification and optimize medical 
intervention. The low rate of early diagnosis and high 
rate of metastasis and recurrence have considerable 
impact on the prognosis of HCC patients, which are 
mainly related to the invasiveness and high proliferative 
activity of tumor cells [5]. However, the mechanism of 
tumor progression has not been completely realized.

Hypoxia is an intrinsic characteristic of solid tumors 
due to the imbalance between the rate of tumor cell 
proliferation and nutrient supply of vascular [6]. Exist-
ing studies have recognized the critical roles played 
by  hypoxia on tumor angiogenesis, cell proliferation, 
as well as cell differentiation and apoptosis [7, 8]; Liver 
is one of the three organs most susceptible to hypoxia 
and it has been found that hypoxia was involved in the 
metastasis, poor prognosis and radiation resistance 
of HCC [9, 10]. Nevertheless, its potential regulatory 
mechanism remains unclear. In recent years, there is 
an increasing interest in the tumor microenvironment 
which immune cells in it play a crucial role in the pro-
gression of tumor [11–13]. Previous studies have shown 
that hypoxia can regulate the status of tumor immune 
microenvironment, such as promoting the recruitment 
of innate immune cells and interfering with the differ-
entiation and function of adaptive immune cells [14]. 
Therefore, further study on the relationship between 
hypoxia and immunity in HCC is required in order to 
develop new therapeutic strategies.

Immunocheckpoint inhibition has become an effec-
tive and frequently-used way of immunotherapy [15]. 
As a new feature of cancer, tumor mutation burden 
(TMB) is defined as the total number of somatic muta-
tions in the genome of tumor cells [16], and high TMB 
may produce many neoantigens to stimulate the anti-
tumor immune response [16]. Clinical data demon-
strated that patients with high TMB were more likely to 
benefit from immunocheckpoint inhibitor therapy [17, 
18], which suggesting that TMB should be an appro-
priate biomarker for assessing the effect of immune 
treatment.

In this study, we analyzed hypoxia-related genes 
in HCC by using TCGA and GEO database and con-
structed a consistent clustering. Then we built the pre-
diction model for diagnosis, recurrence and prognosis of 
HCC. We also explored the association of hypoxia with 
immune infiltration and immunocheckpoints in HCC. 
These findings may make a meaningful contribution to 

the development of comprehensive therapeutic strategies 
for HCC patients.

Methods
Identification of differentially expressedgenes (DEGs) 
between HCC and noncancer tissues
The differentially expressed genes (DEGs) related to 
hypoxia and HCC were identified with limma, an R pack-
age [19]. The DEGs with an absolute log2-fold change 
(FC) > 1 and an adjusted P value < 0.05 were considered 
for further analysis.

Acquisition of hypoxia‑related genes associated with HCC
The mRNA expression profiles and corresponding clini-
cal information associated with HCC patients were 
obtained from The Cancer Genome Atlas—Liver Hepa-
tocellular Carcinoma dataset (TCGA‐LIHC) (including 
370 HCC and 50 normal tissue samples). The mRNA-
sequencing data of Human HCC cell lines were obtained 
from the Gene Expression Omnibus database  (GEO), 
which included GSE59729 (with gene expression profiles 
of Huh-7 cells under normoxia and hypoxia for 24 h) and 
GSE41666 (with gene expression profiles of HepG2 cells 
exposed to normoxia and hypoxia for 24  h). A total of 
1,401 hypoxia-related DEGs expressed by HepG2 from 
GSE41666 and 1,279 hypoxia-related DEGs expressed 
by Huh7 from GSE59729 were matched with HCC-
related information obtained from TCGA. The data from 
TCGA and GEO databases are freely available to the pub-
lic, and this research also strictly followed access poli-
cies and publication guidelines, therefore this study did 
not require ethical review and approval from an Ethics 
Committee.

Classification of molecular subgroups by consistent 
clustering
The ConsensusClusterPlus package in R software was 
utilized for the consistent clustering to determine sub-
groups of HCC samples from TCGA. The Euclidean 
squared distance metric and the K-means clustering 
algorithm was used for classifying samples into k clus-
ters with k = 2 to k = 9. About 80% of the samples were 
selected in each iteration, and the results were compiled 
over 100 iterations. The results are presented in the form 
of heatmaps of the consistency matrix generated by 
pheatmap R package, and the optimal number of clus-
ters was determined by the consistent cumulative distri-
bution function (CDF) graph and the delta region graph 
[20]. We considered that the optimal number of clusters 
should satisfy the following criteria: high consistency of 
clustering, low coefficient of variation, and no significant 
increase in the area under the CDF curve. According to 
the relative non-significant change of the area under the 
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CDF curve, the corresponding number of categories was 
determined.

Establishment and validation of a prognostic predictive 
signature
The univariate Cox regression analysis was conducted 
to identify the prognostic value of the DEGs for OS and 
genes with a P value < 0.05 were considered statistically 
significant. Subsequently the Least absolute shrinkage 
and selection operator (LASSO) Cox regression [21] 
was performed by using the glmnet R package to shrink 
scope of gene screening, we performed 1,000 substitu-
tion samples of the dataset and selected the markers 
with repeat occurrence frequencies of more than 900. 
Finally, a multivariate Cox regression analysis was per-
formed to identify highly correlated genes and construct 
the prognostic gene signature. The regression coef-
ficient (β) was derived from multivariate Cox regres-
sion analysis and the Prognosis Index (PI) = (βmRNA1* 
expression level of mRNA1) + (βmRNA2* expression level 
of mRNA2) + … + (βmRNAn* expression level of mRNAn). 
Based on the optimal cut-off value determined by using 
X-tile software, patients with survival data were divided 
into high- and low-risk groups. The Kaplan–Meier sur-
vival analysis was used to evaluate the predictive ability 
of the prognostic model, which was further validated in 
the ICGC dataset.

Independence of the prognostic gene signature from other 
clinical characteristics
Univariate and multivariate Cox proportional haz-
ard regression analyses were performed to determine 
whether the predictive ability of prognostic model was 
independent of conventional clinical characteristics. A 
bilateral P value < 0.05 was considered statistically signifi-
cant. The hazard ratio (HR) and 95% confidence intervals 
were calculated.

Construction and evaluation of a predictive nomogram
All independent prognostic factors were used to build a 
nomogram [22] in order to evaluate the 1-, 3-, and 5-year 
survival probability for patients with HCC. The calibra-
tion plot was performed for an internal validation to 
verify the accuracy. Time-dependent receiver operating 
characteristic (ROC) analysis was conducted to evaluate 
the predictive performance of the nomogram. Decision 
curve analysis (DCA) was performed to assess the clini-
cal net benefit [23].

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) [24] was per-
formed using prognosis index with Clusterprofiler 
package to identify signaling pathways regulated by the 

hypoxia-related signature. The correlation coefficients, 
CI and P-values were calculated using R software. P < 0.05 
was considered statistically significant.

Estimation of immune cell type fractions
CIBERSORT is a method for characterizing the cell com-
position from their gene expression profiles and is the 
most frequently cited tool for estimating and analyzing 
immune cells infiltration [25].  We utilized CIBERSORT 
to estimate the fractions of immune cell types between 
low- and high-risk groups. The sum of all the estimated 
immune cell type scores is equal to 1 in each sample.

Real‑time PCR analysis
Total RNA was isolated using Trizol reagent (Invitrogen, 
Eugene, OR, USA). The first-strand.

cDNA was synthesized with Prime-Script RT Mas-
ter Mix (TaKaRa) followed by qPCR detection using the 
SYBR Green Master Mix (TaKaRa). The following prim-
ers were used: PDSS1 F: 5′-AGC​CAA​CAG​TTG​TAA​
AGC​AGT​ATT​T-3′ and R: 5′-GTT​TGT​TGC​ACA​CCA​
TCA​CTC​TGT​-3′; CDCA8 F: 5′-GCA​CAG​CGA​GGT​
TTT​GCT​CA-3′ and R: 5′-AAC​TGG​GTA​GGG​ACG​
AGG​A-3′; and SLC7A11 F: 5′-ATG​GGA​CAA​GAA​ACC​
CAG​GTG-3′ and R: 5′-TCC​CTA​TTT​TGT​GTC​TCC​
CCTTG-3′.

Statistical analysis
Continuous variables were summarized as the 
mean ± standard deviation (SD). Differences between 
groups were compared by Wilcox test through R soft-
ware. Different hypoxia subtypes were compared by 
using the Kruskal–Wallis test. The significance of survival 
time differences was calculated using the log-rank test 
with a threshold of P-value < 0.05. Kaplan Meier curves 
were plotted to show the survival time differences.

Results
Identification of DEGs related to hypoxia in HCC
We identified DEGs (|LogFC|> 1, P < 0.05) using the 
mRNA expression profile between HCC and adjacent 
noncancerous tissues from TCGA database (Additional 
file  1: Table  S1). Then we matched the differentially 
expressed mRNA-sequencing data between hypoxia-
treated and untreated HCC cell lines in GEO database 
(Additional file  2: Table  S2, Additional file  3: Table  S3) 
and obtained 397 DEGs which were related to hypoxia in 
HCC (Fig. 1a). By using the Gene Ontology (GO) enrich-
ment and functional analysis, we found that these genes 
are enriched in DNA replication, cell division, cell cycle 
and also somatic diversification of immune receptors 
(Fig. 1b).
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Using the hypoxia‑related genes for the consistent 
clustering of HCC molecular subgroups
Consistent clustering of 397 hypoxia-related DEGs were 
constructed by using the ConsensusClusterPlus R soft-
ware package. The average clustering consistency and 
inter-cluster variation coefficient of each cluster num-
ber were calculated and the optimal cluster number 
was determined by using CDF. As shown in Fig. 2a, the 
clustering outcoming was stable when k = 4. We further 
analyzed CDF delta area curve and found that the area 
under the CDF curve tended to be stable after 4 clusters 
(Fig. 2b). The item-Consensus Plot also showed that the 
sample classification was relatively stable when the clus-
tering number was selected as 4 (Fig.  2c). Finally, we 
built a consensus matrix graph which 397 DEGs were 
assigned to 4 clusters in order to evaluate the composi-
tion and quantity of clustering more intuitively (Fig. 2d). 
The heatmap of 397 hypoxia-related DEGs in 4 clusters 
was shown in Fig. 2e.

The results from Kaplan–Meier plot showed the sig-
nificant differences in survival probability and recur-
rence rate among these 4 subgroups. Compared to the 
other three clusters, the samples in cluster-2 had the 
worst prognosis and the highest recurrence rate (Fig. 3a, 
b). We further analyzed the distribution of AFP, gender, 
degree of vascular infiltration, TNM stage, pathological 
grade, and age in these 4 subgroups (Fig. 3c). Samples in 
cluster-4 were associated with high AFP expression level, 
undifferentiated tumor cells and lymphatic metastasis 
while cluster-3 showed high incidence of distant metas-
tasis; cluster-2 had a higher degree of vascular invasion 
and more tumor cells with low differentiation. Moreo-
ver, most of patients in cluster-2 were male and gen-
erally aged between 65 and 70  years. It is worth noting 

that patients in cluster-2 showed the highest TMB than 
other three clusters (Fig.  3d, e), suggesting a benefit of 
immunotherapy.

Construction and validation of a hypoxia‑related prognosis 
signature with good performance
We performed a univariate Cox regression and found 
291 DEGs significantly related to OS of HCC patients 
(P < 0.01) (Additional file  4: Table  S4). Then a Lasso‐
penalized Cox analysis was performed to further shrink 
the scope of gene screening. The penalty parameter 
was established through 10-fold cross‐validation. We 
selected 11 DEGs, which appeared over 900 times of 
a total of 1000 repetitions (Additional file  5: Figure S1). 
Finally, by analyzing a multivariate Cox regression, three 
genes (PDSS1, SLC7A11, CDCA8) conforming to the 
proportional hazards (PH) assumption were selected 
to build a prognostic model as follows: the prognostic 
index (PI) = (0.337 * expression level of PDSS1) + (0.383* 
expression level of SLC7A11) + (0.356* expression level 
of CDCA8). The optimal cut-off value of 2.296 for the risk 
store was produced using X-tile software and patients 
with survival time from TCGA-LIHC were divided into a 
high- and low-risk group. The K-M curve showed that the 
OS of the high-risk group was significantly poorer than 
that of low-risk group (P < 0.001, HR = 4.76) (Fig.  4a). 
The area under the time-dependent ROC curves (AUCs) 
for 0.5-, 1‐, 3‐ and 5‐year overall survival (OS) were 0.76, 
0.78, 0.7 and 0.7, respectively, indicating a good predic-
tive performance of this prognostic model (Fig. 4c).

We further validated the prediction ability of this prog-
nostic signature using HCC samples from ICGC data-
base (Additional file 6: Table S5). Consistent with above 
results, HCC patients were divided into a high- and 

Fig. 1  Volcano plot showing the differentially expressed hypoxia-related genes of HCC in different databases. A Common differentially expressed 
genes between the TCGA and GEO databases. B Gene Ontology (GO) analysis of 397 hypoxia-related DEGs in HCC
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low-risk group with an optimal cut-off value of 18.812 
and patients in the high-risk group had poorer survival 
probability than the low-risk group (P < 0.001, HR = 5.26) 
(Fig. 4b). The AUCs of the three‐gene prognostic model 
were 0.68, 0. 75, 0.77 and 0.77 for the 0.5-, 1-, 3- and 4‐
year survival times (Fig.  4d). Meanwhile, we attempted 
to compare the hypoxia-related signature with other 
prognostic models published previously [26, 27]. For the 
hypoxia-related signature, methylation-driven prognostic 
model and three-gene prognostic model, the AUCs was 
0.78, 0.67 and 0.67 in TCGA cohort and 0.75, 0.64 and 
0.64 in ICGC cohort, respectively (Additional file 7: Fig-
ure S2). Taken together, our prognostic model showed a 
higher specificity and sensitivity.

Evaluating the independent role of prognostic signature 
and building a predictive nomogram for OS prediction 
in the HCC cohort from TCGA​
Univariate and multivariate Cox regression analysis 
were used to evaluate whether the predictive value of 

the prognostic model was independent of other tradi-
tional clinical characteristics. The results showed that 
the TNM stage (P < 0.05, HR = 1.828) and the risk score 
(P < 0.05, HR = 1.683) were independent prognostic fac-
tors for OS (Fig.  5a). Then we built a predictive nomo-
gram which may be helpful to accurately predict a certain 
clinical outcome (Fig. 5b) [28]. Each level of independent 
factors was assigned one score and a total score was cal-
culated by summing up the scores in each individual. The 
survival probability for the individuals at 1-, 3-, and 5- 
year was obtained through the function conversion rela-
tionship of total scores. The calibration plot for internal 
validation of the nomogram showed better consistency 
between the predicted OS outcomes and actual observa-
tions (Fig. 5c–e). The C-index was 0.54, 0.65 and 0.66 for 
the TNM stage, the prognostic model and the nomogram 
(95% CI 0.58–0.73), further indicating that our nomo-
gram had a higher predicting consistency. The AUCs of 
the nomogram at 1-, 3- and 5- year OS were 0.672, 0.684 
and 0.675, which were better than the models with single 

Fig. 2  Consensus clustering of HCC molecular subgroups based on hypoxia-related DEGs. a Cumulative distribution function (CDF) curve. b 
CDF Delta area curve, which indicates the relative change in the area under the CDF curve for each category number k compared with k-1. The 
horizontal axis represents the number k and the vertical axis represents the relative change in the area under the CDF curve. c The Item-Consensus 
Plot for k = 4. The vertical axis represents item-consensus values and each bar represents each sample. d The heatmap corresponding to the 
consensus matrix for k = 4 obtained by applying consensus clustering. The rows and columns of the matrix represent samples. The values of the 
consistency matrix are shown in white to dark blue from 0 to 1, which represent the degree of consensus. e The heatmap of 397 hypoxia-related 
genes in 4 clusters
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independent factors (Fig.  5f–h). The DCA was used to 
evaluate guiding significance of these models for clini-
cal application and the results showed that the combined 
model was the best for predicting the OS (Fig.  5i–k). 
For the hypoxia-related signature, methylation-driven 
prognostic model and three-gene prognostic model, the 
C-index reached 070, 0.64 and 0.64 in TCGA database 
and 0.74, 0.65 and 0.65 in ICGC database, indicating a 
more sensitive and valuable predictive performance of 
hypoxia-related model.

Evaluation of the hypoxia‑related genes for predicting 
the recurrence of HCC patients
TCGA-LIHC cohort with release-free survival (RFS) 
information and recurrent status of HCC patients was 
utilized as a training set for an independent evaluation, 
and the HCC cohort from GSE14520 (Additional file  8: 

Table  S6) was used as a validation set. Based on these 
three hypoxia-related genes, we constructed a recur-
rence signature by using the regression coefficient (β’) of 
multivariate Cox ccproportional hazards. The prognostic 
index (PI) = (0.060 * expression level of PDSS1) + (0.045* 
expression level of SLC7A11) + (0.041* expression level 
of CDCA8). In both training and validation set, patients 
were divided into a high- and low-risk group based on 
the risk score of 0.953 and 1.247. The distribution of risk 
score and gene expression was examined (Fig. 6a, Addi-
tional file 9: Fig. S3A). From the results of Kaplan–Meier 
survival analysis, patients in high-risk group had signifi-
cantly higher recurrence rate than the low-risk group. 
(Fig. 6b, e) and we also performed ROC analysis to eval-
uate the predictive accuracy of our recurrence model 
(Fig. 6c, Additional file 9: Fig. S3B). Compared with other 
prognostic models, the AUCs was 0.64, 0.6 and 0.6 for 

Fig. 3  Characterization of different features of hypoxia-related DEGs clustering. a, b K‐M survival curves showed the differences of overall survival 
and recurrence rate among the 4 clusters. c Proportion of other clinical characteristics in 4 clusters. d, e The differences of TMB among 4 clusters
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the hypoxia-related signature, methylation-driven prog-
nostic model and three-gene prognostic model (Fig. 6d). 
All these results indicated a more reliable predictive abil-
ity of our hypoxia-related recurrence model.

Building a nomogram for predicting recurrent probability 
of HCC patients and evaluating its predictive performance
We performed a univariate and multivariate Cox 
regression analysis and screened out three independ-
ent factors related to the recurrence of HCC (P < 0.05) 
(including the age, the TNM stage and the risk score 
of our recurrence signature) (Fig.  7a). The nomogram 
for recurrence prediction was built by integrating these 
three factors (Fig.  7b) The level of each factor was 
assigned according to the regression coefficient of each 
influencing factor, and then the scores were added to 
obtain the total score. Finally, the predicted value of the 
individual outcome was calculated through the func-
tion conversion relationship between the total score 

and the probability of occurrence of outcome. The cali-
bration plot of the nomogram showed a consistency 
between the prediction and observation (Fig.  7c–e). 
The C-index was 0.62, 0.56, 0.63 and 0.71 for the age, 
TNM stage, the prognostic model and the nomogram 
(95% CI 0.64–0.78). From the results of ROC analysis in 
Fig. 7f–h, the AUCs of nomogram at 1-, 3-, 5-year was 
0.746, 0.741, 0.717, respectively, which was obviously 
higher than other models with single independent fac-
tors. The DCA curves showed that the combined model 
obtained a higher net benefit (Fig. 7i–k). Through com-
parative analysis with other recurrence models, the 
C-index was 060, 0.59 and 0.59 for the hypoxia-related 
signature, methylation-driven prognostic model and 
three-gene prognostic model. These results indicated 
that our recurrent nomogram performed a better sensi-
tivity and specificity of HCC recurrence prediction and 
could provide clinicians with more specific guidelines.

Fig. 4  Kaplan–Meier analysis, risk score analysis, time‐dependent ROC analysis for a prognosis model based the three‐gene signature in HCC. a, b 
K–M survival curve of high- and low-risk in TCGA cohort and ICGC cohort. c, d Time‐dependent ROC analysis for OS prediction in TCGA and ICGC 
cohort
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Establishment of a diagnostic model based 
on hypoxia‑related genes in HCC
As the diagnosis is of great importance for proper 
management of patients, we further analyzed 
whether hypoxia-related genes also contribute to 

more accurate diagnosis of HCC. A diagnostic model 
based on these three hypoxia-related genes was con-
structed by using a stepwise logistic regression method. 
The diagnostic score was finally identified as fol-
lows: logit (P = HCC) = 1.171 + (− 0.571) × PDSS1 

Fig. 5  Construction of the nomogram predicting overall survival for HCC patients in the TCGA cohort. a Forrest plot of the univariate and 
multivariate association of the prognostic model and clinicopathological characteristics with overall survival. b The nomogram was built based 
on two independent prognostic factors for predicting OS in HCC patients at 1-, 3-, and 5-year. c–e The calibration plot for internal validation of the 
nomogram. f–h Time‐dependent ROC curves of the nomogram for 1‐,3‐ and 5‐year overall survival in HCC to evaluate the predictive performance 
of the nomogram. i–k DCA curves of the nomogram for 1‐,3‐ and 5‐year overall survival in HCC to evaluate the clinical decision-making benefits of 
the nomogram
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expression level + (− 1.019) × SLC7A11 expression 
level + (− 2.037) × CDCA8 expression level. In TCGA 
cohort with 50 normal samples paired 50 HCC samples, 
our diagnostic model achieved a sensitivity of 94% and a 
specificity of 92% (Fig. 8a). We also utilized ICGC cohort 
with 190 normal samples paired 219 HCC samples as a 
validation set, and the diagnostic model obtained a sensi-
tivity of 90% and a specificity of 94% (Fig. 8c). As shown 
in ROC analysis (Fig.  8b, d), the AUCs of our model 
reached 0.986 and 0.962 in TCGA and ICGC cohort, 
indicating a satisfactory accuracy of prediction. To fur-
ther verify the clinical application of the model, we col-
lected a group of patient-derived tissues, in which 13 
tumor tissues were paired with 13 adjacent tissues. The 
results were proved to be satisfactory as a sensitivity of 
92% and a specificity of 92% were calculated. (Fig. 8e, f ).

Liver nodule is a kind of hepatic hyperplasia caused 
by various factors. It is indistinguishable from the early 
stage of liver cancer, and the corresponding treatment 
methods are different. We aimed to establish a diag-
nostic model by using a stepwise logistic regression 
method to better distinguish liver cancer from hepatic 

nodules. The diagnostic score was identified as fol-
lows: logit (P = HCC) =  − 45.308 + 0.628 × PDSS1 
expression level + 8.452 × SLC7A11 expression 
level + 4.047 × CDCA8 expression level. We tested the 
diagnostic performance of the model in two databases, 
GSE6764 and GSE89377 cohort. One achieved a sensitiv-
ity of 88.57% and a specificity of 82.35%, the other one 
achieved a sensitivity of 87.5% and a specificity of 77.27% 
(Fig. 9a, c). The AUCs for GSE6764 and GSE89377 were 
0.934 and 0.935 (Fig. 9b, d). These data further confirmed 
that the diagnostic model was a novel predictive tool with 
high accuracy and potential clinical value.

Validation of the expression and genetic alterations 
and independent prognostic analysis for genes
We detected genetic alterations of the three genes from 
cBioportal database [29] and found that PDSS1, SLC7A11 
and CDCA8 possessed genetic alterations of 9%, 3% 
and 5% (Fig.  10a). These results helped explain that the 
abnormal gene expression may be attributable to genetic 
alterations. To further confirm the expression level of 
each gene in HCC, we used TCGA database containing 

Fig. 6  Kaplan–Meier analysis, risk score analysis, time‐dependent ROC analysis for the recurrence model based on three-gene signature in HCC. a 
Distribution of risk scores of HCC patients with different gene expression levels in TCGA cohort. b The recurrence rate of high- and low-risk group 
in TCGA. c Time‐dependent ROC analysis for recurrence prediction in TCGA cohort. d The ROC comparation between hypoxia-related recurrence 
signature and other recurrence models
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50 tumor and 50 normal samples. We found all the three 
genes were highly expressed in HCC compared with in 
normal liver tissues (Fig.  10b–d). The assessment of 
mRNA expression for each gene in HCC clinical speci-
mens shows that it is higher in tumor tissues (P < 0.05) 

(Fig.  10e–g). The protein expression of CDCA8 and 
SLC7A11 (also known as xCT) by IHC were showed in 
Additional file 10: Figure S4. We also detected the mRNA 
expression of these three genes in normal hepatocytes 
and different hepatoma cell lines. The results showed that 

Fig. 7  Construction of a recurrence nomogram for HCC patients in the TCGA cohort. a Forrest plot of the univariate and multivariate association 
of the risk-score model and clinicopathological characteristics with overall survival. b The nomogram was built based on three independent 
prognostic factors for predicting the recurrence in HCC patients at 1-, 3-, and 5-year. c–e The calibration plot for internal validation of the 
nomogram. f–h Time‐dependent ROC curves of the nomogram for 1‐,3‐ and 5‐year recurrence prediction in HCC to evaluate the predictive 
performance of the nomogram. i–k DCA curves of the nomogram for 1‐,3‐ and 5‐year recurrence prediction in HCC to evaluate the clinical 
decision-making benefits of the nomogram
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PDSS1, SLC7A11 and CDCA8 were significantly upregu-
lated in hepatoma cell lines (P < 0.05) (Fig. 10h–j). Moreo-
ver, by analyzing gene expression in GSE6764 cohort, we 
found that the expression levels of PDSS1, CDCA8 and 
SLC7A11 were significantly higher in tumor tissue than 
those in liver nodules (Fig.  10k–m). We also attempted 
to explore the interaction between each two genes. As 
shown in Fig. 10o–q, there was a sort of synergy between 
CDCA8 and PDSS1 as well as SLC7A11 (P < 0.05).

Kaplan–Meier Plotter database [30] was used in order 
to analyze the effect of single gene on HCC progno-
sis. The results showed that the high‐expression level of 
PDSS1, CDCA8 or SLC7A11 was separately related to 
a shorter overall survival time (Fig.  11a–c). In addition, 
the progression-free survival (PFS) analysis, which can 

better reflect tumor progression and predict clinical ben-
efits, also showed an association between higher expres-
sion level of a single gene and faster disease progression 
(Fig.  11d–f). To achieve a better understanding of the 
functional characteristics of three genes, we performed 
Gene set enrichment analysis, which showed that some 
immune-related pathways, such as JAK–STAT3 signal-
ing, The NF-kappa B signaling, were highly active in the 
high-risk group (Fig. 11g–i).

Comparison of the immune microenvironment 
between high‑ and low‑risk groups
Tumor immune cell infiltration refers that the immune 
cells move from the blood to the tumor tissue. The 
immune cells in tumors are closely related to clinical 

Fig. 8  Building a diagnostic model for distinguishing HCC from normal samples. Sensitivity and specificity validation of the diagnostic model and 
ROC curves for evaluating the predictive performance. a, b TCGA cohort. c, d ICGC cohort. e, f in clinical specimens
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outcomes and they are most likely to serve as drug 
targets to improve survival rate [31]. Since these three 
genes have been found to enriched in some immune 
pathways, we then analyzed the relationship between 
hypoxia-related genes and immune cell infiltration as 
well as immune checkpoints in HCC. Patients in the 
high-risk group had higher ratios of M0 macrophages, 
memory B cells and follicular helper T cells than those 
in the low-risk group (P < 0.05) (Fig.  12a–c). Moreo-
ver, we found that the expression levels of TIM3, 
B7H3, CTLA4, PD1 and PDL1 in the high-risk group 
were obviously higher than those in the low-risk group 
(P < 0.05) (Fig. 12d–h). Our findings lead us to conclude 
that tumor immune microenvironment may be respon-
sible for the prognosis of HCC patients with high 
expression of hypoxia-related genes.

Discussion
Hepatocellular carcinoma (HCC) is one of the leading 
causes of cancer-related death in the world, and the 
development of HCC is a complicated process influ-
enced by various factors [32]. Though some progresses 
have been made in the treatments of HCC, such as 
surgical resection, microwave ablation and liver trans-
plantation, the prognosis of HCC patients remains poor 
[33]. In recent years, high-throughput sequencing and 
data analysis have gradually become more significant 
tools for biomedical research, which can identify bio-
markers for prognosis predicting, recurrence monitor-
ing as well as clinical stratification [3, 34, 35]. Therefore, 
it is urgent to apply to HCC and explore key targets for 
the treatment.

Hypoxia is a prominent characteristic of malignant 
tumors, especially in HCC [36]. It was demonstrated in 

Fig. 9  Building a diagnostic model for distinguishing HCC from dysplastic nodules. a–c sensitivity and specificity validation of the diagnostic model 
in the GSE6764 and GSE89377 cohort. b, d ROC curves for evaluating the predictive performance of the diagnostic model

Fig. 10  Validation of the expression characteristics of hypoxia-related genes. a Genetic alteration detection of the hypoxia-related genes from the 
cBioPortal database. b–d The expression level of each gene in TCGA cohort with 50 HCC samples paired 50 normal samples. e–g Real-time PCR 
analyses of the mRNA expressions of each gene in clinical specimens. h–j Real-time PCR analyses of the mRNA expressions of each gene in different 
cell lines. k–m The expression level of each gene in GSE6764 cohort with 35 HCC samples paired 17 dysplastic nodules. o–q The correlation analysis 
between expression levels of different genes in TCGA cohort with 370 HCC samples

(See figure on next page.)
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several studies that  hypoxia was involved in the aggres-
sive development of HCC [8]. Nevertheless, due to the 
multiple roles of hypoxia, the specific role of hypoxia in 
the development of liver cancer remains unclear [37]. 
In this study, we identified three hypoxia-related genes 
(PDSS1, CDCA8 and SLC7A11) closely relating to HCC. 
CDCA8, involving in protein metabolism and mito-
sis, has been demonstrated to participate in malignant 
progression of tumor cells and lead to poor prognosis 
in liver, stomach and lung cancer [38]. SLC7A11 (also 
known as xCT) plays a critical role in maintaining redox 
homeostasis and has been confirmed to be associated 
with the prognosis of HCC [39]. PDSS1 is involved in 
coenzyme Q biosynthesis, but little is known about the 
relationship between PDSSI and cancer [40]. Our results 

showed that this three-gene signature was an independ-
ent factor affecting the prognosis of HCC and the model 
had a better predictive performance on both prognosis 
and recurrence. What’s more, the diagnostic model based 
on these three genes had a high sensitivity and specificity, 
and could help distinguish HCC from dysplastic nodules. 
Consensus Clustering is a common method for classifi-
cation of cancer subtypes. We divided the samples into 
4 clusters according to the hypoxia-related DEGs dataset 
of HCC and compared the differences among clusters. It 
should be pointed out that cluster-2 had a higher TMB, 
indicating that patients in cluster-2 were more likely to 
benefit from immunocheckpoint inhibitor therapy [41].

Much work so far has focused on the role of hypoxia in 
regulating the immune response in tumors. Hypoxia can 

Fig. 11  Prediction performance of hypoxia-related genes for OS and Gene Set Enrichment Analyses of the three-gene signature. a–c K–M survival 
curves for high and low expression levels of each gene. d–f progression-free survival analysis for high and low expression levels of each gene. g–i 
Three representative Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in high-risk group via GSEA
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interfere with the differentiation and function of immune 
cells through regulating the expression of co-stimulat-
ing receptors and the types of cytokines [42, 43]. The 
immune system is able to recognize and eliminate tumor 
cells through innate and adaptive mechanisms. However, 
the tumor microenvironment could suppress this anti-
tumor response through a number of inhibitory pathways 
which were known as immunocheckpoints [44]. Our 
results of GSEA indicated that hypoxia-related signature 
could positively regulate some immune signaling path-
ways. The high-risk group based on the expression level 
of hypoxia-related genes had a higher infiltration propor-
tion of macrophages, B memory cells and follicle-assisted 
T cell, as well as higher expression levels of immune 
checkpoints. These evidence for the association between 
hypoxia and immunity highlighted the importance of 
immunotherapy for HCC patients with high expression 
level of three hypoxia-related genes.

However, some limitations of this study should be 
noted. First, the process of adjusting the weight of 
regression coefficient in LASSO might ignore some 

important factors contributing to HCC prognosis. Sec-
ond, our nomogram did not perform external valida-
tion as there was a lack of specific clinical data in ICGC 
database. Moreover, our retrospective findings need to 
be further validated in prospective research. Finally, the 
complex interaction between tumor cells and immune 
cells in hypoxic environments remains to be further 
explored.

Conclusion
In summary, we identified the hypoxia-related DEGs 
between HCC and normal tissues and clustered HCC 
samples into 4 subgroups. We established the diagno-
sis, prognosis and recurrence models based on three 
hypoxia-related genes, which performed favorable diag-
nosis and prediction performance for HCC. Finally, we 
identified higher proportions of immune cell infiltra-
tion and immunocheckpoint expression in the high-risk 
group, which may be more sensitive to benefit from 
immunotherapy.

Fig. 12  The overview of immune infiltration and expression of immune checkpoints in HCC patients with different risk scores. a–c Violin 
plots showing infiltration fractions of different immune cells in the high- and low-risk groups. d–h Violin plots showing the expression level of 
immunocheckpoints in high- and low-risk groups
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