Skip to main content
. 2020 Sep 11;17:125. doi: 10.1186/s12984-020-00756-5

Table 2.

Model hyper-parameters of the classification models

Classification models Hyper-parameter search spaces
Neural network (NN) hidden_layer_sizes = {100, 200, 300}, learning_rate = 0.001
Support vector machines (SVM) C = {0.01, 0.1, 1, 5, 10, 100}, kernel = {‘linear’, ‘rbf’}, gamma = {0.01, 0.1, 1, 10}, class_weight = {None, ‘balanced’}
k-nearest neighbor (kNN) n_neighbors = {1,3,5,7,9}, weights = {‘uniform’, ‘distance’}
Decision tree (DT) max_depth = {5, 6, 7, 8, 9, 10, 15, 20}, class_weight = {None, ‘balanced’}
Random forest (RF) n_estimators = {20, 50, 100, 200}, class_weight = {None, ‘balanced’, ‘balanced_subsample’}
Gradient boosting (GB) n_estimators = {20, 50, 100, 200}
Logistic regression (LR) C = {0.01, 0.1, 1, 5, 10, 100}, penalty = {‘l1’, ‘l2’}, class_weight = {None, ‘balanced’}