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•  Background  Functional–structural plant models (FSPMs) explore and integrate relationships between a plant’s 
structure and processes that underlie its growth and development. In the last 20 years, scientists interested in func-
tional–structural plant modelling have expanded greatly the range of topics covered and now handle dynamical 
models of growth and development occurring from the microscopic scale, and involving cell division in plant 
meristems, to the macroscopic scales of whole plants and plant communities.
•  Scope  The FSPM approach occupies a central position in plant science; it is at the crossroads of fundamental 
questions in systems biology and predictive ecology. This special issue of Annals of Botany features selected papers 
on critical areas covered by FSPMs and examples of comprehensive models that are used to solve theoretical and ap-
plied questions, ranging from developmental biology to plant phenotyping and management of plants for agronomic 
purposes. Altogether, they offer an opportunity to assess the progress, gaps and bottlenecks along the research path 
originally foreseen for FSPMs two decades ago. This review also allows discussion of current challenges of FSPMs 
regarding (1) integration of multidisciplinary knowledge, (2) methods for handling complex models, (3) standards to 
achieve interoperability and greater genericity and (4) understanding of plant functioning across scales.
•  Conclusions  This approach has demonstrated considerable progress, but has yet to reach its full potential in 
terms of integration and heuristic knowledge production. The research agenda of functional–structural plant mod-
ellers in the coming years should place a greater emphasis on explaining robust emergent patterns, and on the 
causes of possible deviation from it. Modelling such patterns could indeed fuel both generic integration across 
scales and transdisciplinary transfer. In particular, it could be beneficial to emergent fields of research such as 
model-assisted phenotyping and predictive ecology in managed ecosystems.

Key words: Functional–structural plant model, modular structure, architecture, plant modelling, individual-based 
model, systems biology, plant plasticity, predictive ecology, review.

INTRODUCTION

The idea of a plant as a population of parts is an important 
concept for integrating and understanding both plant biology 
and plant community ecology. From an organismal perspec-
tive, plants are modular organisms whose growth and devel-
opment occur throughout their whole life cycle (White, 1979). 
The elementary modules are organs or groups of organs (e.g. 
phytomers) that are repeatedly produced by the apical meri-
stems of shoots and roots (Doussan et al., 2003; Barthélémy 
and Caraglio, 2007). In higher plants, this results in a branched 
structure that is typically anchored to the germination site and 
develops specialized structures above and below ground to 
forage both ‘sides’ of its environment for light, water and nutri-
ents. Though a plant as a whole can be seen as an autotrophic 
organism, none of its parts truly is; rather, it can be described as 
an expanding collection of semi-autonomous organs that each 
adjust to local conditions while being connected to exchange 

complementary resources and coordinating their development 
through internal signalling and the actions of shared genetic 
information. From a population and community perspective, 
the modular structure of plants also plays a prominent role in 
explaining the fitness of individuals under selection (McGraw 
and Wulff, 1983; Tuomi and Vuorisalo, 1989; Salguero-Gómez 
et al., 2018). Contrary to unitary organisms, the counting of in-
dividuals contributes remarkably little information to the study 
of plant populations (Harper 1977, 1980). Even considering 
age or stage classes cannot account for the broad variability of 
inter-individual contributions to sexual reproduction and popu-
lation dynamics. Plant size, more precisely the number and size 
of reproductive parts, is best suited to describing this variability 
(Samson and Werk, 1986; Weiner, 2004). Plant architecture, 
which accounts for the interconnections and spatial distribu-
tion of plant organs, thus represents altogether (1) the support 
for organismal integration, (2) the product of decentralized 
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ontogenetic processes and (3) the effect of life history on plant 
fitness (DeJong et al., 2011; Hallé et al., 2012).

Plant scientists have been engaged in building conceptual 
models of plant growth and development for centuries (DeJong 
et al., 2011). But quantitative models that consider the inter-
play between plant modular structure, the abiotic environment 
and internal functioning and signalling are relatively recent 
(Prusinkiewicz, 2004; Godin and Sinoquet, 2005; Fourcaud 
et al., 2008). Such functional–structural plant models (FSPMs) 
were initiated after the concepts of plant architecture became 
widely acknowledged in botany (Hallé and Oldeman, 1970; 
Hallé, 1986; Fitter, 1987; Hutchings and de Kroon, 1994; 
Sussex and Kerk, 2001) and in parallel with development of 
the computational power offered by personal computers. An 
initial and critical period of research was necessary to establish 
the first methods (e.g. Sinoquet and Andrieu, 1993; Guédon 
et  al., 2001) and standards (e.g. Godin et  al., 1999) to de-
scribe and analyse a diversity of plant architectures. The gen-
eral principles for modelling branching structures (Bell, 1986; 
Prusinkiewicz and Lindenmayer, 1990; Jaeger and De Reffye, 
1992) and coupling 3D models with models of their abiotic 
environment (Room et al., 1994; Takenaka, 1994; Chelle and 
Andrieu, 1998; Sievänen et  al., 2000) were also the subject 
of early research. The first ‘virtual’ plants that interacted dy-
namically and quantitatively with their environment provided 
simulations in the late 1990s (De Reffye et al., 1997; Perttunen 
et al., 1998; Fournier and Andrieu, 1999). Since then, FSPMs 
have attracted a significant audience. A dedicated journal was 

launched last year by Oxford University Press (Long, 2019). 
Recent reviews have illustrated the relevance of this model-
ling approach at various scales in the fields of developmental 
biology (Cieslak et  al., 2016; Galvan-Ampudia et  al., 2016; 
Schneider et  al., 2019), integrative or systems biology (Zhu 
et al., 2016; Chang et al., 2019; Millar et al., 2019) and ap-
plied plant sciences such as forestry and agronomy (Evers, 
2016; Renton and Chauhan, 2017; Evers et al., 2019; Gaudio 
et al., 2019; Postma and Black, 2020). Two decades after the 
first models were launched, this special issue is introducing a 
series of original articles that present the cutting-edge science 
in the field of plant modelling. This symbolic date offers an 
opportunity to assess the progress, gaps and bottlenecks along 
the research path originally foreseen for FSPMs. It also en-
ables updating of the research agenda for the coming years 
and the repositioning of recent questions that have arisen be-
cause of the remarkable shift ignited by ‘omic’ approaches 
in biology, the increasing awareness of the impacts of global 
change on plant communities and the development of com-
puting technologies.

From the start (Sievänen et al., 2000; Godin and Sinoquet, 
2005), three general objectives were identified for the develop-
ment of FSPMs (Fig. 1):

To understand the functioning of plants at and across different 
scales, ranging from meristems to plant communities;

To integrate knowledge from different disciplines, including 
plant biology, biophysics, ecology and computer science, 
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Fig. 1.  FSPMs cover a range of scale integration from gene to community level, with the focus of attention being the explanation of how plant phenotypes (centre 
of the figure) are built from interactions with their inner (including genetic determinants and self-regulation loops expressed at various levels) and outer (including 
abiotic factors and biotic interactions in plant populations and communities) environments. Interactions up to the plant scale involve sub-parts that all share the 
same genetic material (same shape and colour gradient in the figure) and proceed from systems biology. Interactions at higher scales integrate the interplay between 
entities that are genetically distinct (either from the same or different species), and contribute to predictive ecology by linking organismal traits with population and 
community functioning. FSPMs thus complete both classical genetic and molecular network models that are usually applied up to the cellular level, and population 

ecology models that are lacking a robust physiological response to environmental drivers.
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and enable hypothesis testing relative to plant structure and 
function in these different fields of research;

To develop predictive models in applied domains wherever 
plant architecture plays a critical role, including plant mod-
elling in spatially heterogeneous environments (understorey, 
greenhouses, etc.), competition in plant communities, se-
lective canopy perturbation (herbivory, pruning, etc.) and the 
definition of ideotypes for breeders.

Achieving these objectives has also required interdisciplinary 
efforts regarding the development of specific tools and methods 
to tackle the lack of a modelling framework and the shared 
paradigms that existed then, and which is still partly ongoing 
today (Henke et al., 2016; Marshall-Colon et al., 2017). The 
articles in this special issue illustrate the progress that has been 
made towards these different research goals, covering both the 
heuristic aspects permitted by plant modelling and application-
driven models.

ACHIEVEMENTS

Among the advances enabled by FSPMs, integrating plant 
functioning in complex architectures and providing insights 
into the ontogenic gradients that emerge during shoot, root 
and whole plant development (Mathieu et  al., 2012; Eloy 
et al., 2017; Peyhardi et al., 2017) have represented major pro-
gress. Complex architecture is not directly coded in any plant’s 
genome, but results from a hierarchy of developmental pro-
cesses (from the molecular to the macroscopic organizational 
level) that interact with the plant’s life history. The causal ef-
fects of genetic determinism, size-related drift in the ontogeny 
and external environment on plant form can only be deciphered 
by means of modelling.

One example of a model that simulates the development 
of complex architecture in space and time is presented by 
Boudon et  al. (2020) in mango trees. This tropical ever-
green fruit tree displays irregular patterns of vegetative and 
reproductive cycles, with an asynchronous development of 
inflorescences and fruits within and between trees. Their 
model demonstrates the usefulness of a multi-scale approach 
to analysing the effects of endogenous structural, temporal 
(ancestor fate and history) and trophic factors on plant form 
while simulating the population dynamics of new shoots 
and fruits.

Different mechanistic models have been proposed to ex-
plain the size variation of organs and the regulation of plant 
development during ontogeny. They are usually based on 
either a hypothesis of C-driven trophic regulations (e.g. 
Luquet et al., 2006; Kang et al., 2011) or the integration of 
non-trophic signalling (which may be internal to the plant, 
external or an integration of both; e.g. Fournier et al., 2005; 
Verdenal et al., 2008; Evers et al., 2011) to modulate growth 
and development. The two articles by Letort et  al. (2020) 
and Vidal and Andrieu (2020) illustrate these two model-
ling approaches. The latest developments of the GreenLab 
model, one of the pioneering FSPMs published two decades 
ago (De Reffye et al., 1997; Yan et al., 2004), are presented 
by Letort et  al. (2020). Their study highlights the interest 

of associating stochastic developmental rules with a state 
variable that represents the internal trophic pressure on C, to 
explain the variability of morphogenesis observed in young 
Coffea trees. By contrast, the dynamic scheduling of organ 
initiation and extension is triggered by non-trophic events 
in the grass model proposed by Vidal and Andrieu (2020). 
They further developed the concept of ‘coordination rules’, 
which designate the temporal relationships and apparent trig-
gering of successive developmental events during ontogeny 
(Fournier and Andrieu, 1999). Their study has established 
that common coordination rules can be applied to predict the 
patterning of shoot architecture in maize for genotypes that 
display contrasting phenotypes.

Beyond morphogenesis and the acquisition of plant form, 
functional–structural plant modelling has also been used 
for the integration of plant physiology across spatial and 
temporal scales. Where the integration of knowledge has 
received the greatest concern is undoubtedly the assimila-
tion of C through photosynthesis (e.g. Evers et  al., 2010; 
Zhu et  al., 2013) and solving the issue of dynamic photo-
assimilate distribution among plant parts (e.g. Grafahrend-
Belau et  al., 2013; Sonnewald and Fernie, 2018; Lacointe 
and Minchin, 2019), two processes that have been modelled 
from the molecular to the population scale. In this issue, a 
historical viewpoint is proposed by Stirbet et al. (2020) on 
the role of modelling in the understanding of photosynthesis. 
Song et  al. (2020) present a detailed model that integrates 
photosynthesis from the leaf to the whole canopy, based on a 
3D architecture model of soybean. They illustrate the poten-
tial of such an approach to analyse the response of crops to 
elevated CO2 levels and dissect the relative contributions of 
structural and functional traits. Regarding photo-assimilate 
distribution, two generic multi-scale models are introduced 
by Reyes et  al. (2020) and Auzmendi and Hanan (2020). 
The two models, namely MuSCA and AUCAM, will enable 
further improvements to the computation time of FSPMs 
and should facilitate the inter-comparison of C partitioning 
models and the refining of tests on the physiological pro-
cesses at work.

As for applications, the advances achieved by FSPMs in 
terms of the integration of plant architecture and plant primary 
production now mean this is a mature tool to quantify the ef-
fects of architectural traits and canopy management on light 
interception and potential C assimilation. Zhang et al. (2020a) 
illustrated this by quantifying the effects of shoot-bending 
on cut rose production under greenhouse conditions, thus 
integrating heterogeneous canopy effects and light conditions 
(natural and artificial light). Prieto et al. (2020) used a similar 
approach in grapevine to compare the gains in photosynthesis 
enabled by different training systems, including situations with 
free shoots displaying a complex architecture. In horticultural 
science, the handling of production with FSPMs has found ap-
plications in various crops and ornamental species (Sarlikioti 
et al., 2011; Kang et al., 2012; Chen et al., 2014). Vermeiren 
et al. (2020) present a study on the value of refining leaf shape 
representations in a tomato model. Their study suggests that the 
cost–benefit ratio of realistic 3D shape representations tends to 
favour their inclusion in FSPMs.
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CHALLENGES

Integration

Despite being firmly established in plant science and having 
achieved significant progress, the full promise of FSPMs is 
still far from being delivered, even after two decades. One 
striking observation is that until now the vast majority of 
studies have focused on particular biological questions, 
using models applied specifically to a single species or 
integrating a limited array of physiological processes. The 
ability to effectively derive knowledge from the integra-
tion of complex structures and functions is thus likely still 
in its infancy. To illustrate this lack of integration, the fun-
damental issue of whole-plant integration, which considers 
together root and shoot foraging for light and soil resources, 
has received very limited attoentin (Drouet and Pagès, 2007; 
Louarn and Faverjon, 2018). Most current ‘virtual’ plants are 
at best ‘virtual’ half-plants. They focus either on shoot or 
root functioning, but do not examine the interplays between 
the two ‘sides’ of a plant that become critical when adapting 
to stressful conditions (Dunbabin et  al., 2013; Hill et  al., 
2013; Ndour et al., 2017; De Bauw et al., 2020). In this issue, 
Braghiere et al. (2020) introduce a mechanistic model that 
combines soil, roots and shoots in terms of the acquisition 
of water and carbon by plants. They illustrate the heuristic 
potential of such an approach to explaining plant plasticity in 
response to drought and identifying successful trait combin-
ations for water acquisition in plant communities. Attempts 
at modelling also do exist regarding the coupling of shoots 
and roots with respect to mineral acquisition. However, the 
models were developed for only one form of mineral uptake 
(Drouet and Pagès, 2007; Barillot et al., 2016) and they do 
not currently take account of interactions with drought.

Integration across scales also remains very patchy. Although 
first advocated as a tool to link genotype and phenotype (Godin 
and Sinoquet, 2005), few FSPMs have tried to tackle this issue 
up to the plant scale (Baldazzi et al., 2016; Migault et al., 2017; 
Picheny et al., 2017). The effective integration of genetic control 
has mostly been considered regarding the functioning of meri-
stems and plant tissues (e.g. Lucas et al., 2008; Galvan-Ampudia 
et al., 2016). Paradoxically, the issue of phenotypic prediction 
from genetic data is now more widely addressed using simpler 
crop models that define plant phenotypes from a few integrated 
traits but consider a broad range of environmental responses 
(Chenu et al., 2017). In the search for breeding targets, the possi-
bility offered by FSPMs to break down the plant phenotype into 
elementary phenotypic traits and to account for interactions be-
tween these traits at different scales mean that they continue to be 
an appropriate approach to addressing genotype by environment 
interactions. In these efforts to predict the emergence of complex 
phenotypes, much more attention should be paid to multi-scale 
models in the years to come, as we improve our abilities to inte-
grate different sources of knowledge.

Biological understanding

In these conditions, the validity domain of FSPMs is currently 
restricted. The integration of plant physiology is still too limited 

to embrace the challenge of breaking down plant responses to 
multiple stressors under most ‘real-life’ conditions. The main 
advances reported have concerned the integration of multiple 
light responses when modelling competition above ground (e.g. 
Gautier et al., 2000; Kahlen and Chen, 2015). Light is indeed 
both a trophic resource that supplies excitation energy to the 
photosynthetic process and a physical signal that informs plants 
of competitors in their neighbourhood in order to trigger adap-
tive responses (Ballaré and Casal, 2000). In this issue, Zhang 
et al. (2020b) present a model that considers the trophic and 
signalling effects of light on photosynthesis in rose plants. Their 
approach enables the integration of trait responses at the organ 
level and can disentangle the interactive effects generated on C 
assimilation at the whole plant level. Further physiological in-
tegration is also tested in the study by Coussement et al. (2020). 
These authors present a soybean model that incorporates both C 
metabolism and plant–water relationships, so that plant growth 
is driven by turgor pressure. This state variable allows the syn-
thesis of both source and sink-related controls on organ growth 
over short time scales. Although preliminary, this work could 
serve to build future mechanistic models that aggregate trophic 
and non-trophic effects on sink activity in plant models (Pantin 
et al., 2012; Fatichi et al., 2019; Gauthier et al., 2020).

Such advances in mechanistic plant modelling are urgently 
needed to challenge and fill the gaps in the understanding of 
plant functioning. For instance, this is necessary to enable pro-
jections of climate change impacts on crop production, where 
the refining of existing models remains a burning question (Tao 
et al., 2018, 2020). Beyond crops, the general question of adap-
tive responses in plants, and of the major traits involved, is also 
central to predictive ecology (Mouquet et  al., 2015). FSPMs 
have an important role to play in classifying the plastic re-
sponses of plants and in analysing the roles of ontogeny and 
‘true’ plasticity (i.e. inducing a change to the ontogenetic tra-
jectory) in their adaptive value (Wright and Mcconnaughay, 
2002; Miner et al., 2005). Solving such theoretical questions 
has to date received limited attention from functional–struc-
tural plant modellers (e.g. Renton and Poot, 2014; Pagès, 2016; 
Lehnebach et al., 2018). This is probably due in part to the di-
versity of models, driven by a diversity of applied questions, 
which makes the use of FSPMs naturally lean towards grasping 
the diversity of observed situations. But identifying and ex-
plaining regularities across the plant kingdom, solving paradig-
matic questions in plant science (the emergence of allometry, 
self-similarity, stoichiometry or homeostasis, etc.), should also 
be important objectives for FSPMs in the future.

Complexity

Because FSPMs deal with numerous entities, spatial scales, 
heterogeneities and parameters, they are usually seen to be 
more complex and less tractable than common crop models or 
analytical models in ecology. In the same way as other types of 
complex models (Grimm and Railsback, 2005), it cannot be de-
nied that this complexity comes at a cost. It has consequences in 
terms of model development and maintenance, which are gen-
erally more time-consuming. It also affects all aspects related 
to communication regarding the model, whether this concerns 
publication (limited description of the details) or the training of 
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users and transparent dissemination to a broader audience. The 
deployment of dedicated modelling platforms has considerably 
alleviated these costs and improved model reusability and ac-
cessibility in the past few years (Kniemeyer et al., 2007; Barczi 
et al., 2008; Pradal et al., 2008; Marshall-Colon et al., 2017). 
However, these platforms remain mostly accessible only to ex-
perts in the field. They are based on different strategies of inte-
gration (programming languages; soft versus hard coupling of 
structure and function; open science versus community-driven 
exchanges) and still lack interoperability for most aspects of 
plant modelling. Computational requirements are less of an 
issue than they used to be (Sievänen et al., 2000) but still hamper 
the range of methods that can effectively be applied for the cali-
bration and sensitivity analysis of FSPMs. Further research is 
needed that considers the peculiarities of complex models and 
the issue of limited data availability (Evans et al., 2014; Evers 
et al., 2018). Wang et al. (2020) address the question of FSPM 
calibration when data are scarce. They have developed an ap-
proach reliant on pattern-oriented modelling to sort parameter 
sets during the parameterization process and reduce the uncer-
tainty of model outputs. More generally, solving the theoretical, 
methodological, engineering and communicability problems 
related to complex multi-scale models will be critical to fuel 
the future development of FSPMs (Bucksch et al., 2017).

Standards

A part of the solution to the diversity–genericity dilemma 
raised above is the definition of standards that could be used 
by modellers to exchange ideas, formalisms and data, inde-
pendent of platforms and of the types of plants on which they 
are working; the establishment of such a definition would be 
a sign that this research field is maturing. Considerable pro-
gress has been achieved in this area with respect to data struc-
tures (e.g. for roots, Lobet et al., 2015), modelling formalisms 
(e.g. Boudon et al., 2012; Postma et al., 2017), exchangeable 
modules (Albasha et al., 2019) and gateways between FSPM 
platforms (Long et  al., 2018). However, the state of the art 
in terms of model interoperability is still markedly heteroge-
neous and probably a factor that is more dispersive than uni-
fying at present. To become more widespread, and contribute to 
building scientific knowledge beyond a community of special-
ists, such standards must be widely shared and acknowledged. 
The formal comparison of models also needs to be made easier. 
One trend already at work consists in developing generic plant 
models that can cope with a broad range of species (Pagès 
et al., 2014; Henke et al., 2016; Kang et al., 2018; Faverjon 
et al., 2019; Braghiere et al., 2020). This should obviously be 
encouraged as it will facilitate future comparisons and integra-
tion. Another step towards this convergence objective should be 
the identification of standards to describe and test multi-scale 
models. This is clearly an issue, as different disciplinary and 
scale-dependent ‘good practices’ already coexist (e.g. Grimm 
et  al., 2006; Bellocchi et  al., 2011; Marshall-Colon et  al., 
2017). But the FSPM community could learn from the success 
of such standards in other modelling fields. Finally, the sharing 
of data sets and minimal target patterns at each scale between 
modelling groups could be as important as sharing technical 
knowledge of the models (e.g. Rosenzweig et  al., 2013, for 

the AgMIP initiative in crop models; Poorter et al., 2013, for 
proposing testable dose–response curves in mechanistic plant 
models). Complex models seek to embrace and reflect some of 
the complexity of the real world, but also require the collection 
of appropriate data at various scales. A lot might be gained if 
high-quality datasets could be published and widely shared, for 
reuse (Molloy, 2011).

NEW HORIZONS AND OPPORTUNITIES

Some of the changes in the research landscape that have oc-
curred during the past decade represent real opportunities for 
the future development of FSPMs. These include the rise of 
plant phenomics, i.e. the methods and facilities to generate high-
throughput and valuable phenotypic information (Furbank, 
2009; Tardieu et al., 2017), which constitutes a major evolu-
tion. It changes both the availability of data on plant structure 
and function and how existing models can be used to link gen-
etic and phenotypic data (Chang et al., 2019; Chen et al., 2019; 
Van Eeuwijk et al., 2019). Non-invasive, imaging- and model-
based methods have become more common and widely used 
to characterize plant phenotypes. One example is presented in 
the paper by Zhu et al. (2020), where 3D plant architecture in 
the field is derived from multi-view photography. Their study 
applies this method for the first time to strip-intercropping 
systems to assess light partitioning over the entire growth 
season. Che et  al. (2020) apply a similar approach for high-
throughput phenotyping of maize genotypes in the field. In add-
ition to directly assisting in the measurement and analysis of 
integrated traits, FSPMs could also be involved in developing 
the deep learning methods used for automatic image analysis. 
Complementarily to real plant images, the realistic represen-
tation of plant architecture that FSPMs can generate could 
serve as a novel way to provide cost-effective datasets of ren-
dered images for a broad array of phenotypes (Liu et al., 2017; 
Ubbens et al., 2018).

Another important trend that is of increasing interest to func-
tional–structural plant modellers is a concern for including de-
tailed physiological traits and plastic responses in ecological 
models. Complex questions on how populations and commu-
nities respond to environmental drivers have attracted con-
siderable attention in the context of global change (Harte and 
Shaw, 1995). Regarding plants, individual-based models have 
proved able to account for complex patterns of interactions, 
particularly because individuals are the nexus of trait-based 
integration and can express considerable plasticity in response 
to their neighbours (Zakharova et  al., 2019). On this topic, 
Zhang and DeAngelis (2020) present a comprehensive review 
of agent-based models (or individual-based models, IBMs) in 
plant biology and ecology. They clearly highlight the strengths 
of this approach with respect to both theoretical ecology and 
for solving applied questions of conservation ecology and 
managed ecosystems. FSPMs represent a limit-case for IBM 
models. Up to the plant scale, they enable analysis of a whole 
plant as a population of parts, usually focusing on questions of 
organismal integration and plasticity. But applied at the popu-
lation scale they can be used to simulate populations of actual 
interacting individuals (i.e. physiologically distinct; poten-
tially different genotypes) and offer a tool to consider the two 
regulation levels (i.e. plants and modular units) foreseen by 
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Harper (1977) in his seminal book on plant population biology. 
They provide an opportunity to refine the representation of en-
vironmental variables and plastic plant responses, which is 
a critical issue for many plant IBMs (Breckling et al., 2006; 
Berger et al., 2008). Within the framework of managed eco-
systems, making better use of plant diversity is central to the 
agricultural practices promoted in agro-ecology (Gaba et al., 
2015). Under such systems, FSPMs could serve to improve 
our understanding of plant interactions in mixtures, to opti-
mize mixed crop set-ups and to find optimal trait combinations 
for mixed species (Evers et  al., 2019; Gaudio et  al., 2019). 
In line with these objectives, Louarn et al. (2020) investigate 
the design of mixture ideotypes (or ‘ideomixes’; Litrico and 
Violle, 2015) using a generic FSPM. They have demonstrated 
the feasibility of using such models to detect plant traits that 
are particularly involved in plant–plant interactions and which 
could serve as new breeding targets for adapting cultivars to 
intercropping systems. They also suggest the heuristic poten-
tial of this tool to investigate favourable combinations of traits 
as a function of the environment (i.e. nitrogen management). 
The interest of FSPMs in ecology goes beyond the dynamics 
of plant communities, and also addresses the questions of plant 
interactions with organisms at different trophic levels in eco-
systems, including host–pathogen systems (Calonnec et  al., 
2013; Robert et  al., 2018), plant–insect relationships (Wang 
et  al., 2016) and plant community responses to herbivory 
(Combes et al., 2011; Ney et al., 2013). Although less devel-
oped, such models could contribute in future to deepening our 
understanding of integrated plant responses to combined bi-
otic and abiotic stresses.

OUTLOOK

The development of FSPMs has matured considerably during the 
past 20 years and has already delivered significant results at dif-
ferent levels of organization and in diverse fields of plant science. 
After a mainly exploratory phase, the approach has yet to reach its 
full potential in terms of integration and heuristic knowledge pro-
duction, but its coverage of the full continuum – from elementary 
traits to complex plant phenotype and then population functioning 
– renders it a unique tool for modern biology (Fig. 1). This places 
it in a central position at the crossroads of fundamental questions 
in plant biology and predictive ecology. On the one hand, FSPMs 
extend systems biology beyond the cellular level and should make 
it possible to examine causality in the control of plant phenotypes 
by (1) their genotype, (2) the downward controls of higher plant 
scales on cell signalling and gene expression, and (3) their local 
environment (Noble, 2013). On the other hand, FSPMs enable the 
linking of plant community structure and demographic processes 
with individuals’ fitness and their underlying physiological and 
morphological traits. By acknowledging a discontinuity at the 
boundary of individuals, between sub-parts that are genetically 
identical at lower scales and interacting entities that are genetic-
ally distinct at higher scales, FSPMs could contribute to unravel-
ling the role of intra- and interspecific levels of diversity on the 
functioning of communities (Zakharova et al., 2019). Given this 
broad range of applications, the future of FSPMs is unlikely to 
bridge all scales in a single model, but should rather provide an 

array of modelling approaches to explain robust emergent patterns 
at various scales (e.g. homeostasis, developmental patterning, al-
lometry, population self-thinning) and underpin deviations from 
such regularities (Passioura, 1979). This knowledge can provide 
solid ground for diverse applications at higher organization scales 
using FSPMs either directly or through hybridization with sim-
pler models. This position is altogether stimulating, challenging 
and dispersive. As a relatively young, multidisciplinary commu-
nity, the FSPM community still has to figure out how to avoid 
the trap of being too complex in its approaches while providing 
limited generality. This may be overcome by improving stand-
ards for model integration and by confirming robust predictions 
of multi-scale patterns in the years to come.
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