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ABSTRACT
To prevent the destruction of tissues owing to excessive 
and/or inappropriate immune responses, immune 
cells are under strict check by various regulatory 
mechanisms at multiple points. Inhibitory coreceptors, 
including programmed cell death 1 (PD-1) and cytotoxic 
T lymphocyte antigen 4 (CTLA-4), serve as critical 
checkpoints in restricting immune responses against 
self-tissues and tumor cells. Immune checkpoint inhibitors 
that block PD-1 and CTLA-4 pathways significantly 
improved the outcomes of patients with diverse cancer 
types and have revolutionized cancer treatment. However, 
response rates to such therapies are rather limited, and 
immune-related adverse events are also observed in a 
substantial patient population, leading to the urgent need 
for novel therapeutics with higher efficacy and lower 
toxicity. In addition to PD-1 and CTLA-4, a variety of 
stimulatory and inhibitory coreceptors are involved in the 
regulation of T cell activation. Such coreceptors are listed 
as potential drug targets, and the competition to develop 
novel immunotherapies targeting these coreceptors has 
been very fierce. Among such coreceptors, lymphocyte 
activation gene-3 (LAG-3) is expected as the foremost 
target next to PD-1 in the development of cancer 
therapy, and multiple clinical trials testing the efficacy 
of LAG-3-targeted therapy are underway. LAG-3 is a 
type I transmembrane protein with structural similarities 
to CD4. Accumulating evidence indicates that LAG-
3 is an inhibitory coreceptor and plays pivotal roles 
in autoimmunity, tumor immunity, and anti-infection 
immunity. In this review, we summarize the current 
understanding of LAG-3, ranging from its discovery to 
clinical application.

INTRODUCTION
Immune cells can rapidly activate powerful 
defense mechanisms when they encounter 
invading pathogens. However, excessive 
and/or undesirable immune responses can 
exert deleterious effects. Immune cells are 
regulated by various molecules and cells 
with suppressive functions at multiple check-
points. Such checkpoints are critical to the 
development of self-tolerance as the immune 
cells learn not to attack host cells. However, 
such checkpoints can be hijacked by tumors 
and pathogens to escape from the immune 
system.

Cancer immunotherapies targeting inhib-
itory coreceptors programmed cell death 1 

(PD-1) and cytotoxic T lymphocyte antigen 
4 (CTLA-4) significantly improved the 
outcomes of patients with diverse cancer 
types, revolutionizing cancer treatment. The 
success of these therapies verified that inhib-
itory coreceptors serve as critical checkpoints 
for immune cells to not attack the tumor 
cells as well as self-tissues. However, response 
rates are typically lower and immune-related 
adverse events (irAEs) are also observed in 
patients administered with immune check-
point inhibitors. This is indicative of the 
continued need to decipher the complex 
biology of inhibitory coreceptors to increase 
response rates and prevent such unwanted 
side effects in patients with cancer.1–5

To date, many stimulatory and inhibitory 
coreceptors have been identified in addition 
to PD-1 and CTLA-4. These coreceptors are 
supposed to control the activation of lympho-
cytes by regulating the quality and quantity 
of the antigen receptor signaling to optimize 
beneficial immune responses while avoiding 
autoimmunity and excess immune responses. 
There is an intense competition among 
pharmaceutical companies to develop novel 
immunotherapies targeting these corecep-
tors. Among such coreceptors, lymphocyte 
activation gene-3 (LAG-3, CD223) is the fore-
most target next to PD-1, and multiple clin-
ical trials to validate LAG-3-targeted therapies 
are ongoing.6 7

MOLECULAR CHARACTERISTICS OF LAG-3
LAG-3 was identified in 1990 by Triebel 
and colleagues8 in a screening designed 
to isolate molecules that were selectively 
expressed in F5 cells, a CD3-negative inter-
leukin (IL)-2-dependent NK cell line. They 
screened the cDNA library of F5 cells with a 
probe obtained by subtraction of the cDNA 
of F5 cells with the mRNA of Jurkat (T cell 
leukemia), Laz 388 (Epstein-Barr virus-
transformed B lymphoblastoid cell), K562 
(erythro-myeloid leukemia), and U937 (cell 
of histiocytic origin) cells. The LAG-3 cDNA 
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was isolated from 120 cDNA clones that were obtained by 
the screening.

LAG-3 is a type I transmembrane protein with four 
Ig-like domains termed domain 1 (D1) to domain 4 (D4) 
(figure  1A). The extracellular region of LAG-3 shares 
approximately 20% amino acid homology with that of 
CD4, which is also composed of four Ig-like domains. In 
addition, the LAG-3 gene is located adjacent to the CD4 
gene in most species (eg, on chromosome 12 and 6 in 
human and mouse, respectively). Hence, it is likely that 
these genes have evolved by gene duplication. Contrary 
to the similarity in the extracellular regions, the intra-
cellular regions of LAG-3 and CD4 bear no noticeable 
similarity. LAG-3 lacks the cysteine motif required for 
the association with lymphocyte-specific protein tyro-
sine kinase (Lck) and the palmitoylation site observed 
in CD4.9–11 The organization of the genomic regions of 
CD4 and LAG-3 containing exons encoding their extra-
cellular regions is similar, but the genomic organization 
containing exons encoding their intracellular regions is 
varied. Thus, CD4 and LAG-3 are closely related but are 
poised to exhibit divergent functions.

D1 of LAG-3 consists of nine β-strands that are assigned 
to the A, B, C, C’, C”, D, E, F, and G strands of the IgV fold. 
An additional sequence of about 30 amino acids is located 
between the C and C’ strands, which forms a loop and is 
termed ‘extra loop’. Although the sequences share low 
similarity, this loop can be observed in both human and 
mouse LAG-3 and is reported to engage in the association 
between LAG-3 and major histocompatibility complex 
class II (MHCII) (figure 1B).12 13 CD4 does not have an 

extra loop, and the mechanism of the contribution of the 
extra loop to the association between LAG-3 and MHCII 
is currently unknown. LAG-3 has been reported to be 
highly glycosylated, which is evident by the presence of 
multiple N-glycosylation sites in D2–D4. Galectin-3 and 
liver sinusoidal endothelial cell lectin (LSECtin) have 
been suggested to interact with glycans on LAG-3.14–16

A longer amino acid sequence termed ‘connecting 
peptide’ is located in the LAG-3 between D4 and the trans-
membrane region when compared with CD4. Based on the 
mouse model, Li et al17 reported that metalloproteinases 
a disintegrin and metallopeptidase domain (ADAM) 10 
and ADAM17 cleaved LAG-3 at CP and released the extra-
cellular region of LAG-3 in soluble form. LAG-3 mutants 
that can escape from the cleavage by metalloproteinases 
demonstrate stronger inhibitory effects. Hence, ADAM10 
and ADAM17 presumably modulate the inhibitory effect 
of LAG-3 by regulating the amount of LAG-3 on the cell 
surface. The homology of the amino acid sequences of the 
CP between human and mouse is low. Whether human 
LAG-3 can also be cleaved by these metalloproteinases 
or not remains to be examined (figure 1C). In addition 
to the cleavage, soluble LAG-3 comprising D1–D3 can be 
produced by alternative splicing. Currently, the function 
of soluble LAG-3 is unknown.7 18

EXPRESSION OF LAG-3
Like PD-1 and CTLA-4, LAG-3 is not expressed on naive T 
cells, but its expression can be induced on CD4+ and CD8+ 
T cells upon antigen stimulation.8 19 As the inhibitory 

Figure 1  Structure of LAG-3. (A) Schematic representation of LAG-3. CP, connecting peptide; D1-D4, domains 1-4; EL, extra 
loop; IC, intracellular. (B–D) Alignments of EL, CP, and IC. Amino acid sequences of EL (B), CP (C), and IC (D) are shown for 
indicated species. Amino acid residues conserved between human and mouse are colored in red for EL (B) and CP (C). Putative 
FxxL, KIEELE, and EX-repeat are boxed. Amino acid sequences of LAG-3 were retrieved from Ensembl.org.
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function of LAG-3 strongly correlates with its expres-
sion levels on the cell surface,20 the regulation of LAG-3 
expression is very critical. Continuous antigen exposure 
owing to the chronic infection with viruses,21 22 bacteria,23 
and parasites24 leads to high and sustained expression of 
LAG-3 as well as other inhibitory coreceptors on CD4+ 
and CD8+ T cells. These T cells lose robust effector func-
tion and are termed exhausted T cells. LAG-3 blockade 
has been demonstrated to reinvigorate exhausted T cells 
and strengthen anti-infection immunity, although to a 
lesser extent compared with that by PD-1 blockade.22 24–30 
Tumor-infiltrating T cells are also persistently exposed 
to tumor-associated antigens and express high levels 
of multiple inhibitory coreceptors including LAG-3, 
resulting in functional exhaustion.31–36 IL-2, IL-7, and 
IL-12, but not IL-4, IL-6, IL-10, tumor necrosis factor 
(TNF), and interferon (IFN)-γ, have been reported to 
augment LAG-3 expression on activated T cells.37 38

LAG-3 expression is also detected on several subsets of 
CD4+ T cells with suppressive function. Foxp3+ regula-
tory T (Treg) cells constitutively express LAG-3,39 presum-
ably due to the continuous activation of T cell receptor 
(TCR) signal by self-antigens, which is required for the 
differentiation, homeostasis, and suppressive functions 
of Treg cells.40 Zhang et al41 demonstrated that LAG-3 on 
Treg cells limited their proliferation intrinsically. The role 
of LAG-3 in the effector function of Treg cells is conten-
tious. Huang et al39 reported that Treg cells from LAG-3-
deficient mice inhibited the activation of effector T cells 
with lower efficiency whereas other studies demonstrated 
that the suppressive function of LAG-3-deficient Treg cells 
is comparable.19 42 43 Further studies are required to eluci-
date the actual role of LAG-3 in association with the Treg 
cells. LAG-3 is also expressed on CD4+ type 1 T regula-
tory (Tr1) cells. Although Tr1 cells demonstrate strong 
immunosuppressive activity by secreting high amount of 
IL-10, specific cell surface markers that define this popu-
lation had not been detected until they were observed 
to express LAG-3 and CD49b.44 In addition, LAG-3-
expressing CD4+CD25–Foxp3– T cells that produce IL-10 
and transforming growth factor (TGF)-β3 have been 
proposed to exhibit regulatory function as a distinct cell 
population.4546 Interestingly, IL-10-producing natural 
regulatory plasma cells have also been observed to express 
LAG-3.47 Currently, the roles of LAG-3 in the cell-extrinsic 
inhibitory function of these non-classical regulatory cells 
remain unclear and require further investigation.

Multiple transcriptional regulators such as thymocyte 
selection-associated high mobility group box protein 
(TOX), nuclear factor of activated T cells (NFAT), 
nuclear receptor subfamily 4, group A (NR4A), inter-
feron regulatory factor 4, and B lymphocyte-induced 
maturation protein-1 are known to engage in the gener-
ation of exhausted T cells.48–56 Among these, NFAT, 
NR4A, and TOX have been demonstrated to augment 
the expression levels of LAG-3, together with other inhib-
itory coreceptors, when overexpressed in T cells. Early 
growth response gene 2 (EGR2) is also reported to be 

a key transcription factor in the induction of LAG-3 
expression in CD4+CD25–Foxp3– regulatory T cells.45 On 
the other hand, T-box expressed in T cells (T-bet) has 
been reported to repress the expression of LAG-3 and 
other inhibitory coreceptors and sustain antigen-specific 
response of CD8+ T cells during chronic infection.57 58 In 
addition to the transcriptional regulation, the cell surface 
expression level of LAG-3 is also regulated by subcellular 
trafficking and proteolytic cleavage.17 59 60

LAG-3 is also expressed on CD3+CD4–CD8– T cells,61 
TCRαβCD8αα intraepithelial lymphocytes,62 γδT cells,63 64 
and NKT cells.65 Besides, its expression on activated NK 
cells is reported to be involved in the cytotoxicity against 
MHCI-negative target cells in mice.8 66 Plasmacytoid 
dendritic cells67 and activated B cells68 also express LAG-3 
on their cell surface. However, the functional roles of 
LAG-3 in these populations remain poorly understood. 
Furthermore, LAG-3 is reported to be expressed on 
neurons and acts as a receptor for α-synuclein fibrils.69

LIGANDS OF LAG-3
LAG-3 has been proposed to bind to MHCII with higher 
affinity than CD4 and inhibit T cell activation by interfering 
with the association of CD4 with MHCII.12 64 70 However, 
LAG-3 has been demonstrated to inhibit T cell activa-
tion by a mechanism that is different from the competi-
tive inhibition of CD4, and the discrepancy between the 
binding capacity of soluble LAG-3 protein and MHCII 
expression levels in cells has been recognized, making 
the actual ligand of LAG-3 elusive.19 71 Recently, MHCII 
transactivator (CIITA) has been identified as a critical 
regulator of LAG-3 ligand. CIITA induces the expression 
of not only MHCII but also MHCII accessory molecules, 
including CD74 (invariant chain, Ii) and H2-DM. The 
MHCII accessory molecules contribute to the formation 
and the cell surface sorting of peptide-MHCII complex 
(pMHCII) exhibiting stable structural conformation 
in the conventional pathway of antigen presentation.72 
LAG-3 distinguishes the conformation of pMHCII and 
selectively binds to stable pMHCII. Accordingly, LAG-3 
preferentially inhibits the activation of CD4+ T cells that 
recognize stable pMHCII (figure 2A).71 It has also been 
demonstrated that LAG-3 does not compete with CD4 for 
pMHCII binding.71 Instead, LAG-3 inhibits T cell activa-
tion by transducing inhibitory signals via the intracellular 
region, as described in the next section.

As mentioned, LAG-3 is expressed on exhausted CD8+ 
T cells in tumors and is a potent therapeutic target for 
cancer immunotherapy. However, the mechanism by 
which LAG-3 binding to pMHCII could impact the acti-
vation of CD8+ T cells has not been elucidated. Recently, 
the activation of CD8+ T cells has been demonstrated to 
be inhibited weakly when antigen-presenting cells express 
a substantial amount of stable pMHCII in addition to 
cognate pMHCI, indicating that LAG-3 can also directly 
suppress CD8+ T cells to a certain extent.71
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To date, several molecules other than stable pMHCII have 
been reported as possible ligands for LAG-3 (figure 2B). As 
mentioned, galectin-3 and LSECtin have been indicated 
to interact with glycans on LAG-3. LSECtin is a member 
of the C-type lectin family and is expressed mainly in the 
liver.16 73 Xu et al16 reported that LAG-3 suppressed the 
IFN-γ production from T cells upon stimulation with 
anti-CD3 Ab in the presence of LSECtin-expressing mela-
noma cells. Galectin-3, belonging to the galectin family, is 
a soluble galactose-binding lectin secreted from various 
types of tumor cells and tumor stromal cells.74 Kouo et 
al15 demonstrated that galectin-3 reduced the frequency 
of IFN-γ-producing CD8+ T cells upon stimulation with 
anti-CD3 and anti-CD28 Abs when CD8+ T cells from 
LAG-3-sufficient and not LAG-3-deficient mice were used. 
Recently, Wang et al75 identified fibrinogen-like protein 1 
(FGL1), a member of the fibrinogen family, as a potential 
ligand for LAG-3. FGL1 is secreted from hepatocytes in 
the liver under normal physiological conditions, whereas 
some tumor cells can also produce FGL1 at high levels. 
FGL1 has been demonstrated to reduce the secretion of 
IL-2 from 3A9 T hybridoma cells expressing LAG-3 upon 
stimulation with the cognate peptide. Further studies are 
required to elucidate whether and how these potential 

ligands independently and/or cooperatively contribute 
to the inhibitory function of LAG-3.

In addition to the immunoinhibitory role, LAG-3 seems 
to have a distinct role in the nervous system as well. Mao 
et al69 reported that LAG-3 can bind to α-synuclein fibrils, 
which are associated with the pathogenesis of Parkin-
son’s disease. The association of α-synuclein fibrils with 
LAG-3 triggers endocytosis, cell-to-cell transmission, and 
neurotoxicity of α-synuclein fibrils. In addition to LAG-3, 
other molecules such as semaphorins and paired Ig-like 
receptor B are known to exhibit dual roles in immune 
and nervous systems.76 77 Further studies are expected 
to demonstrate the similarities and discrepancies in the 
roles of such coreceptors between immune and nervous 
systems.

INHIBITORY MECHANISMS OF LAG-3
The intracellular region of LAG-3 consisting of approx-
imately 60 amino acid residues lacks a typical inhibitory 
motif, such as immunoreceptor tyrosine-based inhibitory 
motif. However, it contains several amino acid sequences 
that are well conserved over different species of LAG-3 
but are not shared with other inhibitory coreceptors. Such 
sequences include FSAL in the juxtamembrane region, 
KIEELE in the central region, and 10–15 tandem repeats 
of glutamate, and favorably but not limited to proline 
(EX-repeat) in the C-terminal region (figure 1D). As the 
intracellular region is required for LAG-3 to inhibit T cell 
activation, it can transduce distinct yet undetermined 
inhibitory signals via such sequences.

Workman et al13 reported that the lysine residue of the 
KIEELE sequence is required for the LAG-3-mediated 
inhibition of the antigen-dependent activation of 3A9 
hybridoma T cells. However, a contradictory report has 
been published and the mechanisms of the contribu-
tion of lysine residue to the LAG-3-mediated inhibition 
have not been elucidated yet.20 Iouzalen et al78 identified 
LAG-3-associated protein (LAP) bound to the EX-repeat 
of LAG-3 by employing yeast two-hybrid cloning experi-
ment. To date, no follow-up study has been reported and 
the function of LAP remains elusive.

The inhibitory function of LAG-3 strongly correlates 
with its expression levels on the cell surface, and the 
amino acid substitutions and deletions substantially affect 
the expression levels of LAG-3.20 When the potency of 
the inhibitory effects of mouse LAG-3 mutants was eval-
uated relative to their expression levels in the antigen-
dependent activation of DO11.10 T hybridoma cells, the 
substitutions of phenylalanine and leucine in the FSAL 
sequence to alanine reduced the inhibitory capacity of 
LAG-3 significantly. In addition, when mutations in the 
FSAL sequence were combined with the deletion of the 
EX-repeat, the inhibitory capacity of LAG-3 was completely 
lost similar to the LAG-3 mutant lacking the entire intra-
cellular region. Interestingly, the deletion of EX-repeat 
alone does not affect the inhibitory capacity of LAG-3. 
These results demonstrate that LAG-3 likely transduces 

Figure 2  Ligands of LAG-3. (A) LAG-3 selectively binds to 
stable pMHCII and inhibits the activation of CD4+ T cells that 
recognize stable pMHCII. (B) Reported non-MHCII ligands. 
LAG-3 has been reported to associate with FGL1, LSECtin, 
galectin-3, and α-synuclein fibrils. FGL1, fibrinogen-like 
protein 1; LSECtin, liver sinusoidal endothelial cell lectin; 
MHCII, major histocompatibility complex class II; pMHCII, 
peptide-MHCII complex; APC, antigen presenting cell; TCR, 
T cell receptor.
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two independent inhibitory signals via the FxxL motif 
and EX-repeat, while the molecular mechanisms of these 
signals are still unknown.20 Further analyses are expected 
to delineate the precise molecular mechanisms by which 
such motifs independently or cooperatively regulate the 
signaling pathways in T cell activation.

LAG-3 IN AUTOIMMUNITY
Inhibitory coreceptors play critical roles in the establish-
ment and/or maintenance of immune tolerance to self as 
represented by the spontaneous development of autoim-
mune diseases in mice deficient for PD-1 and CTLA-4.79–81 
In addition, immune checkpoint inhibitors targeting PD-1 
and CTLA-4 activate not only tumor-specific T cells but 
also self-reactive T cells to induce tissue toxicities, termed 
irAEs.82–84 Unlike PD-1 and CTLA-4, LAG-3 deficiency 
itself does not cause autoimmunity in non-autoimmune-
prone mouse strains. However, genetic deletion or 
blockade of LAG-3 exacerbates type 1 diabetes (T1D) 
in non-obese diabetic (NOD) mice, an animal model of 
T1D.19 85 LAG-3-deficient NOD mice demonstrate accel-
erated infiltration of autoreactive CD4+ and CD8+ T cells 
in islets compared with that in the age-matched LAG-3-
sufficient NOD mice. In contrast, NOD mice lacking 
the cell surface expression of LAG-3 on Treg cells exhibit 
delayed onset and decreased incidence of T1D, which is 
attributed to the enhanced proliferation and function of 
Treg cells in the absence of LAG-3.41 Mice with compound 
deficiency of LAG-3 and PD-1 develop lethal autoimmune 
myocarditis on BALB/c, C57BL/6, and B10.D2 back-
grounds, indicating that LAG-3 acts synergistically with 
PD-1 to prevent autoimmunity.19 86

In addition, LAG-3 has been reported to mitigate the 
autoimmune symptoms in experimental autoimmune 
models. Jha et al87 reported that LAG-3 deficiency or 
blockade increased the susceptibility to mercury (Hg)-
induced autoimmunity by inhibiting the induction of 
tolerance to Hg in C57BL/6.H2s mice. In myelin oligo-
dendrocyte glycoprotein (MOG)-induced experimental 
autoimmune encephalomyelitis (EAE) model, Kadowaki 
et al88 demonstrated that LAG-3 blockade abrogated the 
anti-inflammatory effect of gut environment-induced 
intraepithelial MOG-specific CD4+ T cells. Kim et al89 also 
reported that the ability of in vitro-generated induced Treg 
(iTreg) cells to rescue Treg-depleted mice from lethal EAE 
was dependent on the expression of LAG-3 on the iTreg 
cells.

Given the critical regulatory role of LAG-3 in autoim-
munity, LAG-3 has been expected to be a promising ther-
apeutic target in inflammatory and autoimmune diseases. 
A humanized anti-LAG-3 Ab with antibody-dependent 
cell cytotoxic activity (GSK2831781) has been developed 
to treat autoimmune diseases by eliminating LAG-3-
expressing T cells that presumably include pathogenic 
autoreactive T cells.90 In addition, agonistic anti-LAG-3 Ab 
(IMP761) has been reported to exert immunosuppressive 

effects both in vitro and in vivo by eliciting the inhibitory 
function of LAG-3.91

LAG-3 IN ANTITUMOR IMMUNITY
As mentioned, LAG-3 is expressed on exhausted CD4+ 
and CD8+ tumor-infiltrating T cells that are defective in 
cytokine production.32–36 LAG-3 is also expressed on Treg 
cells in the peripheral blood and tumor tissues of patients 
with melanoma, colorectal cancer, and non-small cell 
lung cancer.92 93 Such LAG-3-expressing Treg cells produce 
high levels of immunoregulatory cytokines IL-10 and 
TGF-β and suppress tumor-specific T cells. Consistently, 
the levels of LAG-3 expression and infiltration of LAG-3+ 
cells in tumors have been reported to be associated with 
tumor progression, poor prognosis, and unfavorable clin-
ical outcomes in various types of human tumors, such 
as colorectal cancer,94 renal cell carcinoma,95 follicular 
lymphoma,36 head and neck squamous cell carcinoma 
(HNSCC),96 non-small cell lung cancer,97 breast cancer,98 
and diffuse large B cell lymphoma.99 These results 
strongly indicate that LAG-3 contributes to immune 
escape mechanisms in tumors similar to PD-1. Therefore, 
LAG-3 has been proposed as a promising therapeutic 
target for cancer immunotherapy, which is also supported 
by studies using animal models. Tumor growth delayed by 
anti-LAG-3 Ab has been reported in the mouse models 
of HNSCC and fibrosarcoma.96 100 Grosso et al101 demon-
strated that the combinatorial therapy incorporating 
anti-LAG-3 Ab and vaccination with tumor-associated 
antigen increased the number of activated CD8+ T cells 
in the tumor and disrupted the tumor parenchyma in the 
tumor-tolerance model of prostate cancer. However, no 
substantial difference in the grade of tumor was noted 
between mice administered with combination therapy or 
vaccination alone.

LAG-3 acts synergistically with PD-1 to suppress antitumor 
immunity as well as autoimmunity. In patients with epithelial 
ovarian cancer, Matsuzaki et al34 observed that approximately 
80% and 50% of LAG-3+ and LAG-3− tumor-infiltrating CD8+ 
T cells expressed PD-1, respectively. They also reported that 
the co-blockade of LAG-3 and PD-1 augmented the prolif-
eration and cytokine production of tumor-infiltrating CD8+ 
T cells upon ex vivo stimulation with the tumor-associated 
antigen NY-ESO-1. Coexpression of LAG-3 and PD-1 on 
tumor-infiltrating CD4+ and CD8+ T cells and the strong 
therapeutic effect of co-blockade or compound genetic dele-
tion of LAG-3 and PD-1 have also been observed in various 
mouse tumor models, such as B16 melanoma, MC38 colon 
adenocarcinoma, Sa1N fibrosarcoma, ovalbumin-expressing 
mouse epithelial ovarian cancer cell (IE9mp1), chronic 
lymphocytic leukemia derived from Em-TCL1 mice, and 
recurrent melanoma.86 102–104 Although LAG-3 blockade is 
expected to activate tumor-specific CD4+ and/or CD8+ T 
cells in such studies, it may also increase the number of Treg 
cells, since LAG-3 has been reported to limit the prolifera-
tion of Treg cells. According to Goding et al,102 Treg cells are 
rather reduced by the co-blockade of LAG-3 and PD-1 in the 



6 Maruhashi T, et al. J Immunother Cancer 2020;8:e001014. doi:10.1136/jitc-2020-001014

Open access�

model of recurrence melanoma. Further studies are needed 
to delineate the exact effect of LAG-3 on the number and 
function of Treg cells as well as effector T cells.

In most of these studies, anti-LAG-3 Ab resulted in modest 
therapeutic effects when used as monotherapy but markedly 
augmented the therapeutic effect of anti-PD-1 Ab. Differ-
ences in the inhibitory mechanisms and/or expression 
profiles of these two molecules most likely explain their func-
tional synergy. Further studies are needed to comprehend 
the exact mechanisms of the synergistic or additive action of 
LAG-3 with PD-1.

CLINICAL APPLICATION OF LAG-3
Based on preclinical observations including those mentioned, 
agents that block or stimulate LAG-3 functions are expected 
to provide therapeutic benefits in the treatment of cancer or 
autoimmune diseases, especially when combined with agents 
targeting PD-1. To date, at least 13 agents that target LAG-3 
have been developed (table  1). Anti-LAG-3 blocking Abs 
(relatlimab (BMS-986016), Sym022, TSR-033, REGN3767, 
LAG525, INCAGN2385-101, MK-4280, and BI754111) and 
antagonistic bispecific Abs (MGD013 (anti-PD-1/LAG-3), 
FS118 (anti-LAG-3/PD-L1), and XmAb22841 (anti-CTLA-4/
LAG-3)) are under clinical trials for various cancers either as 
monotherapy or in combination primarily with anti-PD-1 or 
anti-PD-L1 blocking Abs. According to the National Cancer 
Institute Drug Dictionary (https://www.​cancer.​gov/​publi-
cations/​dictionaries/​cancer-​drug), meeting abstracts,105–107 
and a published report,108 most of them are supposed to 
block the interaction between LAG-3 and MHCII, while 
their effects on the interaction between LAG-3 and reported 
ligands other than MHCII are not specified.

To date, only a few interim reports of combinatorial ther-
apies targeting LAG-3 and PD-1 are available. Future reports 
are awaited to observe the actual therapeutic efficacy of 
anti-LAG-3 Abs as monotherapy or the exact additive effects 
of anti-LAG-3 Abs in the combination therapy targeting 
PD-1 and LAG-3. In phase I/II study evaluating the safety 
and efficacy of relatlimab in combination with anti-PD-1 Ab 
(nivolumab) in patients with advanced melanoma that had 
progressed during previous anti-PD-1 or anti-PD-L1 immu-
notherapy (NCT0198609), the combination of relatlimab 
and nivolumab was well tolerated and the objective response 
rate (ORR) was 11.5% in 61 patients. ORR was at least 3.5-
fold higher in patients with LAG-3 expression in at least 1% 
of tumor-associated immune cells within the tumor margin 
(n=33) than that in the patients with less than 1% LAG-3 
expression (n=22) (18% and 5%, respectively).109 LAG525 
in combination with anti-PD-1 Ab (spartalizumab) exhib-
ited a durable response in 9.9% of patients (n=121) with 
a variety of solid tumors, including mesothelioma (two of 
eight patients) and triple-negative breast cancer (two of five 
patients) in phase I/II study (NCT02460224).110 The precise 
mechanism of the function of such anti-LAG-3 Abs remains 
to be investigated. Especially, the examination of target cells 
in anti-LAG-3 therapy and elucidation of the mechanisms 
of synergy between anti-LAG-3 and anti-PD-1 therapies have 
garnered interest and are required for the rational design 
of anti-LAG-3 therapy with maximum efficacy and minimal 
adverse effects.

Other LAG-3-targeting agents have also been tested for 
cancer treatment. IMP321, a soluble recombinant fusion 
protein comprising the extracellular region of LAG-3 and 
the Fc region of IgG, has been reported to activate antigen-
presenting cells by transducing a reverse signal via MHCII, 

Table 1  Summary of LAG-3-targeted drugs under clinical trial

Name Description Target disease Clinical trial* Combination†

Relatlimab Antagonistic Ab Tumors I (5), I/II (6), II (13) PD-1

LAG525 Antagonistic Ab Tumors I (1), I/II (1), II (3) PD-1, M-CSF, IL-1β, A2AR

BI754111 Antagonistic Ab Tumors I (3), Ia/Ib (1), II (1) PD-1

MK-4280 Antagonistic Ab Tumors I (1), I/II (1), II (1) PD-1

Sym022 Antagonistic Ab Tumors I (2) PD-1

TSR-033 Antagonistic Ab Tumors I (2) PD-1, Tim3

REGN3767 Antagonistic Ab Tumors I (1), II (1) PD-1

INCAGN2385-101 Antagonistic Ab Tumors I (1) –

MGD013 Bispecific to LAG-3/PD-1 Tumors I (2), I/II (1), II/III (1) –

FS118 Bispecific to LAG-3/PD-L1 Tumors I (1) –

XmAb22841 Bispecific to LAG-3/CTLA-4 Tumors I (1) PD-1

GSK2831781 Depleting Ab Autoimmune diseases I (2), II (1) –

IMP321 Soluble LAG-3-Ig Tumors I (8), II (2) PD-1, PD-L1, vaccination

*The phase and the number of clinical trials listed on ClinicalTrials.gov are shown.
†Immune-related molecules targeted in combination therapies listed on ClinicalTrials.gov are shown.
A2AR, adenosine A2a receptor; CTLA-4, cytotoxic T lymphocyte antigen 4; IL-1β, interleukin 1b; M-CSF, macrophage colony stimulating 
factor; PD-1, programmed cell death 1; PD-L1, PD-1 ligand 1; Tim3, T-cell immunoglobulin and mucin-domain containing-3.

https://www.cancer.gov/publications/dictionaries/cancer-drug
https://www.cancer.gov/publications/dictionaries/cancer-drug
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resulting in the enhanced production of IL-12 and TNF and 
the upregulation of CD80 and CD86.111 112 IMP321 demon-
strated only minimal or modest efficacy as monotherapy or in 
combination with other therapies in clinical trials conducted 
so far.113–116 The details of the reverse signal via MHCII 
remain unknown and require careful investigation.

The development of anti-LAG-3 depleting Ab 
(GSK2831781) and agonistic Ab (IMP761) as potential ther-
apeutic agents in the treatment of autoimmune diseases has 
also been reported.90 91 Although these Abs aim to remove 
or suppress pathogenic T cells, they may also deplete or 
suppress Treg cells. Further studies elucidating the functions 
of such Abs together with the biological properties of LAG-3 
are expected to help advance their development by providing 
the rationale for their use.

CONCLUSIONS
As checkpoint immunotherapies targeting inhibitory core-
ceptors PD-1 and CTLA-4 revolutionized cancer treatment, 
LAG-3 is expected to be a highly promising target in cancer 
therapies. However, our understanding of LAG-3 is still very 
limited and many fundamental questions remain unan-
swered. The signaling mechanism of LAG-3 is unknown and 
the ligands of LAG-3 are perplexing. LAG-3 is expressed on 
a variety of cell types. However, the function of LAG-3 and 
the effect of LAG-3 blockade in each type of cells have not 
been elucidated. We also need to examine the functional 
differences, redundancies, and co-operations of LAG-3 and 
other coreceptors. By elucidating the functional properties 
of LAG-3 more in detail, we can rationally design LAG-3-
targeted therapies for various diseases, such as cancer, auto-
immunity, and infection.
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