S0
|
surface of V0
|
|
normal unit vector on S
|
V |
current configuration |
|
normalized fibre orientation in V0
|
S |
surface of V
|
t |
applied traction |
St
|
region of S with applied traction |
κmus
|
bulk modulus muscle |
Sd
|
region of S with applied displacement |
κapo
|
bulk modulus aponeurosis |
Vol |
current volume |
F |
deformation tensor |
A |
area in V
|
I |
identity tensor |
t |
time |
B |
left Cauchy tensor |
q0
|
point in V0
|
Biso
|
isovolumetric left Cauchy tensor |
q |
point in V
|
σ |
Cauchy stress tensor |
Uvol
|
volumetric strain-energy potential |
τ |
Kirchhoff tensor |
Uiso
|
isovolumetric strain-energy potential |
I1
|
first invariant |
Ubase
|
base material strain-energy potential |
I3
|
third invariant |
Ufibre
|
fibre strain-energy potential |
I4
|
fourth invariant |
Uapo,base
|
aponeurosis base material strain-energy potential |
â |
activation level in muscle fibres |
Uapo,fibre
|
aponeurosis fibre strain-energy potential |
σ0
|
maximum isometric stress of contractile elements |
Umus,base
|
muscle base material strain-energy potential |
σbase
|
base material stress |
Umus,fibre
|
muscle fibre strain-energy potential |
σmus,base
|
muscle base material stress |
Uact
|
active muscle fibre strain-energy potential |
σapo,base
|
aponeurosis base material stress |
Upas
|
passive muscle fibre strain-energy potential |
σfibre
|
fibre stress |
ψvol
|
volumetric strain energy-density |
σmus,fibre
|
muscle fibre stress |
ψiso
|
isovolumetric energy-density |
σapo,fibre
|
aponeurosis fibre stress |
ψbase
|
base energy-density |
|
active muscle fibre stress |
ψfibre
|
fibre energy-density |
|
passive muscle fibre stress |
ψapo,base
|
aponeurosis base material energy-density |
∇0
|
gradient with respect to V0
|
ψapo,fibre
|
aponeurosis fibre energy-density |
∇ |
gradient with respect to V
|
ψmus,base
|
muscle base material energy-density |
div |
tensorial divergence with respect to V
|
ψmus,fibre
|
muscle fibre energy-density |
0 |
zero vector |