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Abstract

Background: Stability of risk estimates from prediction models may be highly dependent on the sample size of the
dataset available for model derivation. In this paper, we evaluate the stability of cardiovascular disease risk scores
for individual patients when using different sample sizes for model derivation; such sample sizes include those
similar to models recommended in the national guidelines, and those based on recently published sample size
formula for prediction models.

Methods: We mimicked the process of sampling N patients from a population to develop a risk prediction model
by sampling patients from the Clinical Practice Research Datalink. A cardiovascular disease risk prediction model
was developed on this sample and used to generate risk scores for an independent cohort of patients. This process
was repeated 1000 times, giving a distribution of risks for each patient. N = 100,000, 50,000, 10,000, Ny, (derived
from sample size formula) and Nepy10 (Meets 10 events per predictor rule) were considered. The 5-95th percentile
range of risks across these models was used to evaluate instability. Patients were grouped by a risk derived from a
model developed on the entire population (population-derived risk) to summarise results.

Results: For a sample size of 100,000, the median 5-95th percentile range of risks for patients across the 1000
models was 0.77%, 1.60%, 2.42% and 3.22% for patients with population-derived risks of 4-5%, 9-10%, 14-15% and
19-20% respectively; for N = 10,000, it was 2.49%, 5.23%, 7.92% and 10.59%, and for N using the formula-derived
sample size, it was 6.79%, 14.41%, 21.89% and 29.21%. Restricting this analysis to models with high discrimination,
good calibration or small mean absolute prediction error reduced the percentile range, but high levels of instability
remained.

Conclusions: Widely used cardiovascular disease risk prediction models suffer from high levels of instability induced
by sampling variation. Many models will also suffer from overfitting (a closely linked concept), but at acceptable levels
of overfitting, there may still be high levels of instability in individual risk. Stability of risk estimates should be a criterion
when determining the minimum sample size to develop models.
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Background

Risk prediction models are used to guide clinical
decision-making in a variety of disease areas and set-
tings, ranging from the prevention of cardiovascular
disease (CVD) in primary care to intensive care unit-
based models such as APACHE or SOFA [1-5]. As
such, developing risk prediction models appropriately
is vital. One aspect of appropriate derivation of pre-
diction models is ensuring sufficient sample size in
the development dataset; unfortunately, sample size
calculations for models are often not made, or at best
are based on the simplistic “10 events per predictor”
rule [6]. Risk prediction models that are recom-
mended in treatment guidelines for routine use by cli-
nicians are developed on cohorts of highly variable
sizes. As an example, QRISK3 [7] (recommended by
the National Institute for Health and Care Excellence
to guide CVD primary prevention in England [8]) was
developed on a cohort of 4,019,956 females and 3,
869,847 males, whereas the pooled cohort equations
(recommended by American College of Cardiology
and American Heart Association to guide CVD pre-
vention in the US [9]) were based on 9098 females
and 11,240 males for white ethnicity, and 2641 fe-
males and 1647 males for African-American ethnicity.

If the sample size is too small, the most commonly
cited issue is that of overfitting, which may result in
over-optimistic model performance within the devel-
opment dataset and poor model performance outside
of the development dataset. Another potential issue,
of which the implications are less clear, is that small
sample sizes could lead to imprecise risk predictions.
This means if a different cohort of individuals had
been selected (at random) to develop the same model,
resulting risk scores from the model may change sig-
nificantly for a given individual. It is well known that
differently defined prediction models may produce
different risks for individuals, even if the models per-
form similarly on the population level (i.e. have simi-
lar performance metrics such as discrimination and
calibration) [10-14]. This concept largely falls under
the reference class problem [14], where a patient
could be assigned multiple risk scores depending on
which variables are adjusted for in the model, or
assigned to different subgroups by stratifying on dif-
ferent variables. However, the variability in an individ-
ual’s risk score induced by using a small sample size
is driven purely by statistical uncertainty, distinguish-
ing this from the reference class problem.

The aim of this study was to evaluate the stability of
CVD risk predictions for individual patients when using
different sample sizes in the development of the risk pre-
diction models, while also considering sample sizes from
recent work focusing on overfitting and mean absolute

Page 2 of 12

prediction error (MAPE), representing state of the art
techniques for sample size calculations in risk prediction
models [15-17].

Methods

Data source

We defined two cohorts from a Clinical Practice Re-
search Datalink (CPRD) [18] dataset, which comprised
primary care data linked with Hospital Episode Statistics
[19] (HES), and mortality data provided by the Office for
National Statistics (ONS) [20]. For the first cohort (re-
ferred to as historical cohort), the cohort entry date was
the latest of attaining age 25years, attaining 1 year
follow-up as a permanently registered patient in CPRD,
or 1 Jan 1998. The end of follow-up was the earliest date
of patient’s transfer out of the practice or death, last data
collection for practice, or 31 Dec 2015. Patients were ex-
cluded if they had a CVD event (identified through
CPRD, HES or ONS) or statin prescription prior to their
cohort entry date (code lists available in additional file
1). The second cohort comprised patients actively regis-
tered on 1 Jan 2016 (referred to as contemporary co-
hort). This cohort of patients represents a contemporary
population, for whom a risk prediction model would
subsequently be applied to estimate their CVD risks. To
be eligible for this second cohort, a patient had to be
aged 25-85years on 1 Jan 2016, and be actively regis-
tered in CPRD with 1 year prior follow-up with no his-
tory of CVD or statin treatment.

Overview

We mimicked the process of sampling an overarching
target population for the development of a risk predic-
tion model by randomly sampling N patients from the
historical cohort (containing 1,965,079 and 1,890,582 in-
dividuals for female and male cohorts respectively). A
risk prediction model was developed on this sample and
used to generate risk scores for the contemporary co-
hort. This process was repeated 1000 times, giving 1000
risk scores for each patient, for each sample size. The
sample sizes considered were N = 10,000, 50,000, 100,
000, Nepvio (sample size required to meet the 10 events
per predictor rule) and Np;, (minimum sample size re-
quired to meet criteria outlined by Riley et al. [15]). We
chose 10,000 as it is similar to the number of females
and males used to develop ASSIGN [21] (6540 and
6757), Framingham [22] (3969 and 4522) and Pooled
Cohort Equations [9] (9098 and 11 240). The upper limit
of 100,000 was chosen to match the SCORE [23] equa-
tions, which were developed on 117,098 and 88,080 fe-
males and males respectively. The criteria by Riley et al.
[15] ensure that overfitting is minimised on both the
relative scale (through the shrinkage factor) and the ab-
solute scale (small difference between apparent and
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adjusted proportion of variance explained), and that the
overall risk is estimated with a sufficient level of preci-
sion. Derivation of N,;, = 1434 (female) and 1405 (male)
and Nepyio = 2954 (female) and 2297 (male) is described
in additional file 2. There are also sample size formula
suggested by van Smeden et al. [17], which focus on
minimising the MAPE or root mean squared prediction
error (rMSPE) of the resulting model; however, the for-
mula are for logistic models, so they could not be used
in this study. Prediction error is closely linked to the
variability in risk considered in this work (if risk scores
are unbiased and there was little variability, then the
MAPE and rMSPE would both be small). It was import-
ant to consider prediction error in this work, and the
process for doing this is outlined later in the “Methods”
section.

Generation of risk scores

The historical cohort and contemporary cohort were both
split into female and male cohorts, and missing data was
imputed using one stochastic imputation using the mice
package [24]. All variables included in QRISK3 [7], includ-
ing the Nelson Aalen estimate of the baseline cumulative
hazard at the event time and the outcome indicator, were
included in the imputation process. The following process
was then carried out separately for females and males:
100,000 individuals were chosen at random from the his-
torical cohort to form an internal validation cohort, the
remaining individuals formed the development cohort.
The development cohort (containing 1,865,079 and 1,790,
582 individuals for female and male cohorts respectively)
was then viewed as the population.

First, we calculated a 10-year risk for each patient in
the contemporary cohort and the validation cohort using
a model developed on the entire development cohort,
called the population-derived risks. To do this, a Cox
model was fit to the development cohort, where the out-
come was defined as the time until the first CVD event.
Predictor variables included in the model were continu-
ous variables, and categorical variables with > 1% preva-
lence in all categories calculated from the entire
development cohort (age, body mass index, cholesterol/
high density lipoprotein ratio, family history of CVD,
treated hypertension, smoking status, systolic blood
pressure, Townsend deprivation index and type 2 dia-
betes). These 9 variables resulted in 13 model coeffi-
cients. This set of variables reflects the smaller number
of variables used in models with lower sample sizes in
practice [9, 21, 22]. The risks were calculated by multi-
plying the cumulative baseline hazard of the model at
10years follow-up, by the exponent of the linear pre-
dictor for each individual, and converting into a survival
probability using standard survival analysis relationships.
Harrell's C [25] and the calibration-in-the-large (mean
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predicted risk — observed/Kaplan Meier risk) of this
model were also calculated in the validation cohort. Cali-
bration is reported on the % scale (as an absolute differ-
ence in risk), as opposed to probability scale.

Next, for each value of N, we sampled N patients from
this population (the development cohort) without re-
placement, 1000 times. The following process was
repeated within each sample. A Cox model was fit to the
sampled data using the techniques described in the pre-
vious paragraph. The developed model was used to gen-
erate 10-year risk scores for each individual in the
contemporary cohort and the validation cohort. Harrell’s
C [25] statistic for this model and the calibration-in-the-
large were calculated in the validation cohort. The mean
absolute prediction error (MAPE, ,ctical) Was also calcu-
lated for each model. This was the average (across pa-
tients) difference between the predicted risks and
population-derived risks of patients in the validation co-
hort (difference calculated on the % scale, as opposed to
probability). Note that we distinguish MAPE,ctical from
the MAPE used in the work by van Smeden et al. [17].
This is because in the present study, there is no “true”
risk from which individual’s risk scores may deviate from
and instead the population-derived risk is used. This can
be thought of as a practical approximation to the MAPE
metric used in the study by van Smeden et al. [17]. A
graphical representation of the sampling process is given
in Fig. 1.

Analysis of stability of risk scores

For each sample size, the stability of risks for each pa-
tient in the contemporary cohort across the 1000 models
was calculated in the following ways. First, the 5-95th
percentile range of risks for each patient across the 1000
models was calculated. The distribution of these per-
centile ranges was then plotted in box plots stratified by
the population-derived risk. Next, the 5-95th percentile
range of risk for each patient was calculated across the
subset of models with the highest C-statistic (top two
thirds of models and top third of models). These per-
centile ranges were again presented in box plots strati-
fied by population-derived risk. This process was
repeated, restricting models to those where the
calibration-in-the-large deviated from that of the popula-
tion derived model the least (top two thirds of models
and top third of models). This process was repeated
again, restricting models to those where MAPE, . ctical
was as small as possible (top two thirds of models and
top third of models). This allowed us to explore whether
only considering models with high discrimination, good
calibration-in-the-large or small MAPE;,c(ical Would re-
duce the instability in the risk scores of individuals
across these models. Finally, we grouped patients from
the contemporary cohort into risk groups of width 1% as
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Fig. 1 A graphical representation of the sampling process
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calculated in the validation cohort
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defined by their population-derived risk. The proportion
of the 1000 models that classified a patient on the op-
posite side of the 10% risk threshold from the
population-derived risk was then calculated (10% is
threshold for statin eligibility according to the recom-
mended guidelines in the UK [8]). This can be inter-
preted as the probability that an individual from a given
risk group will be assigned a risk score on the opposite
side of the treatment threshold, and highlights the im-
pact this variability may have on an individual’s

treatment decision in practice. For contrast, we also re-
ported the net benefit [26, 27] of each model at the 10%
threshold in the validation cohort, which informs on the
impact this variability has on the population level.

Note that instability was assessed in the contemporary
cohort as this cohort best represents the people who
would have their risk assessed in practice today. Due to
a lack of follow-up, model performance could not be
assessed in the contemporary cohort. Instead, it was
assessed in the same cohort the model was developed on
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(split sample internal validation), as would be done in
practice if a dataset was not available for external
validation.

Results
The baseline characteristics for the female development
cohort, validation cohort and the contemporary cohort
are provided in Table 1. See additional file 3 for the
equivalent table for the male cohort. There was missing
data for ethnicity (57.93% and 58.16% for female and
male cohorts respectively), BMI (31.17% and 46.38%),
cholesterol/HDL ratio (61.52% and 64.29%), SBP (18.99%
and 40.79%), SBP variability (49.61% and 79.06%) and
smoking status (24.82% and 34.83%). Note that not all
these variables were used to derive risk scores in this
paper, but they were included in the imputation process
to ensure imputed values were as accurate as possible.
The distribution of the C-statistic, calibration-in-the-
large, MAPE,,,ctical and net benefit of the 1000 models
for each sample size are given in Table 2. The 97.5th
percentile of C-statistic was similar for each sample size,
but as the sample size decreased, the 2.5th percentile got
smaller (0.802 vs 0.868 female and 0.805 vs 0.843 male).
All C-statistic in the 2.5-97.5th percentile range were >
0.8. The variation in the calibration-in-the-large de-
creased as the sample size increased. The 2.5-97.5th
percentile ranges of the calibration-in-the-large values
were 2.61% (female) and 3.12% (male) for N = Noyn,

Table 1 Baseline characteristics of each female cohort
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decreasing to 0.32% (female) and 0.36% (male) for N =
100,000. Note that the calibration-in-the-large is not
centred on zero, but we do not believe this affects the
validity of the results. QRISK3 [7] suffers from a simi-
larly poor calibration-in-the-large, yet is well calibrated
within risk deciles. This is discussed further in the “Dis-
cussion” section. There was an improvement in the
MAPE between the 2.5th and 97.5th percentile of the
models as the sample size increased, ranging from 1.13%
to 2.46% (female) and 1.34% to 2.91% (male) when N =
Npin, and from 0.13% to 0.28% (female) and 0.14% to
0.32% (male) when N = 100,000. There was also an im-
provement in the net benefit as sample size increased,
ranging from 0.017 to 0.021 (female) and 0.024 to 0.029
(male) when N = N,,;, and from 0.021 to 0.022 (female)
and 0.028 to 0.029 (male) when N = 100,000.

Figure 2 plots the 5-95th percentile range in risks for
patients across the 1000 models, grouped by population-
derived risk (female cohort). Specifically, each data point
making up the boxplots is the 5-95th percentile range
in risk across the 1000 models for an individual. The
box plots are done in Tukey’s style [28], where outliers
are plotted separately if they are more than 1.5 times the
interquartile range below or above the 25th and 75th
percentiles respectively. Note that these limits on the
boxplot are distinct from the 5-95th percentile range in
risk for each individual. The number of patients contrib-
uting to each box plot (defined by the population-

Development Validation Contemporary
(n =1,865,079) (n = 100,000) (n =387,557)
Outcome Total CVD events 82 065 4482 NA
Total follow-up (years) 13 098 449 703 471 NA
Age 43.07 (15.94) 43.14 (15.96) 4838 (14.43)
Systolic blood pressure 12391 (18.28) 124 (18.22) 123.97 (15.17)
Body mass index 256 (5.60) 25.56 (5.56) 27.1 (6.31)
Cholesterol/high-density lipoprotein ratio 3.72 (1.20) 372 (1.21) 346 (1.04)
Smoking status Never 56.04% 56.15% 46.05%
Ex 16.97% 16.98% 31.66%
Current 27.00% 26.87% 22.29%%
Townsend 1 (least deprived) 21.96% 21.96% 24.95%
2 21.99% 21.81% 22.35%
3 21.17% 21.46% 21.56%
4 20.46% 20.36% 18.70%
5 (most deprived) 14.42% 14.41% 12.44%
Treated hypertension 6.18% 6.19% 845%
Family history of CVD 15.08% 15.13% 20.86%
Type 2 diabetes 1.16% 1.19% 1.15%

For continuous variables, the mean (standard deviation) is reported. There is no follow-up reported (NA) for the contemporary cohort because individuals entered
the cohort on 1 Jan 2016, and follow-up in the CPRD extract stopped 3 months after this
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Table 2 Quantiles of C-statistic, calibration-in-the-large MAPE, s and net benefit of the 1000 models, for each sample size

Female Male
Sample size 2.5% 25% 50% 75% 97.5% 2.5% 25% 50% 75% 97.5%
C-statistic Ninin 0.802 0.852 0.857 0.861 0.864 0.805 0.827 0.831 0.835 0.839
Nepvio 0.856 0.861 0.863 0.865 0.867 0.826 0.834 0.837 0.839 0.841
10,000 0.865 0.866 0.867 0.867 0.868 0.840 0.841 0.842 0.843 0.843
50,000 0.867 0.868 0.868 0.868 0.868 0.843 0.843 0.843 0.843 0.844
100,000 0.868 0.868 0.868 0.868 0.868 0.843 0.843 0.843 0.844 0.844
Calibration-in-the-large Nimin —2.22 -143 —0.95 -047 0.39 —2.56 -149 -1.01 —045 0.56
Nepvio -1.85 -127 -0.97 —0.64 —0.11 -223 —147 -1.02 —0.60 0.29
10,000 —145 -1.13 -0.95 -0.78 —044 —-1.61 -120 —-1.01 —-0.80 -039
50,000 —-1.18 -1.03 -0.95 -0.87 -0.73 —-1.28 =111 -1.02 -0.93 -0.77
100,000 -1.11 -1.01 —0.96 —0.90 -0.79 —1.21 -1.08 -1.02 —0.95 -0.85
Mapepractical Ninin 1.13 1.53 1.75 2.00 246 1.34 1.79 2.04 234 291
Nepvio 0.76 1.03 1.20 1.36 1.74 1.00 1.36 1.57 1.78 2.26
10,000 042 0.55 063 073 0.90 048 063 073 0.85 1.04
50,000 0.19 025 0.28 032 040 0.21 0.29 033 037 045
100,000 0.13 0.17 0.20 0.22 0.28 0.14 0.20 0.23 0.26 032
Net benefit Ninin 0.017 0.019 0.020 0.021 0.021 0.024 0.026 0.027 0.028 0.029
Nepvio 0.020 0.021 0.021 0.021 0.022 0.026 0.027 0.028 0.028 0.029
10,000 0.021 0.021 0.021 0.022 0.022 0.028 0.028 0.028 0.029 0.029
50,000 0.021 0.022 0.022 0.022 0.022 0.028 0.029 0.029 0.029 0.029
100,000 0.021 0.022 0.022 0.022 0.022 0.028 0.029 0.029 0.029 0.029

Performance metrics of the population derived models were as follows. C-statistic: 0.868 (female) and 0.844 (male). Calibration-in-the-large: —0.95% (female) and

—1.02% (male). Net benefit: 0.022 (female) and 0.029 (male)

derived risk) is stated at the top of the graph. For N =
100,000, the median 5-95th percentile range was 0.77%,
1.60%, 2.42% and 3.22% for patients in the 4—5%, 9—10%,
14-15% and 19-20% risk groups respectively. For N =
50,000, the median percentile range was 1.10%, 2.29%,
3.45% and 4.61% in the respective groups; for N = 10,
000, it was 2.49%, 523%, 7.92% and 10.59%; for N =
Nepvios it was 4.60%, 9.61%, 14.52% and 19.39%; and for
N = N, it was 6.79%, 14.41%, 21.89% and 29.21%. For
each sample size, there was a linear relationship between
the median percentile range of each group and the
population-derived risk of that group. For example, for a
sample size of 10,000, the median percentile range was
always approximately 50% of the population-derived risk.
For N, the median percentile range was always ap-
proximately 150% of the population-derived risk. Results
for the male cohort followed a similar pattern, but the
level of instability was slightly lower (additional file 3).
Figure 3 plots the 5-95th percentile range in risks for
patients across models subsetted by the C-statistic of the
models (female cohort, N = 10,000). The median 5-95th
percentile range across models with C-statistic in the
top third was 2.05%, 4.27%, 6.47% and 8.71% for patients
in the respective risk groups. This equates to an 18-19%
reduction in the median percentile range when using

well discriminating models compared to all models
(2.49%, 5.23%, 7.92% and 10.59%). Results for other sam-
ple sizes presented in additional file 3.

Figure 4 plots the 5-95th percentile range in risks for
patients across models subsetted by the calibration-in-
the-large of the models (female cohort, N = 10,000). The
median 5-95th percentile range across models with the
best calibration-in-the-large was 2.29%, 4.78%, 7.26%
and 9.77%, for the respective risk groups. This equates
to a 8-9% reduction in the median percentile range
compared to when using all models (2.49%, 5.23%, 7.92%
and 10.59%). Results for other sample sizes presented in
additional file 3.

Figure 5 plots the 5-95th percentile range in risks for
patients across models subsetted by the MAPE,,,cticai Of
the models (female cohort, N = 10,000). The median 5—
95th percentile range across models with the MAPE,,.ctical
in the top third was 1.92%, 4.04%, 6.11% and 8.20%, for
the respective risk groups. This equates to a 23% reduc-
tion in the median percentile range compared to when
using all models (2.49%, 5.23%, 7.92% and 10.59%). Results
for other sample sizes presented in additional file 3.

Figure 6 shows the probability that a patient from a
given risk group (according to population derived model)
may be classified on the opposite side of the 10%
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Fig. 2 Boxplots of the percentile ranges of risk for individuals across the 1000 models (female cohort). Each data point represents the 5-95th
percentile range in risk for an individual across the 1000 models
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Fig. 3 Percentile ranges of risk for individuals, subsetted by C-statistic of the models (female cohort, N = 10,000). Each data point represents the
5-95th percentile range in risk for an individual across a group models defined by their C-statistic. Two thirds of models had C-statistic > 0.866%,
and one third of models had C-statistic > 0.867%

threshold by a randomly chosen model. For example,
when using a sample size of Ny, 26.91% of patients with
a population-derived risk between 14 and 15% would be
classified as having a risk below 10%; for N = Nepyio, it
would be 16.18%, whereas this is only 2.50% for N = 10,
000, 0.01% for 50,000 and < 0.01% for 100,000.

Discussion

This study found that at sample sizes typically used for
developing risk models (e.g. in the CVD domain, the
pooled cohort equations [9] and ASSIGN [21] were
based on approximately 10,000 individuals or less), there
is substantial instability in risk estimates attributable to
sampling variability. Furthermore, when restricting the
analysis to models with discrimination, calibration or

MAPE in the best-performing third, high levels of in-
stability remained across these models.

This variability in individual risk is especially relevant
if using the model to make clinical decisions based on
whether a risk score is above or below a fixed threshold
(a common use for risk prediction models). From an in-
dividual’s and clinician’s perspective, it is unsatisfactory
that a different treatment decision may be made depend-
ing on the model used. However, this is also an issue at
the population level. Consider statin therapy in the UK.
Initiating statins in patients who have a 10-year risk of
CVD > 10% has been shown to be cost effective [29].
This intervention becomes more cost effective the better
the performance (calibration and discrimination) of the
model used to calculate the risk scores. Sample size is
correlated with model performance, and a small sample

All models Best performing two thirds of models by calibration Best performing third of models by calibration
Number of models = 1000 Number of models = 667 Number of models = 333
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Fig. 4 Percentile ranges of risk for individuals, subsetted by calibration-in-the-large of the models (female cohort, N = 10,000). Each data point
represents the 5-95th percentile range in risk for an individual across a group models defined by their calibration-in-the-large. Two thirds of
models had calibration-in-the-large within 0.25% of the population-derived model, one third of models had calibration-in-the-large within 0.14%
of the population-derived model
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size will likely lead to a worse performing model, and a
smaller net benefit of the model (as found in Table 2).

Unfortunately, it is difficult to assess when increasing
sample size will improve model performance, given that
model performance is affected by many other factors
(prevalence of outcome, inclusion of important predic-
tors, strength of association between predictors and out-
come) [30, 31]. Sample size affects model performance
through the precision of coefficients. Imprecise estimates
increase the probability that the risk of subgroups (a
group of individual’s sharing the same set of covariates)
in the population are miscalculated. Therefore, if the co-
efficients are precise, and risk estimates are stable, one
will not be able to improve model performance by in-
creasing the sample size further. This is unless increas-
ing the sample size allows for extra predictors to be
included without suffering from overfitting. Therefore,
the stability of risk scores (and ultimately precision of
coefficients) could be used as a proxy to determine
whether increasing sample size will improve model per-
formance (assuming the set of predictor variables is
fixed). When N = 10,000, we see levels of instability that
indicate the performance of the model could be im-
proved by increasing sample size, resulting in fewer
CVD events. However, in practice, the cost of recruit-
ment of extra patients may have to be weighed up
against the potential gain in net benefit.

At the minimum sample size suggested by Riley et al.
[15], the instability in risk is even higher and the issues
are heightened. There are no CVD risk prediction
models used in practice that are developed on cohorts
with sample sizes this small as there is often ample data
to produce CVD risk prediction models. However, this
may not be the case for other disease areas, where the
outcomes are not well recorded in routinely collected
datasets. In this scenario, one may have to actively

recruit patients into a cohort and the work by Riley et al.
[15] may be used in order to derive a sample size as op-
posed to the events per variable = 10 rule. We propose
that if risk scores from a model are going to be used to
drive clinical decision-making above or below a fixed
threshold, section 6 of Riley et al. [15], “Potential add-
itional criterion: precise estimates of predictor effects”
should be properly considered. It is imprecise estimates
of the predictor effects that lead to instability of risk
scores. If this criterion is not met, as is the case for N =
Npin in this paper, risk scores have high levels of in-
stability and models will likely have poorer performance.
The number of patients required to ensure stable risk
scores will depend on the prevalence of the outcome,
the number of predictors and the strength of the associ-
ation between outcomes and predictors among other
things, and therefore will vary for each model.

Increasing the sample size was associated with lower
MAPE, ,ctical in the resulting models (Table 2), and
restricting to models with a small MAPE had a bigger
impact on instability in risk than calibration or discrim-
ination (although it is difficult to directly compare Figs.
3, 4 and 5). Therefore, a sample size formula based on
the MAPE may be useful for Cox risk prediction models.
However, more thought needs to be given to the cut-off
as to what is acceptable. In recent sample size guidelines
for logistic risk prediction models [16], a MAPE of no
larger than 0.05 is suggested (corresponding to an aver-
age absolute error of 5% in predicted risk). In this study,
when N = N,,;,, we found very high levels of instability
despite the MAPE,,ctical being much smaller than 5%,
so a smaller cut-off may have to be used in practice. Al-
ternatively, our work provides a way to ensure prediction
error is below a certain level for individuals of a given
risk, as opposed to the average prediction error over all
patients which may be heavily dependent on a large
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Fig. 6 Probability of being classified on the opposite side of the 10% risk treatment threshold. This is the probability that a patient from a specified given

population-derived risk group would be classified on the opposite side of the 10% treatment threshold by a randomly selected model
.

number of lower-risk individuals. This is also advanta-
geous as it avoids emphasis on error from an unobserv-
able “true” risk, instead viewing this as variability (over
sampling) in the predicted risk for an individual.

In practice, to ascertain whether a given development co-
hort has a sufficient sample size, the process undertaken in
this manuscript could be replicated using bootstrap resam-
pling methods. Instead of sampling the population without
replacement (not possible in practice), sampling the develop-
ment cohort with replacement (ie. bootstrapping) can

replicate this process and one could obtain a similar range of
risks for each patient by fitting models on each of the boot-
strapped samples. While the risks would be centred on the
risk of that sample rather than the population-derived risk,
the level of variation would be the same, meaning the stabil-
ity of the risk scores could still be assessed. A decision could
then be made on whether more patients should be recruited.
One proposal on how to use this information to determine a
sufficient sample size could be to ensure the bootstrapped
5-95th percentile range for all patients must be smaller than
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x% of their estimated risk. Another proposal may be to en-
sure that, for patients whose estimates are a certain distance
away from a treatment threshold, there is a less than an x%
chance of deriving a risk on the other side of the treatment
threshold. This would mean that if the population was
resampled and a model was developed on this new cohort,
there would be less than an x% chance of the treatment
pathway changing for that individual.

There are some limitations that warrant discussion. The
first is that the calibration-in-the-large of the population-
derived model was poor. We do not believe this is a prob-
lem as a similar miscalibration-in-the-large is found in
QRISK3 [7], despite the model being well calibrated
within risk deciles. It is likely caused by incompatible as-
sumptions under how the observed risks (Kaplan-Meier
assumes unconditional independent censoring) and pre-
dicted risks (Cox model assumes independent censoring
only after conditioning on the covariates) are estimated.
When looking within risk deciles, the difference in as-
sumptions is not as large and good calibration was found.
Centering the calibration-in-the-large measurements thus
allowed the evaluation of whether the instability in risk
was being driven by over- and under-predicting models. A
second limitation was that this study concerned the out-
come CVD and used a specific set of variables for predic-
tion, rather than carrying out a systematic simulation
study. This means we were unable to explore what specific
aspects of the model development process may be driving
the uncertainty (for example, the factors mentioned be-
fore, such as the prevalence of the outcome, the predictors
used and the strength of the association between the out-
comes and predictors). This means the results are directly
applicable to CVD risk prediction, but generalisability of
the other disease areas is limited, and similar studies to
this one should be carried out in these disease areas.

As an area for future research, we would like to con-
sider the impact that sampling variation may have on
empirical choices about modelling structure (i.e. which
variables are included when performing variable selec-
tion, what interaction terms are included or what the
optimal functional form of continuous variables is). This
paper focused solely on the direct impact of sampling
variation, and the impact of these subsequent decisions
on the instability of the resulting risk scores is not clear.

Conclusions

In conclusion, CVD risk prediction models developed
on randomly sampled cohorts of size 10,000 or less
suffer from high levels of instability in individual risk
predictions. There are multiple models used in prac-
tice that are developed on sample sizes this small. To
avoid this, models should be developed on larger co-
horts such as the QRISK3 [7] and SCORE [23]
models. More generally, if developing a risk
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prediction model to guide treatment for patients
above a fixed threshold, consideration should be given
to the stability of risk scores and precision of effect
estimates when choosing a sample size.
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