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ABSTRACT

Objective: Detecting adverse drug events (ADEs) and medications related information in clinical notes is impor-

tant for both hospital medical care and medical research. We describe our clinical natural language processing

(NLP) system to automatically extract medical concepts and relations related to ADEs and medications from

clinical narratives. This work was part of the 2018 National NLP Clinical Challenges Shared Task and Workshop

on Adverse Drug Events and Medication Extraction.

Materials and Methods: The authors developed a hybrid clinical NLP system that employs a knowledge-based

general clinical NLP system for medical concepts extraction, and a task-specific deep learning system for rela-

tions identification using attention-based bidirectional long short-term memory networks.

Results: The systems were evaluated as part of the 2018 National NLP Clinical Challenges challenge, and our

attention-based bidirectional long short-term memory networks based system obtained an F-measure of 0.9442

for relations identification task, ranking fifth at the challenge, and had <2% difference from the best system. Error

analysis was also conducted targeting at figuring out the root causes and possible approaches for improvement.

Conclusions: We demonstrate the generic approaches and the practice of connecting general purposed clinical

NLP system to task-specific requirements with deep learning methods. Our results indicate that a well-designed

hybrid NLP system is capable of ADE and medication-related information extraction, which can be used in real-

world applications to support ADE-related researches and medical decisions.
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INTRODUCTION

Adverse drug events (ADEs) are injuries resulting from medical inter-

ventions related to drugs, including medication errors, adverse drug

reactions, allergic reactions, and overdoses.1 ADEs are commonly oc-

curring in U.S. hospitals and are known to be one of the leading causes

of death in the United States.2 Moreover, ADEs can also lead to in-

creased morbidity,2 prolonged hospitalizations,3 and higher costs of

care.2,4 However, most of ADEs are preventable, and the knowledge

learned from previous ADEs are very valuable for ADE prevention.5

Electronic health records (EHRs) contain a lot of useful informa-

tion related to ADEs and can serve as a good platform for this

purpose.6 However, large amounts of useful information only lie

buried in unstructured data of EHRs such as discharge summaries,

procedural notes, medical history, laboratory results, and even email

records.6–8 Manual review and collection of information from these

narrative text data are typically difficult and time consuming. There-

fore, natural language processing (NLP) systems that can process

these clinical narratives and automatically detect medications,

ADEs, and their relations are highly desirable.
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The 2018 National NLP Clinical Challenges (n2c2) Shared Task

and Workshop on Adverse Drug Events and Medication Extraction

in EHRs was organized to address this issue. The challenge requires

NLP systems to process a set of patients’ discharge summaries, ex-

tract ADEs, medications, as well as associated entities (strength, dos-

age, duration, frequency, form, route, reason) from the notes, and

appropriately assign relations between them. The challenge required

both accurate clinical concepts extraction and relations

identification.

In this article, we describe a hybrid clinical NLP system as sub-

mitted to 2018 n2c2 task on ADEs and medications extraction. This

system combines a general knowledge-based concepts extraction

system which is built up with Unified Medical Language System

(UMLS)9 and Unstructured Information Management Architecture

(UIMA),10 and a task-specific deep learning system for relations

identification. Evaluation and analysis were conducted upon differ-

ent aspects with the n2c2 challenge data.

The challenge consists of 3 subtasks: 1) concepts: extracting clin-

ical concepts from the narrative text, including ADEs, drugs, and

drug-associated entities such as strength, dosage, duration, fre-

quency, form, route, and reason of taking the drug; 2) relations:

identifying relations between drugs and other extracted entities,

such as ADE-drug, strength-drug, dosage-drug, and so on; and 3)

end to end: combining the previous 2 subtasks to have an end-to-

end outputs of the extracted concepts as well as the valid relations.

Here, we should notice that only entities that can be assigned with

relation to a certain drug are regarded as valid entities in the chal-

lenge. Thus, an individual mention without corresponding drug in

the text should be excluded. For example, a disease or symptom

mention (eg, diabetes, fever, chest pain) that even looks like a valid

ADE or reason in the context but cannot find evidence indicating its

relation to the certain drug should be removed from the valid entity

list. Therefore, both concepts extraction and relations identification

are very critical to this task, especially for relations identification as

it also serves to select valid entities from the candidates.

Many previous works and challenges contribute to addressing

this issue in aspects of concepts extraction and relations identifica-

tion. The 2009 Informatics for Integrating Biology and the Bedside

(i2b2) challenge on medication information extraction11 and the

2010 i2b2 challenge on concepts, assertions, and relations12 played

a significant role promoting state of the art on this topic. Different

NLP systems have been developed for general clinical concepts ex-

traction such as MetaMap,13 cTAKES14 and MedTagger.15 Besides,

the ADEs and medication-related concepts extraction can also be

regarded as a typical named entity recognition (NER) task. Under

this scope, diverse approaches have been developed such as rule-

based,16 support vector machine,17 conditional random field

(CRF),18 etc. More recently, deep learning–based approaches such

as bidirectional long short-term memory (BiLSTM) and BiLSTM-

CRF based methods19,20 were proposed and become popular for

NER. The general clinical information extraction system typically

requires extra efforts of fine tuning for a task-specific purpose such

as refining knowledge base and manually error analysis. However,

the machine-learning based NER systems are typically weak in gen-

eralizability, as they may work very well on task-specific corpus but

observe performance drop when transferring to other corpus or

domains (eg, transfer from radiology reports to discharge summa-

ries). A hybrid system may hold the potential to overcome the disad-

vantages of them.

For relations identification, various approaches have been devel-

oped, including rule-based systems utilizing lexical or syntactic fea-

tures, support vector machine, and structured learning.21–23

Recently, deep leaning–based approaches such as recurrent neural

networks24 and convolutional neural networks (CNNs)25 were also

proposed for relation extraction and obtained increasing attention.

However, very limited works on exploring deep learning approaches

for relations identification in clinical narratives, even less for medi-

cations and ADEs related relations identification. Besides, current

related works are limited to intrasentence relations identification.

But intersentence relations such as ADE-drug or reason-drug are

very common in clinical narratives; thus it is worthwhile to investi-

gate deep learning approaches on this topic.

Attention-based neural network architectures recently gain much

attention and have been proven to be effective in several NLP tasks

such as machine translation,26 question answering,27 recognizing

textual entailments,28 and relation classification.29 The attention

mechanism that was initially proposed in computational neurosci-

ence and visual application is based on the principle that one should

select the most relevant information for neural response computa-

tion, rather than using all available information. In NLP aspect, at-

tention mechanism guides model to focus on the tokens that have a

greater effect on the target and automatically capture semantic in-

formation. Considering the recent advancements in relations identi-

fication using attention-based deep learning methods, we explored

the possibility to apply attention-based BiLSTM (Att-BiLSTM) ar-

chitecture for relations identification in clinical notes.

In this article, we demonstrate a real-case practice of bridging

general clinical NLP system with task-specific requirements by using

deep learning approaches, without manually fine tuning. More spe-

cifically, we describe a hybrid clinical NLP system for ADEs and

medications related information extraction by combing a general

knowledge-based system using UMLS and UIMA for concepts ex-

traction, and task-specific Att-BiLSTM–based deep learning system

for relations identification, which achieved good performance in the

2018 n2c2 challenge.

MATERIALS AND METHODS

Task and data
As mentioned previously, the 2018 n2c2 challenge on ADEs and

medications extraction contains 3 tiers: 1) concepts, 2) relations,

and 3) end to end. For the concepts extraction task, it requires NLP

systems to extract 9 types of medical entities from the clinical narra-

tives. The names of these entities are: drug, strength, form, dosage,

frequency, route, duration, reason, and ADE. And for relations iden-

tification task, the relations between entities and corresponding

drugs were asked to identify strength-drug, dosage-drug, frequency-

drug, route-drug, duration-drug, reason-drug, and ADE-drug.

Table 1 establishes detailed information of each entity and relation

type.

The data used in this challenge contains 505 discharge summa-

ries from the MIMIC-III (Medical Information Mart for Intensive

Care III) clinical care database.30 All the notes were annotated by

domain experts, providing the list of valid concepts (entity type,

span locations, entity content) and relations (relation type, source,

and target entities) for each note. During the challenge, these 505

clinical notes were split into training and testing datasets with a pop-

ulation of 303 and 202, respectively. In the developing phase, the

303 notes, as well as the annotated entity and relation list in training

dataset, were released. Two tiers of evaluation were conducted dur-

ing the evaluation phase. In the first tier, the organizer only released
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contents of the 202 notes in the testing dataset without annotations

for collecting participants’ system outputs for concepts extraction

and end-to-end tasks. After that, the corresponding annotations for

concepts were released to collect the system outputs for relations

identification. The final evaluation of the submitted systems was

conducted by the organizer based on the held-out testing dataset.

System overview
To accomplish these 3 subtasks systematically, we developed an in-

tegrated hybrid clinical NLP system consisted of 2 subsystems: 1) en-

tity system: a knowledge-based system for generally detecting of

medications as well as associated entities (strength, dosage, dura-

tion, frequency, form, route) and diseases or symptoms (ADE or rea-

son candidates) based on UMLS knowledge base and UIMA

framework; and 2) relation system: a deep learning system based on

Att-BiLSTM for relation assignment between drugs and other enti-

ties, ADE or reason classification, and entity reasoning or filtering.

The high-level architecture of the system is established in Figure 1.

Both of the 2 systems share the same preprocessing of section de-

tection, sentence segmentation, and tokenization. For sentence seg-

mentation, we found it was not a simple task as several sentence

segmentation tools available in popular NLP toolkits, such as

NLTK31 and spaCy,32 were tested and did not work well in clinical

notes. In clinical notes, sentences do not always end with regular

punctuation marks such as a period or question mark. More specifi-

cally, both regular punctuation marks and newline characters can

serve as sentence breakers; however, newline characters can also be

used for text wrap. Moreover, enumeration-like and list-like formats

are also common in clinical notes, especially for physical exam and

list of medications. To address these issues, a sentence pattern Iden-

tification algorithm has been developed to define which sentence

segmentation method should be applied for certain text pieces. We

first segmented the note into sections, and then further segmented it

into paragraphs. For each paragraph, we generated several features

indicating certain pattern (eg, the number of regular sentence

breaker, numbers of the newline character that is close or not close

to the text wrap, number of marks indicating enumeration or list)

and then used a rule-based voting model to define the sentence pat-

tern and applied corresponding sentence segmentation algorism.

Entity system
The entity system that serves as general entity candidate detection is

modified from a general clinical NLP orientated system that was ini-

tially designed for general medical information extraction and

computer-assistant coding.33 This in-house general clinical NLP sys-

tem currently is for internal use and has not been published yet. This

entity system is a knowledge-based system that is built with UMLS

and UIMA framework, and employs various machine learning mod-

els pretrained with a much larger medical dataset consist of open ac-

cess medical data such as MIMIC III data,30 and data from previous

i2b2 challenges.34 We intentionally did minimal tuning of this sys-

tem with n2c2 data to test how well our deep learning-based rela-

tion system can turn this general clinical NLP orientated pipeline for

use in task-specific purpose.

In the entity system, the detection of highly medical-related con-

cepts (drug, ADE, reason) was treated differently compared with

other concepts. The drug entities were identified as medication, and

ADE or reason entities were identified as disease, sign, or symptom

concepts in UMLS knowledge base. Those medical entities were

identified through modified Lucene35 lookup in form of concept

unique identifiers (CUI) in UMLS. And a pretrained word sense dis-

ambiguation module based on vector space model36 was applied to

filter out some false positive entities especially for the abbreviations.

For other entities (strength, dosage, duration, frequency, form,

route), a hybrid NER module combing regular expression, rules,

and machine learning were used to detect the entity candidates.

Table 1. Definition and basic information of the concepts and relations types as used in the n2c2 challenge

Type name Records

Concept Relation Examples Concepts Relations

Drug “The patient suffers from steroid-induced hyperglycemia.” 26 803

“Patient prescribed 1 x 20 mg Prednisone tablet daily for 5 days.”

Strength Strength-Drug “Patient has been switched to lisinopril 10mg 1 tablet PO QD.” 10 922 10 950

“Patient prescribed 1-2 325 mg / 10 mg Norco pills every 4-6 hours as needed for pain.”

Dosage Dosage-Drug “Patient has been switched to lisinopril 10mg 1 tablet PO QD.” 6900 6939

“Patient prescribed 1-2 325 mg / 10 mg Norco pills every 4-6 hours as needed for pain.”

Duration Duration-Drug “Patient prescribed 1 x 20 mg Prednisone tablet daily for 5 days.” 966 1069

Frequency Frequency-Drug “Patient prescribed 1 x 20 mg Prednisone tablet daily for 5 days.” 10 293 10 352

“Patient has been switched to lisinopril 10mg 1 tablet PO QD.”

“tylenol Q8H PRN”

Form Form-Drug “Patient prescribed 1 x 20 mg Prednisone tablet daily for 5 days.” 11 006 11 048

“Patient prescribed 1-2 325 mg / 10 mg Norco pills every 4-6 hours as needed for pain.”

Route Route-Drug “Patient has been switched to lisinopril 10mg 1 tablet PO QD.” 8987 9086

“Patient received 100 Units/kg IV heparin sodium injection for treatment of

deep vein thrombosis.”

Reason Reason-Drug “Patient received 100 Units/kg IV heparin sodium injection for treatment of

deep vein thrombosis.”

6384 8611

“Patient prescribed 1-2 325 mg / 10 mg Norco pills every 4-6 hours as needed for pain.”

ADE ADE-Drug “The patient suffers from steroid-induced hyperglycemia.” 1579 1841

“Patient is experiencing muscle pain, secondary to statin therapy for

coronary artery disease.”

ADE: adverse drug event.
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More specifically, time-related entities (frequency and duration)

were extracted through a time NER model based on bidirectional

LSTM-CRF37,38 and refined with lexical or syntactic rules; form,

route, strength, and dosage entities were preidentified with regular

expression and dictionary lookup, followed with vector space

model-based word sense disambiguation and lexical or syntactic

rules to refine the entity candidates. In addition, sentence patterns

regarding the sequence or combination of different types of entities

were also employed to validate the extracted entity candidates.

More details regarding the methods used in the entity system can be

found in the Supplementary Appendix. The entity system outputted

all the entity candidates without considering their validated relation

to a certain drug. Besides, ADE or reason entities were treated as

one entity type in this step as general detection of disease, sign, or

symptom and were distinguished in the following relation system.

Relation system
The relation system is built with Att-BiLSTM and generally targets

at assigning relation between drug entities and other entities. In

details, this system has 2 pipelines: 1) targeting at supporting concepts

and end-to-end tasks: connects to the entity system outputs, generates

relation candidates based on drug entities and other entity candidates,

filters out invalid relations, filters out all invalid entities that have no

valid relation to certain drug entities, classifies each entity candidate

in ADE or reason into ADE or reason or invalid entity, and outputs

valid entities and relations; and 2) targeting at relations task: directly

connects to the gold standard entities from released training or testing

data, generates relation candidates, filters out invalid relations, and

outputs valid relations. Both these 2 pipelines share generally the same

neuron network architectures, but the feed-in training data were pre-

pared separately according to the entity inputs.

The architecture of this network is shown in Figure 2. The model

contains 5 parts:

• Input layer: The original context input of the model. Typically,

this network takes the positional marked source and target enti-

ties as well as surrounding tokens as inputs. For instance, the

sentence “The patient suffers from steroid-induced

hyperglycemia.” will be prepared as “The patient suffers from

<e2>steroid</e2>-induced <e1>hyperglycemia</e1>.” where

position markers are used to address the source and target entities.
• Embedding layer: The input context is tokenized, and each word

is mapped into a low dimension vector. Here in this study, a

word embedding trained with word2vec on MIMIC III data was

used. In this layer, each word in a sentence is transferred into a

low-dimensional (200 as used in this study) real-valued vector.

Then the sentence initially as a sequence of words is transferred

as a sequence of numerical vectors.
• LSTM layer: LSTM is designed to capture high-level features

containing temporal and sentence-level information. Here we

used bidirectional LSTM to include both forward and backward

information. LSTM networks typically have 3 components: input

gate, forget gate and output gate. The gates and states at each se-

quence are determined by the information from the previous and

current sequence. And for bidirectional LSTM, the final output is

generated using element-wise sum combining both forward and

backward outputs.
• Attention layer: Attention mechanism guides the networks to fo-

cus on specific information by generating a weight vector. After

multiplying the weight vector, word-level features from each

timestep are converted to the sentence-level feature vector.
• Output layer: Fully connected to the target task and utilizes the

sentence-level feature vector for relation classification.

More details of this network can be found elsewhere.29 And dur-

ing the development phase, we conducted systematically hyperpara-

meters tuning such as LSTM hidden unit size, learning rate,

dropout, and regulation. In our final submission, we used the hyper-

Figure 1. Architecture of the hybrid system. This system consists of a knowledge-based entity system using Unified Medical Language System (UMLS) and Un-

structured Information Management Architecture framework, and a deep learning relation system based on attention-based bidirectional long short-term mem-

ory (Att-BiLSTM). ADE: adverse drug event; NER: named entity recognition; WSD: word sense disambiguation.
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parameters as: 1) LSTM hidden unit size: 128, 2) dropout: 0.5,

3) learning rate: 1e-4, and 4) regulation: 1e-4.

Besides, we also implemented another 2 widely used deep learn-

ing methods to serve as the baseline models for comparison:

1) BiLSTM without attention layer and 2) CNN-based relation

model. For the BiLSTM-based model, we used similar architecture

as the Att-BiLSTM model, but replacing the attention layer with

max pooling layer to generate sentence-level feature according to

previous works.39,40 For the CNN model, we implemented the ar-

chitecture as introduced by Nguyen et al.41 For a fair comparison,

all the 3 models were trained with the same word embedding and

training data as mentioned previously.

RESULTS

Evaluation metrics
The evaluation was conducted using a script released by n2c2 organ-

izers, which reports precision, recall, and F1 score for all types of

concepts and relations under strict and lenient measurement. The

strict measurement requires the exact matches of the starting or end-

ing offsets of the concept with the corresponding concept in the gold

standard result, while the lenient measurement requires only overlap

between them. Besides, overall micro-average F1 score is also gener-

ated and the micro-average F1 under lenient measurement was

regarded as the main evaluation in the challenge. For relations task

evaluation, the gold standard concept annotations and original notes

were provided as system input, and the assessment was based on the

output relation list. For concepts and end-to-end tasks evaluation,

only the original notes were available. So, the system needed to out-

put both extracted concepts and relations, which were used for as-

sessment in concepts and end-to-end tasks, respectively. During the

development phase, we randomly selected 50 notes from the chal-

lenge released training dataset (303 notes) as internal test dataset

and conducted model training based on the rest. During the evalua-

tion phase, the systems were assessed as part of n2c2 using the chal-

lenge released test dataset (202 notes).

Overall performance
Table 2 shows the overall performance (micro-average precision, re-

call, F1 score under lenient measurement) of our systems submitted

to 2018 n2c2 challenge evaluated on our internal test dataset and

challenge released test dataset. As shown in Table 2, our Att-

BiLSTM–based relation system achieved a high overall micro-

average F1 score of 0.9442 on challenge test dataset for relations

identification task, which won fifth place and only had <2% differ-

ence compared with the best submission of that task. Our hybrid

system achieved overall micro-average F1 scores of 0.8496 and

0.7938 on concepts extraction and end-to-end tasks, respectively, in

the challenge, which outperformed the average of all the systems

submitted to the challenge but did not make it to the top 10. Besides,

Figure 2. The architecture of attention-based bidirectional long short-term memory (BiLSTM)–based relation system.

Table 2. Overall systems’ performance

Internal test Challenge test

Task Precision Recall F1 Precision Recall F1

Concepts 0.8894 0.8962 0.8928 0.8586 0.8409 0.8497

Relations 0.9830 0.9754 0.9792 0.9455 0.9429 0.9442

End to end 0.8673 0.8711 0.8692 0.8382 0.7539 0.7938
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the comparison between system performances on internal test data

and challenge test data shows that performance drops of 4.31%,

3.5%, and 7.54% of the micro-average F1 score are observed for

concepts, relations, and end-to-end tasks, respectively. These

performance drops are within acceptable range especially consider-

ing the relatively small training and testing dataset sizes (253 notes

for training, 50 notes for internal testing, and 202 notes for chal-

lenge testing), which indicates that actually, the systems worked

well to generalize the tasks.

Relations task
Table 3 shows the detailed performance (precision, recall, F1 score

under lenient measurement) of our Att-BiLSTM–based relation sys-

tem for each relation type evaluated on a challenge-released test

dataset. The corresponding performance of 2 baseline models

(BiLSTM and CNN) are also provided for comparison. As shown in

Table 3, the Att-BiLSTM model outperformed the other 2 with an

overall micro-average F1 score of 0.9442, compared with 0.9336

for BiLSTM and 0.9296 for CNN. In addition, the Att-BiLSTM

model outperformed almost all the individual relation types, espe-

cially for those (ADE-drug and reason-drug) requiring long-distance

or intersentence relations identification. The performance difference

between BiLSTM and CNN could be explained by the influence of

sequence information. And the obvious performance difference be-

tween Att-BiLSTM and BiLSTM indicates that the attention layer

actually played as a significant role in sentence-level information

generation especially for helping gather long-distance information.

These results not only demonstrate the superiority and capability of

our approach in clinical relations identification, but also provide in-

sight on how to deal with long-sequence information in NLP.

Concepts and end-to-end tasks
As mentioned previously, the Att-BiLSTM–based relation system

not only serves to assign relations between extracted entities, but

also serves as a filter to select valid entities from the raw outputs of

the entity system. Table 4 shows the evaluation of the knowledge-

based entity system outputs compared with gold standard concepts

in the challenge test dataset, before and after applying the filtering

and reasoning process provided by relation system. Here we should

notice that in the raw outputs of entity system, ADE and reason are

treated as one type as any disease, sign, or symptom extracted from

the notes. They are distinguished by the relation system. As shown

in Table 4, there were a large number of false positives in reason or

ADE before applying the relation system provided filtering as the

precision is as low as 0.0953. However, after applying the filtering

and classification, the precisions of reason and ADE types reached

0.5513 and 0.4458, respectively, which indicates that the relation

system actually successfully filtered out over 80% of the false posi-

tives. For other categories such as strength, frequency, the relation

system enabled filtering process indeed improved the precisions, but

it only slightly changed the F1 score for those categories. Similar to

the results of relations task, the performances on duration, reason,

and ADE are obviously lower than the other categories for both con-

cepts and end-to-end tasks. More details will be discussed in the er-

ror analysis section.

DISCUSSION

Error analysis
Error analysis was conducted to figure out the contribution of each

root cause. Figures 3 and 4 show the confusion matrices of the sys-

tem on relations and concepts tasks, respectively. And the challenge

released test datasets and lenient measurement were used. Here, the

Others type on the Gold side refers to false positives that never show

up in the gold standard results even as other types, while the Others

type on the System side refers to false negatives which even cannot

be found in other predicted categories. As shown in Figure 3, the

Others type is the dominated error contributor especially for ADE-

drug and reason. After a further root cause analysis of the errors, ac-

tually, the intersentence and long-distance relation assignment and

unseen relation pattern contribute to most of the cases. For example,

in the context “Likely secondary to prednisone. Mild serosangui-

nousoozing at site,” the system failed to recognize the ADE-drug re-

lation between “Mild serosanguinousoozing” and “prednisone.” In

another example, the system also failed to identify the ADE-drug re-

lation between “tardive dyskinesia” and “Trazodone” in “Haldol

and Trazodone have been attempted at rehab without good effect

and were discontinued due the drowsiness as well as (per ED report)

some symptoms of lip smacking that were thought to be tardive dys-

kinesia.” And some unseen patterns such as “tylenol OD” and

“Digoxin toxicity” also caused the errors.

For concepts tasks, the Others type was still the greatest contrib-

utor to errors. However, some cross-categories confusions such as

reason or drug, strength or dosage, and reason or ADE also played

Table 3. Systems’ performance on relations task for each relation type

Att-BiLSTM BiLSTM CNN

Type Precision Recall F1 Precision Recall F1 Precision Recall F1

Strength-Drug 0.9647 0.9713 0.9679 0.9676 0.9708 0.9692 0.9723 0.9578 0.965

Dosage-Drug 0.9735 0.9662 0.9698a 0.9692 0.9703 0.9698a 0.9730 0.9510 0.9619

Duration-Drug 0.8445 0.9437 0.8914a 0.7471 0.9225 0.8256 0.8277 0.8685 0.8477

Frequency-Drug 0.9676 0.9683 0.9679a 0.9392 0.968 0.9534 0.9198 0.9633 0.941

Form-Drug 0.9834 0.9728 0.9780a 0.9813 0.9726 0.9769 0.9820 0.9726 0.9773

Route-Drug 0.9802 0.9473 0.9634a 0.9686 0.9566 0.9625 0.9597 0.9543 0.957

Reason-Drug 0.8300 0.8504 0.8401a 0.7815 0.839 0.8092 0.8165 0.7909 0.8035

ADE-Drug 0.8345 0.7844 0.8087a 0.7209 0.8281 0.7708 0.7669 0.7408 0.7536

Overall (micro) 0.9455 0.9429 0.9442a 0.9236 0.944 0.9336 0.9318 0.9275 0.9296

Overall (macro) 0.9377 0.9404 0.9379a 0.9107 0.937 0.9219 0.9243 0.9201 0.9207

ADE: adverse drug event; Att-BiLSTM: attention-based bidirectional long short-term memory; BiLSTM: bidirectional long short-term memory; CNN: convolu-

tional neural network.
aHighest F1 score for each category.
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significant roles. The root causes of these cross-categories confusions

could be:

• Sense ambiguity: For example, anticoagulation could be drug or

reason; lactic acid could be drug or ADE, indicating abnormal

lab finding.
• Matching error: In UMLS, some medications’ descriptions con-

tain strength information, including “cyanocobalamin 1000

MCG Oral Tablet” (CUI: C0976004), “cyanocobalamin 1000

MCG Oral Capsule” (CUI: C0786262), etc. Thus, in context “2.

Cyanocobalamin 1000 mcg/mL Solution Sig: One (1) Injection

DAILY (Daily) for 3 days,” the system matched

“Cyanocobalamin 1000” to CUI-C0976004 as a medication and

ignored “1000 mcg/ml” as a strength.
• Relation classifier error: Similar to the root causes mentioned in

relations task as inter-sentence/long-distance relation assignment

Table 4. System’s performance on concept and end-to-end tasks with challenge test datasets

Concepts (no filtering) Concepts (after filtering) End to endb

Type Precision Recall F1 Precision Recall F1 Precision Recall F1

Drug 0.8508 0.8883 0.8692 0.8508 0.8883 0.8692

Strength 0.9526 0.9064 0.9289 0.9618 0.8931 0.9262 0.9265 0.8883 0.907

Dosage 0.8992 0.8681 0.8834 0.9267 0.8445 0.8837 0.8978 0.7955 0.8436

Duration 0.6538 0.7380 0.6933 0.6699 0.7354 0.7011 0.5265 0.6995 0.6008

Frequency 0.9186 0.8613 0.8890 0.9492 0.8577 0.9011 0.9601 0.7568 0.8464

Form 0.8767 0.9040 0.8901 0.9089 0.8718 0.8899 0.8868 0.8667 0.8766

Route 0.8706 0.8770 0.8737 0.9086 0.8295 0.8673 0.8795 0.8190 0.8481

Reasona 0.0953 0.8274 0.1709 0.5513 0.6083 0.5784 0.5379 0.4475 0.4886

ADEa 0.4458 0.4208 0.4329 0.4153 0.2742 0.3303

Overall (micro) 0.5013 0.8675 0.6354 0.8586 0.8409 0.8497 0.8382 0.7539 0.7938

Overall (macro) 0.7524 0.8546 0.7748 0.8508 0.8322 0.8358 0.8149 0.7246 0.7599

ADE: adverse drug event.
aADE and reason are regarded as one type before applying the filtering provided by relation system.
bFinal relation outputs are evaluated in end-to-end task.

Figure 3. Confusion matrix for relations task with the challenge test dataset. ADE: adverse drug event.
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and unseen relation pattern. Besides, confusions due to presen-

tence of another drug/therapy were also observed. For example,

in context: “84 yo male with PMHx sx for lymphoma, upper

GIB, cardiomyopathy, who presented with an upper GI bleed

with multiple gastric ulcers seen on endoscopy, likely secondary

to NSAID use and recent high dose prednisone with CHOP

therapy for lymphoma.” the model regarded “upper GI bleed” as

a reason for “endoscopy,” while in gold standard annotations

“upper GI bleed” was an ADE of “prednisone.”
• Annotation error: For examples, in “-DM on insulin,” “5. Hy-

perglycemia: Patient was on insulin sliding scale secondary to ste-

roid use,” the underlined disease/symptom should be reason of

“insulin.” However, they were regarded as ADEs in the gold

standard dataset.

Future work
There are several ways that we believe are worth trying to improve

our system performance. First, in the current design, a 1-step deep

learning-based relation system was used for both relation assign-

ment and concept reasoning or filtering. Implementing a separated

concept reasoning module with machine learning models trained

with gold standard concepts could improve the performance. Be-

sides, adjusting the concept lookup algorism with UMLS and word

sense disambiguation according to the requirements of the task

could also be helpful. For relation system, using new word embed-

ding trained with larger datasets or task-specific dataset are also

worth investigation.

CONCLUSION

In this study, we demonstrated a hybrid clinical NLP system which

can automatically extract ADEs and medications related informa-

tion from clinical notes. The system is based on a generic architec-

ture which connects knowledge-based general clinical NLP

orientated system and task-specific requirements with a deep learn-

ing system. The evaluations of the system with 2018 n2c2 challenge

data exhibit the capability of our approaches in ADE/medications

related information extraction and relations identification. Besides,

we believe our approaches are generic which can be applied to other

applications and benefit the health informatics community.
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