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Background: This study aimed to understand the mechanistic role of N-methyl-D-aspartate receptor (NMDAR) in
acute fibrogenesis using models of in vivo ureter obstruction and in vitro TGF-3 administration.

Methods: Acute renal fibrosis (RF) was induced in mice by unilateral ureteral obstruction (UUO). Histological
changes were observed using Masson'’s trichrome staining. The expression levels of NR1, which is the functional
subunit of NMDAR, and fibrotic and epithelial-to-mesenchymal transition markers were measured by
immunohistochemical and Western blot analysis. HK-2 cells were incubated with TGF-3, and NMDAR antagonist
MK-801 and Ca**/calmodulin-dependent protein kinase Il (CaMKIl) antagonist KN-93 were administered for pathway
determination. Chronic RF was introduced by sublethal ischemia-reperfusion injury in mice, and NMDAR inhibitor
dextromethorphan hydrobromide (DXM) was administered orally.

Results: The expression of NR1 was upregulated in obstructed kidneys, while NR1 knockdown significantly reduced
both interstitial volume expansion and the changes in the expression of a-smooth muscle actin, STO0A4,
fibronectin, COL1A1, Snail, and E-cadherin in acute RF. TGF-B1 treatment increased the elongation phenotype of
HK-2 cells and the expression of membrane-located NR1 and phosphorylated CaMKIl and extracellular signal-
regulated kinase (ERK). MK801 and KN93 reduced CaMKIl and ERK phosphorylation levels, while MK801, but not
KN93, reduced the membrane NR1 signal. The levels of phosphorylated CaMKIl and ERK also increased in kidneys
with obstruction but were decreased by NR1 knockdown. The 4-week administration of DXM preserved renal cortex
volume in kidneys with moderate ischemic—reperfusion injury.

Conclusions: NMDAR participates in both acute and chronic renal fibrogenesis potentially via CaMKIl-induced ERK

Background

Acute kidney injury (AKI) affects approximately 20% of
hospitalized patients [1]. A proportion of patients with
AKI undergo the maladaptive repair of their kidneys.
This contributes to the ongoing fibrotic processes that
progress over time to chronic nephropathy. Chronic kid-
ney diseases (CKDs) have a prevalence of 10.8% in China
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[2] and 14.0% in the USA [3]. Renal fibrosis (RF) is a
common outcome of progressive AKI nephropathy for
nearly all types of CKDs [4, 5]. Clinical studies have
demonstrated that renal function correlates more closely
with fibrosis compared with glomerular damage [6] and
is a major exacerbating factor for renal dysfunction [7].
After kidney damage, the fibrotic process is initiated
with impaired kidney repair, sustained inflammation, ac-
tivation of myofibroblasts, and accumulation of extracel-
lular matrix (ECM) [5, 8]. Alpha-smooth muscle actin
(a-SMA) is often used as a marker of myofibroblast for-
mation [9]. Type I collagen (COL1A1) and fibronectin
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indicate enhanced deposition of ECM during fibrogen-
esis [10, 11]. S100 calcium-binding protein A4
(S100A4), also called fibroblast-specific protein 1, is con-
sidered a specific marker of fibroblasts in tissue remod-
eling [12]. The transition of tubular epithelial cells to
cells with mesenchymal features, also known as
epithelial-to-mesenchymal transition (EMT), is observed
during fibrosis [13]. Increased expression of transcrip-
tion factors associated with EMT correlates with disease
progression [14, 15]. Snail is a prominent inducer of
EMT and E-cadherin loss is one of the hallmarks of
EMT [16]. The pathological changes that occur during
RF eventually lead to renal failure [17]. Hence, thera-
peutically targeting RF may be a promising strategy to
treat kidney diseases. At present, no effective treatment
strategies are currently available.

N-methyl-D-aspartate receptor (NMDAR) is an iono-
tropic glutamate receptor. It has been well studied in the
central nervous system (CNS) and has a vital role in de-
velopment, learning, and memory. Besides, it can induce
Ca** overload during multiple pathological conditions
[18, 19]. Functional NMDAR is a tetrameric complex
consisting of two NR1 subunits and two NR2 and/or
NR3 subunits. The subunits are encoded by seven genes:
one for NR1, four for NR2 (A-D), and two For NR3 (A—
B) [20]. All subunits have a conserved domain
organization, including an extracellular amino-terminal
domain, an extracellular ligand—binding domain, a trans-
membrane domain, and an intracellular carboxy—ter-
minal domain [20, 21]. The obligatory NR1 subunit
binds glycine and D-serine and is found to have high ex-
pression in the kidneys, bone, heart, and other tissues,
besides the CNS. Hence, the functional role of NMDAR
outside the CNS has garnered research interest [21].
Growing evidence suggests that NMDAR is vital in nu-
merous processes such as proliferation, apoptosis, cell
adhesion and migration, actin rearrangement, cell
growth and differentiation, and regulation of hormone
secretion. In the kidney, the expression of NMDAR has
been detected in glomeruli and tubules [22, 23]. The ex-
pression of NMDAR is induced by various kidney patho-
logical processes, including acute ischemia—reperfusion
injury (IRI) [24, 25] and diabetic nephropathy [26-28].
Whether the expression of NMDAR is associated with
RF is yet to be deciphered [29].

The expression of NR1 was higher in kidney fibrotic
biopsy samples than in kidneys from healthy donors (un-
published data). Hence, this study was performed to
understand the mechanistic role of NMDAR in acute
fibrogenesis using models of in vivo ureter obstruction
and in vitro TGF-p administration. Furthermore, the
mice were administered with dextromethorphan hydro-
bromide (DXM), which is widely used in the clinic as an
NMDAR inhibitor, to understand the role of NMDAR
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in vivo. Then, the effect of DXM on chronic fibrosis
after IRI was observed.

Methods

Animals

Eight-week-old C57BL/6 mice (weighing 20-25g, 50%
male) were purchased from the Experimental Animal
Center in Zhejiang Medical Academy of Sciences and
housed in a temperature-controlled room with 12-h day/
night cycles. The mice had free access to standard food
and water throughout the study. All animal studies were
done in compliance with the regulations and guidelines
of Zhejiang University institutional animal care and con-
ducted according to the AAALAC and the IACUC
guidelines (Permit Number: 2016—205, date of approval:
26 February 2016). Totally 60 mice were included. The
mice were euthanized with an overdose of pentobarbital
sodium (500 mg/kg, Merck, Shanghai, China) and CO,
incubation after experimentation.

Retrograde ureteral lentivirus delivery and unilateral
ureteral obstruction

The mice were anesthetized using 50 mg/kg pentobar-
bital sodium by intraperitoneal injection. They were then
infused with lentivirus 7 days prior to unilateral ureteral
obstruction (UUO) as previously described. Briefly, the
mice were anesthetized, a midline abdominal incision
was made on the left kidney, and the terminal ureters
were obstructed. Then, 5 x 10”7 IU/100 pL filter-purified
scrambled shRNA (Scr-sh group, 7 =6) or NR1-shRNA
(NR1-sh Group, n=6) lentivirus cocktail (forward: 5'-
CACCGGTACCCATGTCATCCCAAATCGAAATTTG
GGATGACATGGGTACC-3" and reverse: 5'-AAAAGG
TACCCATGTCATCCCAAATTTCGATTTGGGATGA
CATGGGTACC-3") purchased from NovoBio Biotech-
nology Co., Shanghai, China [22] was infused through
the ureters for 5 min via an intrathecal catheter attached
to a micro-syringe (Hamilton, MA, USA) pump (WPI).
After 7 days, the mice were re-anesthetized, and a mid-
line abdominal incision was performed on the left kid-
ney. The left ureters were double ligated with 4-0 silk
surgical sutures [30].

Human proximal tubule (HK-2) cell culture and drug
treatment

HK-2 cells (American Type Culture Collection, VA,
USA) were grown in keratinocyte-serum free medium
(Thermofisher, MA, USA) with 10% fetal bovine serum
in a 5% CO, humidified incubator at 37°C. The cells
were then treated with recombinant human TGEF-B1 (2
ng/mL, R&D System, MN, USA) for 48 h with a combin-
ation of NMDA (50 uM, Tocris, MN, USA), MK-801
(10 uM, Tocris), or KN-93 (10 uM, Tocris).
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Ischemia-reperfusion (IR) mouse model and DXM
administration

The mice were anesthetized, and then a midline abdom-
inal incision was performed on the right kidney. The
right renal artery was isolated from the renal vein care-
fully and then clapped for 60 min. The mice were then
divided randomly into the IR group (n=6), low-dose
dextromethorphan hydrobromide (DXM, Merck, Shang-
hai, China)-treated group (LD group, 1 mg/mL in drink-
ing water, n=6), moderate-dose DXM-treated group
(MD group, 2mg/mL in drinking water, n=6), and
high-dose DXM-treated group (HD group, 3 mg/mL in
drinking water, # = 6). The mice were then sacrificed 28
days after IR.

Masson’s trichrome staining, immunohistochemical, and
immunofluorescent assays

Seven days after UUO, the mice were anesthetized, and
the obstructed kidneys were harvested. Paraffin sections
were stained with Masson’s trichrome or labeled with
antibodies against TGF-B1 (Cell Signaling Technology,
MA, USA), alpha-smooth muscle actin (Abcam, MA,
USA), COL1A1 (Abcam), S100A4 (Abcam), or fibronec-
tin (Abcam). Frozen sections and fixed cells were labeled
with antibodies against NR1 (ThermoFisher), p- or total
CaMKII (Abcam), p- or total extracellular signal-regu-
lated kinase (ERK, Abcam), Snail (Abcam), or E-
cadherin (Abcam) and then incubated with relevant sec-
ondary antibodies for immunohistochemical and im-
munofluorescence (Abcam) assays. The nuclei were
stained with 4,6-diamidino-2-phenylindole (DAPI, Ther-
moFisher) for immunofluorescent assays.

Western blotting analysis

The kidneys and cells were homogenized in RIPA
lysis buffer with protease and phosphatase inhibitor
cocktail (Cell Signaling Technology). Total protein
was then separated by SDS-PAGE and blotted with
antibodies against a-SMA, COL1A1l, S100A4, fibro-
nectin, NR1, p- or total CaMKII, and p- or total ERK
(all from Abcam). The membranes were scanned and
analyzed using the Gel Doc XR imaging system (Bio-
Rad Laboratories, CA, USA).

Statistical analysis

Data values were presented as mean + standard error of
the mean. The area of fibrosis and positive staining in
tissue sections was measured with Image] software and
shown as percentages. The standard analysis of variance
with the Bonferroni test was performed using GraphPad
Prism 6.0. The two-tailed Student t test was used for
other data types. Differences were considered statistically
significant at P < 0.05.
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Results

Expression of NR1 was upregulated by ureteral
obstruction

The expression of NR1 was significantly upregulated in
obstructed kidneys as determined by Western blot ana-
lysis (Fig. la) and immunohistochemical staining (Fig.
1b). Retrograde ureteral delivery of NR1-shRNA (NR1-
sh) reduced the expression of NR1 in both normal kid-
neys (NR1-sh vs control, P<0.001). Obstruction injury
increased the expression of NRI1 slightly in NR1-sh-
treated kidneys (UUO + NR1-sh vs NR1-sh, P<0.01),
but it was still much less than that in the untreated
obstructed kidney (UUO + NR1-sh vs UUO, P < 0.001).

NR1 knockdown suppressed the fibrotic process in
obstructed kidneys

The increased interstitial fibrosis in the obstructed kid-
neys was determined using Masson’s trichrome staining,
and the upregulation of the expression of a-SMA,
S100A4, fibronectin, and COL1A1 was measured with
immunohistochemical staining and Western blot ana-
lysis (Fig. 2). NR1 knockdown reduced the number of
collagen fibers increased by obstruction significantly
compared with both UUO and Scr-sh groups (UUO +
NR1-sh vs UUO, P<0.001; UUO + NR1-sh vs UUO +
Scr-sh, P<0.01). The expression of a-SMA, S100A4, fi-
bronectin, and COL1A1 in the obstructed kidney was
also significantly reduced by NR1 knockdown.

NR1 knockdown reduced EMT changes after obstruction
The expression of Snail increased while the expression
of E-cadherin decreased sharply in obstructed kidneys in
the UUO and Scr-sh groups (all P < 0.001); no significant
differences were found between the two groups (P>
0.05, Fig. 3). With NR1-shRNA treatment, limited fluc-
tuations in the expression of Snail and E-cadherin were
observed in the obstructed kidney, but the expression
still changed significantly compared with that in the
control group (P<0.001 and P<0.05). The expression
levels of Snail in the NR1-sh group were still higher
compared with those in the normal kidneys, while the
expression levels of E-cadherin were lower.

NMDAR inhibition reduced ERK phosphorylation through
CaMKiIl in HK-2 cells

The fluorescence staining of p-CaMKII and p-ERK was
performed in cultured tubular cells (Fig. 4). After incu-
bation with TGF-B1 for 48 h, the elongation phenotype
was observed in HK-2 cells, and the expression levels of
membrane-located and cytosolic NR1, p-CaMKII, and p-
ERK significantly increased. NMDAR inhibition by MK-
801 reduced the expression level of membrane-located
NRI1 slightly and also decreased the expression levels of
p-CaMKII and p-ERK significantly. However, the
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Fig. 1 NR1 was overexpressed in UUO-injured kidneys in C57BL/6 mice. a Western blots of the expression of NR1 in the control (Con) group,
NR1-targeting shRNA-transfected (NR1-sh) group, UUO group, and UUO + NR1-sh group (A1) and band analysis (A2). b Immunohistochemical
staining of the expression of NR1 in the Con group, UUO group, UUO + NR1-sh group, and UUO + Scr-sh group (n=6). P < 0.001 versus the

Con group; P <001, " P <0001 versus the NR1-sh group; ““*
magnification: x 200; scale bar =100 um)

P <0.001 versus the UUO group. Representative images from each group (original

cytosolic region NRI1 signal still increased compared
with that in control cells. CaMKII inhibition by KN93
decreased the expression levels of p-CaMKII and p-ERK,
but had no effect on the expression of both membrane-
located and cytosolic NR1 compared with that in the
TGEF-B1-treated cells.

NR1 knockdown inhibited CaMKII/ERK activation in
obstructed kidneys

CaMKII and ERK and their phosphorylation levels were
measured by Western blot analysis (Fig. 5). Total expres-
sion levels of CaMKII and ERK were higher in the
obstructed kidneys compared with the control kidneys
(P <0.01). The levels of p-CaMKII and p-ERK were also
significantly higher in the UUO and Scr-sh groups com-
pared with the control groups (P <0.001), but with no
significant differences between the two groups (P > 0.05).
NR1-shRNA administration significantly reduced the

increase in the expression levels of both p-CaMKII and
p-ERK (P<0.001), but the expression level was still
slightly higher than that in the control group.

Dextromethorphan hydrobromide suppressed the chronic
fibrosis process after IR injury

Moderate ischemic—reperfusion injury was made to in-
duce the chronic RF process. Different dosages of DXM,
the NMDAR inhibitor, were given in the drinking water
for 4 weeks after reperfusion injury. As shown in Fig. 6,
the suppressed fibrosis process was observed in the treated
groups compared with untreated IR group. The volumes
of ischemic kidneys significantly reduced, the persevered
cortex area sharply decreased, and the fibrotic area re-
markably increased in the IR group (P < 0.001 vs sham). In
the low (LD) and medium (MD) dose groups, the volumes
of ischemic kidneys were still smaller than those of
contralateral kidneys, but significantly larger than those of
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Fig. 2 NR1 knockdown partially reversed the increased expression levels of fibrotic markers in UUO kidneys. a Masson’s trichrome staining of
kidneys, immunohistochemical staining of fibronectin, a-SMA, and S100A4 (A1), and quantitative analysis (A2) from the control (Con) group, UUO
group, UUO + NR1-targeting shRNA-transfected (NR1-sh) group, and UUO + scrambled shRNA transfected (Scr-sh) group. b Western blot analysis
of fibronectin, COL1A1, a-SMA, and S100A4 COLTAT (B1) and quantitative analysis (B2) (1 =6). P< 005, P <001, P<0.001 versus the Con
group; *P<0.05, "P <001, P <0001 versus the UUO group; ““P < 001, “*“P < 0.001 versus the UUO + NR1-sh group. Representative images
from each group (original magnification: x 200; scale bar =100 um)

the untreated ischemic kidneys in the IR group. In the Discussion

high (HD) dose group, the volumes of ischemic kidneys The findings of the present study were as follows. (1)
were similar to those of contralateral kidneys, and had no NMDAR was overexpressed during RF induced by ur-
significant difference compared with those of the ipsilat-  eteral obstruction in vivo and by TGE-p treatment
eral kidneys in the normal (sham) group. The serum cre- in vitro. (2) NMDAR activation induced the phosphoryl-
atinine (SCr) and blood urea nitrogen (BUN) levels had  ation of CaMKII and ERK. (3) Both NR1 inhibition and

no difference between the four groups (P > 0.05). knockdown significantly reduced the phosphorylation
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Fig. 3 NR1 partially inhibited the changes in the expression of EMT markers after UUO injury. a Expression of Snail changes measured by Western
blot analysis in the control (Con) group, UUO group, NR1-targeting shRNA-transfected (NR1-sh) + UUO group, and scrambled shRNA transfected
(Scr-sh) + UUO group (A1) and quantitative analysis (A2). b Expression of E-cadherin (B1) and quantitative analysis (B2); n =6; "P<005 7P <0001
versus the Con group; **P < 0.001 versus the UUO group; “““P < 0.001 versus the UUO + NR1-sh group
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levels of CaMKII and ERK. (4) CaMKII inhibition re-
duced the phosphorylation of ERK but had no effect on
the expression of NR1. (5) The oral administration of
NMDAR inhibitor suppressed chronic RF after sublethal
ischemic injury.

Fibrosis is associated with a reduction in the functional
structures of the kidney, eventually leading to organ fail-
ure. RF is the common outcome of all progressive ne-
phropathies. The initial therapeutic strategy for the
treatment of renal fibrogenesis was to target the renin—
angiotensin system using angiotensin-converting enzyme

inhibitors or angiotensin receptor blockers (ARB) [31].
However, this approach was not efficacious in treating
RF. Later, several studies demonstrated a central role of
TGE-p in fibrosis [32]. However, targeting TGF-p is
problematic due to its diverse roles in cell proliferation
and differentiation, wound healing, and the immune sys-
tem [33]. Although several targeting strategies have been
proven to be effective in RF animal models, no novel
therapeutic targets have demonstrated safety and efficacy
in preventing or alleviating RF in humans [34]. One im-
portant reason is that rodent models often do not fully
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Fig. 6 Oral NMDAR inhibitor dextromethorphan protected kidneys from chronic RF after IR injury. a Injured kidneys on the left and healthy
kidneys on the right, with Masson’s staining of injured kidneys. b Quantitative analysis of fibrosis, serum creatinine (SCr), blood urea nitrogen
(BUN), and volume ratios of right/left kidneys. IR group, ischemia-reperfusion group; LD group, low-dose DXM-treated group; MD group,
moderate-dose DXM-treated group; HD group, high-dose DXM-treated group. Representative image of n= 6 individual samples per group. The
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mimic the human clinical situation and only a few
studies have used more than one model to verify their
findings [35]. Multiple mouse models of RF based on
different inducements are available. Surgical animal
models have been used to reduce kidney mass, UUO,
and IRI. Kidney mass reduction was achieved by 5/6
nephrectomy; however, it was less likely to mimic the
human clinical situation [36]. Hence, UUO and IRI
are the closest models to replicate human diseases.
Therefore, both these models were used in the
present study to determine the efficacy of NMDAR in
RF. The UUO model is the most widely used because
of the rapid development of tubular atrophy, intersti-
tial fibrosis, and matrix deposition. However, this ab-
solute obstruction is rarely observed in humans.
Nonetheless, the UUO model reproduces a typical fi-
brotic sequence of events, including hemodynamic
changes, interstitial inflammatory infiltration, and
tubular cell death [37]. The results showed that the
levels of TGF-B (Supplemental Fig. 1) and NRI in-
creased after UUO injury, and NR1 knockdown pro-
tected kidneys from acute injury after UUO with
stable expression of TGF- (Supplemental Fig. 1). A
60-min ischemia induces severe hypoxia and cell
damage [38], and is exacerbated by reperfusion, which
eventually leads to fibrosis [39]. Hence, the IRI model
was used to mimic chronic progression from injury to
fibrosis. Ischemic kidneys from DXM-treated mice
had reduced histological features 28 days after reper-
fusion. The effect of DXM on renal fibrosis was dose
dependent, with kidneys from mice treated with a
high dose of DXM exhibiting no significant differ-
ences compared with kidneys from the control mice.

EMT of tubular epithelial cells (TECs) is a feature ob-
served during renal fibrosis [13]. TEC injury results in
the loss of functional parenchyma and induces patho-
logical processes including EMT [13]. Injury-induced
EMT eventually leads to fibrosis [40]. Preventing the ini-
tiation of EMT results in the reduction of myofibroblast
recruitment and extracellular matrix deposition, and
hence preserves functional TECs and improves organ
function [13]. This study demonstrated that the levels of
EMT markers were altered after UUO-induced injury
along with NMDAR activation. NR1 knockdown re-
duced the changes in the expression levels of Snail and
E-cadherin, suggesting that NMDAR was a target for
EMT inhibition.

In addition, the present study investigated the down-
stream pathway of NMDAR using HK-2 cells treated
with TGF-P treatment as an in vitro model (Supplemen-
tal Fig. 2). Immunofluorescent assays demonstrated low
expression levels of NR1 in the cytoplasm and even
lower levels on the membranes of untreated HK-2 cells.
The cytoplasmic localization of NR1 is associated with
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its production in the endoplasmic reticulum and matur-
ation, while membrane anchoring is associated with the
maturation and function of NMDARs [41]. TGF-f in-
creases the expression and localization of NR1 both in
the cytoplasm and on the membrane. CaMKII is one of
the key protein kinases mediating changes in intracellu-
lar Ca®* levels [42]. CaMKII phosphorylation increases
significantly during fibrogenesis and is crucial in TGF-p-
induced fibrogenic cascades [43]. Besides fibrosis, CaM-
KII mediates oxidative stress, which is pivotal for IRI
progression [44]. CaMKII has been demonstrated to be
activated by NMDAR in the CNS as an intracellular sen-
sitive kinase [45]; however, its function in the kidney has
not been deciphered. The present study demonstrated
that CaMKII was phosphorylated by activated NMDAR
and NRI1 inhibition reduced CaMKII phosphorylation.
In the UUO model, NR1 knockdown reduced CaMKII
phosphorylation but had no effect on the total expres-
sion of CaMKII.

ERK is a widely expressed intracellular signaling
protein kinase in diverse biological functions [46].
The phosphorylation at Thr***/Tyr*** residues results
in ERK activation. ERK has been demonstrated to be
involved in RF, but its role has been controversial. A
majority of studies have shown that ERK acts as a
pro-fibrotic factor important for inflammatory re-
sponses [47], TGF-B/Smad signaling [48], and ECM
and myofibroblast accumulation [49, 50]. In addition,
ERK has recently been shown to participate in EMT
progression, and the inhibition of ERK ameliorates
renal interstitial fibrosis by suppressing tubular EMT
[51, 52]. However, Jang et al. demonstrated that the
activation of ERK accelerated renal tubular epithelial
cell repair and inhibited fibrogenesis following IRI
[53]. This result was consistent with previous findings
that the phosphorylation of ERK was protective and
promoted the growth of renal tubular epithelium but
induced apoptosis in renal fibroblasts [54]. ERK was
found to be activated on CaMKII phosphorylation
after the overexpression of NRI using both in vitro
and in vivo fibrosis models. NR1 shRNA knockdown
or inhibition with MK801 reduced the phosphoryl-
ation levels of ERK. The inhibition of CaMKII re-
duced ERK phosphorylation, regardless of the
expression of NR1 in the cytoplasm and on the
membrane.

Conclusions

In summary, NMDAR participates in renal fibrogenesis
by activating the CaMKII/ERK pathway. NMDAR inhib-
ition via oral administration is promising in protecting
against fibrosis after IRL It is presumed that NMDAR is
a potential therapeutic target. However, more studies are
required to substantiate the findings.
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