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Abstract

Background: Cotton (Gossypium spp.) fiber yield is one of the key target traits, and improved fiber yield has always
been thought of as an important objective in the breeding programs and production. Although some studies had
been reported for the understanding of genetic bases for cotton yield-related traits, the detected quantitative trait
loci (QTL) for the traits is still very limited. To uncover the whole-genome QTL controlling three yield-related traits
in upland cotton (Gossypium hirsutum L.), phenotypic traits were investigated under four planting environments and
9244 single-nucleotide polymorphism linkage disequilibrium block (SNPLDB) markers were developed in an
association panel consisting of 315 accessions.

Results: A total of 53, 70 and 68 significant SNPLDB loci associated with boll number (BN), boll weight (BW) and
lint percentage (LP), were respectively detected through a restricted two-stage multi-locus multi-allele genome-
wide association study (RTM-GWAS) procedure in multiple environments. The haplotype/allele effects of the
significant SNPLDB loci were estimated and the QTL-allele matrices were organized for offering the abbreviated
genetic composition of the population. Among the significant SNPLDB loci, six of them were simultaneously
identified in two or more single planting environments and were thought of as the stable SNPLDB loci.
Additionally, a total of 115 genes were annotated in the nearby regions of the six stable SNPLDB loci, and 16
common potential candidate genes controlling target traits of them were predicted by two RNA-seq data. One of
16 genes (GH_D06G2161) was mainly expressed in the early ovule-development stages, and the stable SNPLDB
locus (LDB_19_62926589) was mapped in its promoter region.

Conclusion: This study identified the QTL alleles and candidate genes that could provide important insights
into the genetic basis of yield-related traits in upland cotton and might facilitate breeding cotton varieties
with high yield.
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Background
As a main industrial raw material, cotton (Gossypium
spp.) fiber plays an important role in daily life and the
world’s textile industry [1, 2]. Among the planting cotton,
upland cotton (Gossypium hirsutum L.) is the largest culti-
vated species and accounts for more than 90% of cotton
yield in the world [3]. Cotton fiber yield is one of the key
target traits, and improved fiber yield has long been
thought of as an important objective in the breeding pro-
cedures and production [4]. For fiber yield of a plant, its
component factors contain boll number (BN), boll weight
(BW) and lint percentage (LP), and the three traits are
controlled by a sequence of quantitative trait loci (QTL).
In the last decades, abundant QTL for cotton yield-related
traits had been detected via linkage mapping method, and
the QTL mapping results were summarized in cotton [5].
Over the past 5 years, a lot of significant single-nucleotide
polymorphisms (SNPs) associated with fiber yield compo-
nent traits have been identified by using genome-wide as-
sociation studies (GWAS) methods in upland cotton [1, 4,
6–9]. These GWAS findings laid a good foundation for
deciphering the genetic basis underlying cotton yield-
related traits. However, the detected QTL for the target
traits still remained limited, because only a handful of
major QTL were identified through the conventional
GWAS procedures.
The inchoate GWAS methods had a lot of trouble

lowering the false-positive rate, which affected the iden-
tification accuracy of the associated loci [10, 11]. To en-
hance the detection efficiency of the authentic QTL,
three GWAS procedures, including the structured asso-
ciation analysis (SA), principal components analysis
(PCA), and mixed linear model (MLM), were widely ap-
plied to association analyses [12–14]. In them, the
MLM-GWAS procedure has been the most popular pro-
cedure, and it has been widely used in Arabidopsis, rice,
maize, sorghum, and cotton [1, 7, 15–18]. The statisti-
cians further concluded that the above-mentioned
GWAS methods (SA, PCA and MLM) based on a
whole-genome scan which tests a marker each time were
classified as a single-locus model [19, 20]. However, due
to a very strict selection criteria of Bonferroni correc-
tion, some significant loci associated with the objective
traits often were not detected in the single-locus GWAS
models [21]. Moreover, the traditional GWAS proce-
dures based on single-locus models, have been chiefly
paid close attention to exploring a handful of major
QTL in plants, and have been difficult to dissect the full-
genome QTL alleles [19, 20]. Nevertheless, it is neces-
sary for molecular breeding to identify genome-wide
QTL-allele composition in germplasm resources.
Fortuitously, the multi-locus GWAS (ML-GWAS)

models make it possible to explore full-genome QTL al-
leles. Recently, statisticians have developed a novel

restricted two-stage, multi-locus, mutli-allele GWAS
(RTM-GWAS) procedure [20] to uncover whole-
genome QTL alleles controlling target traits in plants.
The RTM-GWAS procedure had been applied to detect
a comparatively full-genome QTL-allele system of seed
isoflavone content and 100-seed weight in soybean [19,
20, 22]. However, research to detect whole-genome QTL
alleles of cotton breeding objective traits was scarce
through the RTM-GWAS procedure.
Therefore, to explore the whole-genome QTL alleles

significantly associated with cotton yield-related traits,
association analyses for three cotton yield-related traits
were performed in different planting environments
through the RTM-GWAS procedure. To attain this, we
used a natural population consisting of 315 upland cot-
ton accessions and developed 13,391 high-quality single
nucleotide polymorphisms (SNPs) organized into 9244
SNP linkage disequilibrium blocks (SNPLDBs). In this
study, the significant SNPLDBs and the stable QTL asso-
ciated with three yield-related traits were identified, and
the QTL-allele matrices characterizing the population
diversity were established via the RTM-GWAS method;
and the potential candidate genes were predicted by two
RNA-seq data. The results not only provide important
insights into the genetic architecture controlling fiber
yield traits, but also facilitate breeding high-yielding cot-
ton varieties.

Results
Phenotypic variations of three yield-related traits among
accessions
Three yield-related traits (BN, BW and LP) of the nat-
ural population were evaluated in four planting environ-
ments (E1–4) during 2014 and 2015. We observed
variation range of the average values across four envi-
ronments for three yield-related traits. The BN, BW, and
LP varied from 4.45 to 13.19, 3.60 to 7.13 g, and 28.49 to
47.01%, with an average of 8.18, 5.47 g, and 40.89%, re-
spectively (Fig. 1; Table S1). We observed that the BNs
in Anyang (E1 and E2) were strikingly greater than those
in Shihezi (E3 and E4). Additionally, positive correlations
were also observed between three yield-related traits,
however, significant correlation was not found among
them (Table S2). The continuous and wide phenotypic
distributions suggested that they were segregating char-
acteristic of quantitative trait and were fit for GWAS.
Although these traits exhibited large phenotypic vari-

ation, the coefficient of variation (CV) of LP was only
comparatively consistent among the four environments.
The CV values of the BN and BW in E1–2 were larger
than those in E3–4 (Table S1). Analysis of variance
(ANOVA) showed that there were highly significant dif-
ferences among the accessions, environments, and
accession-by-environment interactions for the three
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traits (Table S3). Additionally, the broad-sense herit-
ability (BSH) of the BN, BW and LP was 17.76, 40.80
and 66.67%, respectively (Table S3), revealing that LP
and BW were relatively stable inherited, whereas BN

trait was greatly affected by the planting-environment
factors. These results indicated that the three yield-
related traits were significantly influenced by the
planting environments.

Fig. 1 Phenotypic distributions of three yield-related traits among 315 upland cotton accessions in four planting environments (E1-E4). a Boll
number; b boll weight; c lint percentage
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The SNPLDB-marker construction and population
structure
The association panel consisting of the 315 upland cot-
ton accessions was sequenced through a specific-locus
amplified fragment sequencing (SLAF-seq) method. The
sequence reads then were aligned against the new up-
land cotton TM-1 reference genome v2.1 [23] and 1,236,
418 SNP markers were developed. With a control criter-
ion of a call rate > 0.90 and a minor allele frequency
(MAF) > 0.05, a total of 13,391 high-quality SNPs was
retained among the accessions. The SNPs could be lo-
cated on all 26 chromosomes of upland cotton genome,
with 8491 and 4900 SNPs in the At and Dt subgenomes,
respectively, and were organized into 9244 SNPLDBs.
Based on the SNPLDBs, the association panel was di-
vided into two groups by the PCA and the hierarchical
phylogenetic tree, and the linkage disequilibrium (LD)
decay distance of the approximate 500 kb was estimated
in the population. The detailed results on the PCA and
LD of the association panel will be reported in another
study (about to be published).

Detection of QTL alleles through the RTM-GWAS
procedure
To detect whole-genome QTL alleles underlying three
cotton yield-related traits, the RTM-GWAS procedure
based on multi-locus model was applied in the study.
Because of the significant difference between the two
sites for the BN trait, the RTM-GWAS procedures for
multiple environments and single environment were re-
spectively performed in this study. The significant SNPL
DBs which could be simultaneously detected in multiple
environments and two or more single environments,
were thought of as the stable SNPLDB loci. By utilizing
the RTM-GWAS procedure of the multiple environ-
ments, we identified respectively 53, 70 and 68 signifi-
cant SNPLDB loci associated with BN, BW and LP (P <
0.05; Fig. 2; Table S4).
In the significant SNPLDBs of multiple environments

for BN, one stable SNPLDB locus with a high −log10(P)
value and phenotypic variation explanation was not
found in the associations, although the 8 SNPLDBs were
presented in a single planting environment (Fig. 2a;

Fig. 2 The RTM-GWAS results of BN. a Manhattan (left) and quantile–quantile plots (right) of BN. Each dot indicates one SNPLDB marker. The
horizontal dashed red line represents the normal significance threshold of 0.05. b Distribution of allele effect of the significant SNPLDB loci for BN.
The bars above the abscissas mean positive effect values improving fiber quality, while the bars below the abscissas represent negative effect
values reducing fiber quality
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Table 1). Among the 53 significant loci associated with
BN, there were 40 single SNPLDB loci and 13 multiple
SNPLDB loci. Based on the stepwise regression analysis,
we identified 170 alleles containing 84 positive and 86
negative alleles in these SNPLDB loci. The positive-allele
effects ranged from 0.0039 to 0.64, and the negative-
allele effects varied from − 0.00034 to − 0.68 (Fig. 2b). In
addition, the allele effects of the significant SNPLDB loci
could be further organized into a 53 × 315 (locus × ac-
cession) matrix, which in truth displayed the genetic
variation constitution of the BN trait in the 315 upland
cotton accessions (Figure S1A).

In the significant SNPLDBs of multiple environments
for BW, one stable SNPLDB locus (LDB_25_61293136)
was detected in three single planting environments, and
11 SNPLDBs were also presented in a single planting en-
vironment (Fig. 3a; Table 1). The stable SNPLDB locus
LDB_25_61293136 located on chromosome 25 (D12)
were simultaneously identified in the three single plant-
ing environments (E1, E2 and E4), with the higher
−log10(P) value (28.02) and phenotypic variation explan-
ation (1.05%). Among the 70 SNPLDB loci associated
with BW, 15 loci of them included multiple SNPs,
whereas the remaining 55 loci contained single SNP.

Table 1 The significant SNPLDB loci associated with three yield-related traits in upland cotton

Traits Locus Chr. Position -log10(P) PVE(%) Common environments a

BN LDB_10_108252822 A10 108,252,822 16.46 0.58 E2(7.68)

LDB_8_80957905_80958114 A08 80,957,905 9.87 0.97 E2(3.30)

LDB_9_38930641 A09 38,930,641 9.52 0.51 E2(2.58)

LDB_18_53807715 D05 53,807,715 8.38 0.37 E3(2.32)

LDB_3_42046528_42046540 A03 42,046,528 6.52 E2(4.92)

LDB_16_4143574 D03 4,143,574 5.94 0.38 E2(4.39)

LDB_5_32745305 A05 32,745,305 2.80 E1(3.07)

LDB_5_30624560 A05 30,624,560 1.84 0.22 E2(5.03)

BW LDB_25_61293136b D12 61,293,136 28.02 1.05 E1(5.75), E2(7.39), E4(9.79)

LDB_7_11434307 A07 11,434,307 19.97 3.12 E3(13.44)

LDB_18_60784,945 D05 60,784,945 19.01 2.68 E1(4.96)

LDB_8_117999939 A08 117,999,939 18.24 0.97 E3(9.25)

LDB_24_62501704_62501749 D11 62,501,704 14.84 0.56 E1(6.03)

LDB_18_62137879 D05 62,137,879 14.07 1.31 E4(10.43)

LDB_1_27714781 A01 27,714,781 13.53 2.33 E1(1.71)

LDB_23_7162905 D10 7,162,905 12.59 0.58 E4(3.13)

LDB_3_101231660 A03 101,231,660 8.52 0.20 E3(11.57)

LDB_5_2524535 A05 2,524,535 7.65 1.00 E1(1.69)

LDB_15_21962239 D02 21,962,239 2.02 E4(2.61)

LDB_13_31802375 A13 31,802,375 1.31 E1(8.65)

LP LDB_2_98957055_98957100b A02 98,957,055 46.97 0.98 E3(21.27), E4(17.27)

LDB_20_52488458b D07 52,488,458 40.68 5.09 E2(10.18), E3(12.10)

LDB_6_81838215_81856977 A06 81,838,215 39.14 3.67 E4(13.50)

LDB_19_62926589b D06 62,926,589 29.91 2.60 E2(14.57), E3(4.25),

LDB_15_33683466_33683486b D02 33,683,466 22.99 0.19 E3(8.76), E4(8.64)

LDB_6_87041656_87041922b A06 87,041,656 21.47 2.01 E1(4.66), E2(3.48)

LDB_22_5519816_5520088 D09 5,519,816 17.17 2.12 E3(10.04)

LDB_5_6292927 A05 6,292,927 16.95 1.20 E4(17.58)

LDB_13_14883849_14884035 A13 14,883,849 6.83 0.35 E2(7.38)

LDB_15_6072794 D02 6,072,794 6.01 0.77 E3(2.25)

LDB_15_58321721 D02 58,321,721 3.90 E1(1.66)

LDB_12_92891416_92891433 A12 92,891,416 1.61 0.08 E1(2.93)
a Figures in brackets denote -log10(P) values in the planting environments. b labels the six stable SNPLDB loci
BN Boll number, BW Boll weight, LP Lint percentage, Chr. Chromosome, PVE Phenotypic variation explanation
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The allele-effect values ranged from 0.0011 to 0.62 g
with an average of 0.47 g for the 115 positive alleles, and
varied from − 0.000070 to − 0.58 g with a mean of − 0.10
g for the 113 negative alleles (Fig. 3b). The stable SNPL
DB locus LDB_25_61293136 had three allele types in-
cluding AA, AC and CC with effect value of − 0.12,
0.045 and 0.073, respectively (Fig. 3b); and the BW
values of the accessions with the negative allele (AA)
were significantly lower than those with the heterozygote
allele (AC), whereas was not significantly lower than
those with the positive allele (CC) (Fig. 3c). Additionally,
for the 70 significant SNPLDB loci with 147 haplotypes/
alleles, the allele effects were organized into a 70 × 315
(locus × accession) matrix, containing the core genetic
information for the improvement of the BW trait in the
association panel (Figure S1B).
In the significant SNPLDBs associated with LP in mul-

tiple environments, five stable SNPLDB loci were de-
tected in two single planting environments, and seven
SNPLDBs were also observed in a single planting envir-
onment (Fig. 4a; Table 1). Among the five stable SNPL
DB loci, the peak SNPLDB locus LDB_2_98957055_
98957100 was positioned on chromosome 2 (A02) with
the highest −log10(P) value (46.97) and phenotypic

variation explanation (3.98%), which was simultaneously
identified in the two single planting environments (E3
and E4); and the second highest locus LDB_20_
52488458 was distributed in chromosome 20 (D07),
which had a − log10(P) value of 40.68 and explained the
largest phenotypic variation of 5.09%. Among the 68 as-
sociated loci with LP, 23 of them were multiple-SNP
loci, and the rest of them were single-SNP loci. The
allele-effect values ranged from 0.0034 to 3.73% with an
average of 0.67% for the 124 positive alleles, and varied
from − 0.012 to − 6.65% with a mean of − 0.64% for the
131 negative alleles (Fig. 4b). For example, the peak
SNPLDB locus LDB_2_98957055_98957100 had three
haplotypes including Hap1, Hap2 and Hap3 with an ef-
fect value of 0.47, − 1.86, and − 1.39%, respectively (Fig.
4b); the accessions carrying the Hap1(CCAA) exhibited
a significantly increased LP, compared with the acces-
sions carrying the Hap2(CTAG) and Hap3(TTGG) (Fig.
4c). Within another association locus LDB_20_
52488458, there were three alleles including AA, AG
and GG with effect of − 0.26, − 1.40, and 1.66%, respect-
ively (Fig. 4b); while the significant phenotypic difference
was not observed between the lines containing the AA
and GG allele (Fig. 4d). Another significant signal LDB_

Fig. 3 The RTM-GWAS results of BW. a Manhattan (left) and quantile–quantile plots (right) of BW. b Distribution of allele effect of the significant
SNPLDB loci for BW. The number 1 indicates the significant SNPLDB locus LDB_25_61293136. c The BW differences of the stable SNPLDB locus
LDB_25_61293136 among different alleles. Allele1–3 represent AA, AC and CC, respectively. * and ** indicate respectively 5% and 1%
significance level
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6_87041656_87041922 had five haplotypes including
Hap1(CCAATT), Hap2 (CCGGCC), Hap3(CTAATT),
Hap4(CTAGCT) and Hap5(TTAATT), and the LP
values of the accessions containing the Hap2 and Hap5
were significantly higher than those containing the Hap1
(Fig. 4g). For the other two stable SNPLDB loci (LDB_
19_62926589 and LDB_15_33683466_33683486), the LP
values of the accessions with the favorable haplotypes/al-
leles were significantly higher than those with the

unfavorable haplotypes/alleles (Fig. 4e, f). Moreover, the
effects of the 68 significant LP SNPLDB loci containing
156 haplotypes/alleles could be established into a 68 ×
315 (locus × accession) matrix for the whole genetic
variation information of the LP trait (Figure S1C).
From the QTL-allele matrices of three target traits, we

found the regularity that the frequencies of the positive
haplotypes/alleles in the superior accessions were more
than those in the inferior ones. The phenomenon could

Fig. 4 The RTM-GWAS results and haplotype analysis of LP. a Manhattan (left) and quantile–quantile plots (right) of LP. b Distribution of allele
effect of the significant SNPLDB loci for LP. The number 2–6 indicate respectively the five significant SNPLDB loci LDB_2_98957055_98957100,
LDB_20_52488458, LDB_19_62926589, LDB_15_33683466_33683486, and LDB_6_87041656_87041922. c-g The LP differences of the five stable
SNPLDB loci among different haplotypes/alleles. c LDB_2_98,957,055_98957100, Hap1(CCAA), Hap2(CTAG) and Hap3(TTGG); d LDB_20_52488458,
Allele1–3 represent AA, AG and GG, respectively; e LDB_19_62926589, Allele1–3 represent CC, CT and TT, respectively. f
LDB_15_33683466_33683486, Hap1(CCCC), Hap2 (CTCT), Hap3(TTTT); g LDB_6_87041656_87041922, Hap1(CCAATT), Hap2 (CCGGCC), Hap3(CTAA
TT), Hap4(CTAGCT) and Hap5(TTAATT)
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be intuitively observed between the highest and lowest
yield accessions. Take LP trait as an example, the cumu-
lative number of the positive haplotypes/alleles in the 50
highest lines (1943 with a mean of 38.86 per line) was
larger than that in the 50 lowest LP ones (1818 with an
average of 36.36 per line). Correspondingly, the cumula-
tive number of the negative haplotypes/alleles in the 50
highest accessions (1796 with an average of 35.92 per ac-
cession) was less than that in the 50 lowest LP ones
(1998 with a mean of 39.96 per accession). Despite of
phenotypic differences among the 315 accessions, any
one of them contained simultaneously the positive and
negative alleles. For instance, a fine cotton variety “lumi-
anyan28”, the number of positive alleles of the BN, BW
and LP was 34, 44 and 44, respectively; and the number
of negative alleles was 32, 42 and 42, respectively. In
addition, we also gave attention to the significant SNPL
DB loci. For the stable BW SNPLDB locus LDB_25_
61293136, the frequency of the positive alleles in the top
BW 50 lines was obviously higher than that in the bot-
tom 50 ones. For the five stable SNPLDB loci for LP,
three (LDB_2_98957055_98957100, LDB_19_62926589,
and LDB_15_33683466_33683486) of them conformed
to the law that the frequencies of the positive haplo-
types/alleles in the top LP 50 lines were clearly higher
than that in the bottom 50 ones (Fig. 5).
In a brief summary of the QTL-allele detection, our

results were to (1) a total of 53, 70 and 68 significant
SNPLDB loci associated with BN, BW and LP were re-
spectively identified through the multiple-environment
RTM-GWAS procedure, and the effects of the signifi-
cant SNPLDB loci were organized into the QTL-allele
matrices of three target traits; (2) one and five steadily

associated SNPLDB loci with BW and LP were respect-
ively detected; (3) the QTL alleles with extremely high
or low effects were not necessarily the ones from the
peak SNPLDB loci with the largest –log10(P) value and
phenotypic variation explanation; (4) for the significantly
associated loci, the frequencies of the positive alleles in
the superior accessions were generally more than those
in the inferior ones, but not all the loci completely con-
formed to the underlying laws. The results offered im-
portant insights into the genetic basis underlying yield-
related traits in upland cotton.

Identification and prediction of potential candidate genes
Based on the above results, the six stable SNPLDB loci
associated with BW and LP were identified via the
RTM-GWAS procedure, and they should be major-
effect QTL controlling cotton yield-related traits. There-
fore, we mainly focused on the six stable SNPLDB loci.
By reference to the LD decay distances of SNPLDBs of
the association panel and the SNP-linked fragment in
the most of previous cotton studies (200 kb) [4, 24–26],
the six genome fragments (±200 kb around the six stable
SNPLDB loci) were recommended as target scopes of
candidate genes. According to the upland cotton TM-
1 reference genome v2.1 [23], a total of 115 genes
were annotated in the six target genome fragments
(Table S5). Through aligning the genomic locations of
the genes, we discovered that the stable SNPLDB
locus (LDB_15_33683466_33683486) was located
within the coding sequence (CDS) of the gene (GH_
D02G1202). Also, we found that the SNPLDB locus
LDB_19_62926589 was positioned in the promoter re-
gion of candidate gene GH_D06G2161.

Fig. 5 The frequencies of positive haplotypes/alleles for the six stable SNPLDB loci in the top 50 lowest and the bottom 50 highest
yield accessions
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On the basis of the normalized fragments per kilobase
of transcript per million mapped reads (FPKM) values of
the genes from the Nanjing Agricultural University
(NAU) RNA-seq [27], 93 of the 115 genes were highly
expressed in at least one of 20 upland cotton tissues,
and were divided into five different groups (Group 1–5).
Among the five groups, Group 1 including 9 genes was
mainly expressed in fibers of 5 and 10 days post anthesis
(DPA), Group 2 including 22 genes was principally
expressed in stem and floral organs, Group 3 contained
only three genes was mainly expressed in fibers of 20
and 25 DPA, Group 4 contained 21 genes was mainly
expressed during the five ovule-development stages, and
Group 5 contained 38 genes was mainly expressed in

floral organs (Fig. 6a). Additionally, based on the other
FPKM values of the genes from Institute of Cotton Re-
search of Chinese Academy of Agricultural Sciences
(CRI) RNA-seq, 100 of the 115 genes were highly
expressed in at least one of 16 upland cotton tissues,
and could also be divided into five different groups
(Group I-V). Among the five groups, 10 genes were
assigned to Group I that were highly expressed in the fi-
brous tissues; 53 genes were assigned to Group II that
were highly expressed in the stem, leaf and floral organs,
5 genes belonged to Group III that were highly
expressed in ovule of 20 or 25 DPA, 14 genes belonged
to Group IV that were highly expressed in root, and the
remaining 18 genes belonged to Group V that were

Fig. 6 Identification of the potential candidate genes associated with BW or LP. a Heatmap of expression patterns of the 93 putative candidate
genes among 20 upland cotton (TM-1) tissues by the RNA-seq data from Nanjing Agricultural University (NAU). Red indicates high expression,
and green indicates low expression. b Heatmap of expression patterns of the 100 putative candidate genes among 16 upland cotton (TM-1)
tissues by the RNA-Seq data from Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CRI), the16 genes were highlight in
red in the a and b. c Venny diagram of the common genes between two RNA-seq data (NAU and CRI). d Gene structure of GH_D06G2161 and
the position of the SNPLDB locus LDB_19_62926589 in the gene promoter region. E. Transcriptomic level of GH_D06G2161 in 20 different tissues
based on the fragments per kilobase of transcript per million mapped reads (FPKM) values
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mainly expressed during the five ovule-development
stages (Fig. 6b). Both sets of genes (33 each) expressed
mainly in fibers and ovules were respectively identified
via the NAU and CRI RNA-seq (Table S6); and 16 of
them were in common between two RNA-seq data and
should be potential candidate genes for cotton yield-
related traits (Fig. 6c; Table 2). In addition, the 16 genes
were respectively assigned to Group- 1,3, 4 and Group-
I, III, V (Fig. 6c). Therefore, we speculated that the genes
assigned to the Group- 1,3, 4 and Group- I, III, V might
be closely related to the target traits.
For the 16 potential candidate genes, 14 of them had

some biological function annotations. Seven genes en-
code the binding proteins related to membrane, zinc fin-
ger and disease resistance, etc.; six genes encode
enzymes, such as oxidase, thioesterase, diacylglycerol
cholinephosphotransferase and E3 ubiquitin-protein lig-
ase, asparagine-tRNA ligase, etc.; one of the remaining
genes encodes MYB transcription factor (Table 2). Fur-
thermore, we performed function prediction for the 16
genes by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway items. The GO
results showed that four genes (GH_D12G2952, GH_
D12G2950, GH_A02G1555 and GH_D12G2926) were re-
lated to a molecular function by which a gene product
interacts selectively and non-covalently with DNA (GO:
0003677); and two genes (GH_D06G2164 and GH_
D06G2161) involved in the process of interacting select-
ively and non-covalently with any protein or protein
complex (GO:0005515) (Table S7). By the KEGG path-
way analysis, 15 pathways were predicted in two genes
(GH_D06G2180 and GH_D12G2926) and the common

metabolic pathway (ko01100) of them was found (Table
S8). More importantly, the gene GH_D06G2161
belonged to the class-II aminoacyl-tRNA synthetase
family which are ubiquitous and evolutionarily con-
served enzymes that catalyze the highly specific acylation
of amino acids to cognate tRNAs, which was expressed
mainly in the early ovule-development stages, and the
SNPLDB locus LDB_19_62926589 was detected in its
promoter region (Fig. 6d, e). Gene homology analysis
showed that GH_D06G2161 is a homologue of asnS
gene involved in asparagine-tRNA ligase activity in
Mycoplasma arthritidis [28]. The asnS gene
(AT5G32440) is a ubiquitin system component cue pro-
tein mRNA in Arabidopsis thaliana [29]. However, the
function of these genes is still uncertain.

Discussion
Phenotypic trait difference
At present, the top five cotton-producing countries are
India, the USA, China, Pakistan, and Brazil; they to-
gether produce more than 70% of the world’s cotton in
2019. China ranks in fourth in terms of area harvested,
while it produces a secondary world’s cotton yield. Even
so, China is still the largest country of cotton fiber im-
ports and domestic consumption (USDA-FAS 2019)
[30]. In addition, cotton harvested area has been falling
for at least 5 years in China, so improving fiber yield is
still a major goal in Chinese cotton breeding practice. In
the present study, three cotton yield-related traits (BN,
BW and LP) were evaluated in the four planting envi-
ronments. We found that the phenotypic measured
values of the three yield-related traits exhibited a high-

Table 2 The 16 potential candidate genes controlling target traits predicted by two RNA-seq data

Gene ID Gene Name Description Chr. Start End Length (bp)

GH_D06G2180 COX5B-2 Cytochrome c oxidase subunit 5b-2, mitochondrial D06 63,060,142 63,062,960 2819

GH_D07G2154 Acot9 Acyl-coenzyme A thioesterase 9, mitochondrial D07 52,623,091 52,626,062 2972

GH_D12G2925 D12 61,121,419 61,121,910 492

GH_D12G2954 bro1 Vacuolar protein-sorting protein bro1 D12 61,342,250 61,347,159 4910

GH_D12G2952 HDG11 Homeobox-leucine zipper protein HDG11 D12 61,327,801 61,332,967 5167

GH_D12G2950 MYB52 Transcription factor MYB52 D12 61,304,801 61,306,952 2152

GH_D06G2164 At1g12280 Probable disease resistance protein At1g12280 D06 62,950,810 62,953,515 2706

GH_A02G1555 ZHD1 Zinc-finger homeodomain protein 1 A02 98,782,762 98,783,781 1020

GH_D07G2145 D07 52,419,774 52,428,479 8706

GH_D06G2165 ROD1 Phosphatidylcholine:diacylglycerol Cholinephosphotransferase 1 D06 62,958,995 62,961,025 2031

GH_D06G2153 NDC80 Probable kinetochore protein NDC80 D06 62,840,437 62,844,537 4101

GH_D07G2144 PYRAB13050 UPF0056 membrane protein PYRAB13050 D07 52,395,029 52,395,241 213

GH_D06G2162 KEG E3 ubiquitin-protein ligase KEG D06 62,930,295 62,932,383 2089

GH_D12G2934 xpr1 Xenotropic and polytropic retrovirus receptor 1 homolog D12 61,194,759 61,195,031 273

GH_D06G2161 asnS Asparagine--tRNA ligase D06 62,926,856 62,929,336 2481

GH_D12G2926 rpc11 DNA-directed RNA polymerase III subunit RPC10 D12 61,125,552 61,126,483 932
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degree of diversity. The phenotypic investigation of the
study was significant for offering some very fine germ-
plasms in future cotton yield breeding programs. More-
over, three cotton yield-related traits, especially the BN
trait, were significantly influenced by the planting envi-
ronments, and the phenotypic measured values in the
E3–4 environments were highly significantly lower than
those in the E1–2. That is because plant density might
be one of the most important factors impacting the BN
per plant, besides climatic factors of light, temperature,
and water. In the field experiment, plant density of the
E1–2 environments (a plant per 0.18 m2) was obviously
lower than that of the E3–4 environments (a plant per
0.043 m2). A higher plant density generally increases
intra-plant competition for resources, such as light,
water and nutrients, and reduces cotton fiber yield per
plant [31, 32]. For an individual cotton plant, therefore,
its fiber yield might be greatly affected by plant density.
In the study, the BN investigation values were influenced
by the plant density difference between the two experi-
mental sites.

The comparison of the GWAS results
Cotton fiber yield is one of the most important traits
and is controlled by quantitative trait genes. Quantitative
traits are often greatly affected by environment. Hence,
most QTL could be detected only in individual environ-
ment, while only a handful of stable QTL could be sim-
ultaneously detected in several planting environments.
The previous study thought of the QTL detected simul-
taneously in multiple environments as stable QTL [33].
In the study, the significant SNPLDBs which could be
simultaneously detected by the RTM-GWAS procedures
for multiple environments and two or more single envi-
ronments, were considered of as stable QTL for the ob-
jective traits. By utilizing the comprehensive analysis of
the multiple environments and single environment, the
six stable SNPLDB loci associated with BW or LP were
detected through the RTM-GWAS procedures.
Previously, some SNP loci associated with yield-related

traits have been detected via the GWAS method in up-
land cotton [1, 4, 6–8], and the GWAS results are listed
in Table S9. According to recent research, some stable
BN-QTL (D02:55.00–58.20Mb, A02:79.10–79.45Mb,
and D08:2.80–3.10Mb), BW-QTL (D09:47.70–47.75Mb
and A02:74.94–75.56Mb), and LP-QTL (A02:74.71–
75.56Mb, A02:79.10–79.45Mb, A06:102.50–103.60Mb,
A08:52.09–52.10Mb, D02:1.30–1.60Mb, D02: 2.20–2.36
Mb, D03:30.00–40.00Mb, D08:2.80–3.10Mb, and D12:
55.00–58.20Mb) had been identified in the last 5 years
[1, 4, 6–8]. In the previous investigations, the QTL asso-
ciated with the three yield-related traits were explored
by utilizing MLM-GWAS based on single-locus model,
and most of them were primarily positioned on

chromosomes A02, D02, and D08. In this study, one
stable BW-SNPLDB locus LDB_25_61293136 (D12)
and five stable LP-SNPLDB loci including LDB_2_
98957055_98957100 (A02), LDB_20_52488458 (D07),
LDB_19_62926589 (D06), LDB_15_33683466_
33683486 (D02) and LDB_6_87041656_87041922
(A06), were identified via the RTM-GWAS procedure.
To verify the authenticity and novelty of the signifi-
cant SNPLDB loci associated with target traits, the
stable QTL identified in the study were compared
with those of the previous GWAS results. The results
showed that the five stable SNPLDB loci except the
locus LDB_2_98,957,055_98957100 may be a novel
QTL for BW or LP trait. Moreover, the 16 potential
candidate genes which were specially and highly
expressed in ovules or fibers were forecasted in the neigh-
bor genome fragment of the stable SNPLDBs by the two
RNA-seq data. We speculated that the genes might be
help regulate growth and development of cotton ovules or
fibers and were closely related to lint yield.

The superiority of the RTM-GWAS procedure
In plant molecular breeding process, it is very important
to detect whole-genome QTL in breeding resources by
GWAS, but the previous single-locus GWAS procedures
have been mainly concentrated on identifying a spot of
major QTL alleles [19, 20]. Our purpose of study on the
genetic basis for breeding objective traits was not only to
detect a few major QTL, but also to identify the full
QTL-allele system in a cotton germplasm population via
the improved GWAS procedure. Hence, to reveal the
whole-genome QTL controlling three cotton yield-
related traits, some GWAS procedures with high detec-
tion efficiency and power should be applied in our study.
Recent studies have proved that the RTM-GWAS pro-
gram has the higher QTL detection efficiency and
strength than the other GWAS models including MLM
in soybean [19, 20, 22, 34]. Due to the apparent advan-
tages of the RTM-GWAS procedure in the whole QTL
alleles, it was used for detecting yield-related QTL alleles
in our study. Compared with the previous single-locus
GWAS methods, more significant QTL associated with
cotton yield-related traits were detected via the RTM-
GWAS procedure. In this study, a total of 68 significant
SNPLDB loci associated with LP was identified through
the multiple-environment RTM-GWAS procedure,
whereas only 12 significant SNP loci for LP were de-
tected via the MLM-GWAS method in our previous re-
port [6]. Similarly, the stable LP-QTL detected through
the RTM-GWAS procedure (5) were more than those
through the MLM-GWAS (2). The comparison result
showed that the RTM-GWAS method had advantage
over the MLM-GWAS in the dissection of more QTL
for objective traits.
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In addition, the RTM-GWAS procedure can also pro-
vide the QTL-allele matrix with the comparatively over-
all genetic information including the significant SNPL
DB loci and their allele effects, population allele consti-
tution, and frequency distribution of each locus. In the
study, the QTL-allele matrices of three yield-related
traits (BN, BW and LP) were established by utilizing the
positive and negative alleles of the significant SNPLDB
loci. We achieved result that the superior accessions had
more positive haplotypes/alleles than those in the infer-
ior ones from the QTL-allele matrices. The phenomenon
could be directly observed between the top and bottom
phenotypic value accessions. However, the QTL-allele
matrix could be not directly organized in the traditional
GAWS models.

Conclusions
A total of 53, 70 and 68 significant SNPLDB loci associ-
ated with BN, BW and LP were respectively detected in
the panel composed of 315 upland cotton accessions
through the multiple-environment RTM-GWAS pro-
gram. The haplotype/allele effects of the significant
SNPLDB loci were calculated and the QTL-allele matri-
ces were organized for offering the abbreviated genetic
composition of the natural population. Among the sig-
nificant SNPLDB loci of multiple environments, six of
them were simultaneously identified in two or more sin-
gle planting environments and were thought of as the
stable SNPLDB loci. Therefore, the six stable SNPLDB
loci were focused and a total of 115 genes were anno-
tated in their nearby regions, and 16 potential candidate
genes controlling target traits of them were predicted by
two RNA-seq data. One of 16 genes (GH_D06G2161)
was mainly expressed in the early ovule-development
stages, and the SNPLDB locus LDB_19_62926589 was
mapped in its promoter region. The study identified the
QTL alleles and candidate genes that could provide im-
portant insights into the genetic basis of yield-related
traits in upland cotton.

Methods
Plant materials and growth conditions
An association panel consisted of 290 lines collected
from China, 21 accessions introduced from the United
States of America (USA), and 4 accessions from the
former Soviet Union. Seeds of the Chinese cotton var-
ieties were obtained from our germplasm collection, and
seeds of the rest of germplasm lines were collected from
germplasm bank of Institute of Cotton Research of
Chinese Academy of Agricultural Sciences (Table S10).
All the upland cotton accessions were planted in four
natural environments including E1 and E2 [Anyang
(36.13°N, 114.80°E) in Henan Province in 2014 and
2015, respectively], and E3 and E4 [Shihezi (44.52°N,

86.02°E) in Xinjiang Production and Construction Group
in 2014 and 2015, respectively]. All the accessions were
grown in accordance with a randomized complete block
design experiment with three replications in each envir-
onment. The cultivars were grown in a single-row plot
(400 cm in length and 80 cm in width with 20 cm spa-
cing between plants) with about 20 plants in E1 and E2,
whereas all the accessions were planted in double-row
plots (200 cm in length and 76 cm in width with 10 cm
spacing between plants) with approximately 40 plants in
E3 and E4. Field management followed routine farming
methods.

Phenotypic trait measurements
Three yield-related traits (BN, BW and LP) were mea-
sured in each environment. In early September of each
experimental year, the BN trait was surveyed from ten
continuous plants in the middle of each row. In October
of each experimental year, twenty normally opened bolls
from the central part of plants of each cultivar were
hand harvested and weighed to reckon the BW trait.
Then the fiber samples were carefully and thoroughly
peeled off by using a cotton gin, and fiber weight (FW,
g) were obtained by electronic balance. Then the LP
values each line were calculate by a formula of LP (%) =
FW (g)/BW (g) × 100%. For the three yield-related traits,
their broad-sense heritability (BSH) were calculated in
Generalized Linear Model (GLM) and ANOVA of the
phenotypic data was conducted using IBM SPSS 22.0
software.

SNP calling and SNPLDB assembly
Genomic DNA from all the lines was extracted from the
young leaf using a corrected cetyltrimethylammonium
bromide (CTAB) approach [35], and sequencing reads
were acquired in Illumina HiSeq 2500 system (Illumina,
Inc., San Diego, CA, USA) by the SLAF-seq method [36,
37]. Then, we use BWA mem software to align high-
quality reads of the 315 accessions to a new upland cot-
ton TM-1 reference genome v2.1 [23], all variant calling
pipeline were based on GATK best practise, with a bit
modification. Firstly, we use BWA mem software to
align reads to reference genome using three default
paramters (−M -a -t8), second picard were used to mark
duplicate, third we use the GATK Haplotyper-Gvcftyper
pipeline to call variants and filtered by hard parameters
privade by broad institude (QD < 2.0 || FS > 60.0 || MQ <
40.0 || MQRankSum < − 12.5|| ReadPosRankSum < −
8.0 || SQR > 3.0) [38, 39]. The SNPs were filtered with a
criterion of a maximum missing > 0.10 and a minor al-
lele frequency (MAF) < 0.05.
The Haploview software was used to calculate haplo-

type blocks and posterior probability of multi-marker
type for determining the final SNPLDB datasets [40, 41].
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The confidence interval method was used to define
blocks with default settings in Haploview, except SNP
blocks with more than 200 kb genome distance [42].
Like single SNP alleles, the multiple SNP makers within
the same one LD block were organized into an SNPLDB
with several haplotypes.

The RTM-GWAS procedure
Based on the GSC matrix estimated from whole-genome
SNPLDB markers, a neighbour-joining tree of the 315
upland cotton varieties was constructed using Mega7.0
software. Then, the population structure deviation was
corrected by the top ten eigenvalues of the GSC matrix
estimated from whole genome SNPLDBs. In the study,
we used the RTM-GWAS procedure integrated with
population structure reclamation based on an elastic
genetic similarity coefficient (GSC) matrix (the elastic
GSC matrix and GSC eigenvectors were showed in
Table S11), and two-stage association analyses including
primary screening of SNPLDBs under the single-locus
model and stepwise regression analysis in the multi-
locus model. The RTM-GWAS procedure was con-
ducted by a reported reference [20]. Based on the 9244
SNPLDBs with multiple alleles, the RTM-GWAS proce-
dures for multiple environments and four single envi-
ronments for three yield-related traits (BN, BW and LP)
were respectively performed by using phenotypic values
across four planting environments. To lower a very strict
selection criteria of Bonferroni correction and detect the
genome-wide QTL alleles, the SNPLDBs of P value <
0.05 (a normal significance level) were thought of as sig-
nificant loci in two-stage association analyses of the
RTM-GWAS procedure, referring to the previous stud-
ies in soybean [19, 20].
For the significant SNPLDB loci associated with target

traits, the allele-effect values for each locus were reck-
oned by the second-stage association analysis of the
RTM-GWAS procedure [20]. According to the allele-
effect values, then, the positive and negative alleles were
determined for all the significant SNPLDB loci. Finally,
the QTL-allele matrices for objective traits were created
through R Version 3.6.0, making use of the data of the
calculated allele-effect values of all the significant SNPL
DBs via a cross software of the RTM-GWAS procedure
as previously described [20].

Expression analysis of potential candidate genes
A few SNPLDB loci which could be simultaneously de-
tected in two or more planting environments, were con-
sidered as stable loci associated with objective traits. For
the stable and top SNPLDB loci, the mean phenotypic
value of each haplotype/allele was calculated by the
phenotypic values over the cotton accessions with each
SNPLDB type. The two-tailed T-tests of the phenotypic

values of each haplotype/allele for the stable loci were
performed by making use of IBM SPSS 22.0 software.
Chromosomal positions of the stable trait-associated
SNPLDB loci were applied to explore potential candidate
genes in the upland cotton TM-1 reference genome v2.1
[23]. According to the region of SNP-linked candidate
genes detected in previous studies of cotton [4, 24–26],
the screening genomic fragments of the candidate genes
for the stable SNPLDB loci were ± 200 kb around the
markers in the study.
A set of RNA-seq data from 20 upland cotton (TM-1)

tissues (including root, stem, leaf, torus, petal, stamen,
pistil, calycle, Ovule_0 DPA, Ovule_1 DPA, Ovule_3
DPA, Ovule_5 DPA, Ovule_10 DPA, Ovule_20 DPA,
Ovule_25 DPA, Ovule_30 DPA, fiber-5 DPA, fiber-10
DPA, fiber-20 DPA and fiber-25 DPA) were obtained by
the NAU and were available on the NCBI SRA database
(SRA: PRJNA248163) [27], and the FPKM values were
reckoned to show the gene expression levels. The FPKM
values of another set of RNA-seq data from 16 upland
cotton (TM-1) tissues (including root, stem, leaf, petal,
torus, sepal, bract, anther, Ovule_10 DPA, Ovule_15
DPA, Ovule_20 DPA, Ovule_25 DPA, fiber_5 DPA,
fiber_10 DPA, fiber_20 DPA and fiber_25 DPA), were
gained by a website (http://grand.cricaas.com.cn/page/
tools/expressionVisualization) from the CRI. The heat-
maps of the putative candidate gene expression styles
and box plots for the phenotypic values were drawn by
the software center (https://www.omicshare.com/tools/
home/index/index.html). For all the potential candidate
genes, the GO enrichment analysis and KEGG analysis
were performed using the cotton biological information
website (https://cottonfgd.org/), the advanced parame-
ters are the significance level of 0.01 and the minimum
gene number for each analyzed term of 3.
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