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•  Background and Aims  Using internal trophic pressure as a regulating variable to model the complex inter-
action loops between organogenesis, production of assimilates and partitioning in functional–structural models of 
plant growth has attracted increasing interest in recent years. However, this approach is hampered by the fact that 
internal trophic pressure is a non-measurable quantity that can be assessed only through model parametric estima-
tion, for which the methodology is not straightforward, especially when the model is stochastic.
•  Methods  A stochastic GreenLab model of plant growth (called ‘GL4’) is developed with a feedback effect 
of internal trophic competition, represented by the ratio of biomass supply to demand (Q/D), on organogen-
esis. A methodology for its parameter estimation is presented and applied to a dataset of 15 two-year-old Coffea 
canephora trees. Based on the fitting results, variations in Q/D are reconstructed and analysed in relation to the 
estimated variations in organogenesis parameters.
•  Key Results  Our stochastic retroactive model was able to simulate realistically the progressive set-up of young 
plant architecture and the branch pruning effect. Parameter estimation using real data for Coffea trees provided 
access to the internal trophic dynamics. These dynamics correlated with the organogenesis probabilities during 
the establishment phase.
•  Conclusions  The model can satisfactorily reproduce the measured data, thus opening up promising avenues 
for further applying this original procedure to other experimental data. The framework developed can serve as a 
model-based toolkit to reconstruct the hidden internal trophic dynamics of plant growth.

Key words:  GreenLab, parameter estimation, plant development, Bernoulli random process, functional–struc-
tural plant growth model, source–sink balance, trophic competition, Coffea.

INTRODUCTION

Development plays a key role in determining the set-up of plant 
architecture and its growth. It is therefore a core component of 
most functional–structural plant growth models (FSPMs) (Evers 
et al., 2018): accounting for plant architecture and its effects on 
growth is precisely what characterizes an FSPM, in contrast to 
the so-called crop models or process-based models (e.g. Brisson 
et al., 2003). Plant development is driven by the iterative and 
simultaneous activity of the different meristems, at work in each 
of the growing points of its structure. When described at the 
organ scale, as commonly done in most FSPMs, plant structure 
can be conveniently defined as a static set of interconnected or-
gans with a particular topological and geometrical organization; 
development is thus the dynamic process driving structure evo-
lution throughout plant growth. Diverse formalisms have been 
used or developed to represent plant structure and development 
in FSPMs, such as L-systems (Prusinkiewicz and Lindenmayer, 
1990), dual-scale automata in the GreenLab FSPM ‘series’ 
studied in this paper (Zhao et  al., 2001), formal grammars 
(Kurth and Sloboda, 1999) and graphs (Godin and Caraglio, 
1998). Behind this apparent diversity, all these formalisms 

share common generic properties: they can deal with different 
spatial scales depending on the application at aim (cell, organ, 
phytomer, axis, etc.) and they incorporate a way to describe the 
rules that determine the fate of a bud depending on its position 
and on its current characteristics. Although not an exhaustive 
review, we can list the following categories:

(1) Development is determined by deterministic rules given 
as input, i.e. no plasticity of the plant structure in response to 
internal variables can be simulated: e.g. GreenLab ‘GL1’ (Yan 
et al., 2004; Guo et al., 2006; Ma et al., 2018), L-Peach (Allen 
et  al., 2005) or the model introduced by Coussement et  al. 
(2018). This category includes models with deterministic de-
velopment driven by environmental variables (e.g. Louarn and 
Faverjon, 2018). Such a development module can be useful as 
a convenient framework for specific studies at fine scales or of 
detailed processes (e.g. transport phenomena within the plant 
structure). Unless taking into account environmental control, the 
relevance of this deterministic development hypothesis for real 
applications is limited to a few single-stemmed species (maize: 
Yan et al., 2004; sunflower: Wu et al., 2012) or to ‘average’ plant 
representations, that is to say simulations that represent only the 
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average structure of sampled plants from a single population 
(see Lemaire et al., 2009, for an illustration of this approach).

(2) Development is stochastic: using bud outbreak probabil-
ities in the GreenLab model ‘GL2’ (Kang et al., 2008, 2018; 
Wang et al., 2010), stochastic L-systems associated with a col-
lision detection algorithm to impede bud outbreak if the pos-
ition is already filled in LIGNUM (Perttunen et  al., 2005), 
and hierarchical hidden Markov and semi-Markov models in 
MappleT for which the transition probability matrices are esti-
mated annually (Costes et al., 2008). Here again, environmental 
variables can be taken into account in these probabilistic frame-
works. For instance, in the model by Sterck et al. (2005), flush 
probability depends on phytomer position and daily photosyn-
thetic light intensity. Simulations with stochastic development 
allow the user to account for the variability within and among 
individuals, which can be of interest, for instance, when com-
paring two cultivars or in a breeding context.

(3) Development is deterministic but regulated by a state vari-
able that is assumed to be representative of the vigour of the 
plant: the assimilate supply to demand ratio in GreenLab ‘GL3’ 
(Mathieu et al., 2009), in Evers et al. (2010) or in Ecomeristem 
(Luquet et al., 2006) where it is called the ‘index of competition’. 
The ECOPALM model (Combres et al., 2013) combines an in-
ternal trophic competition index and the effect of photoperiod. 
Within this category one can also include models in which, with a 
similar philosophy but at a more local scale, bud outbreak is made 
dependent on the characteristics of its bearing phytomer through 
some index quantifying local vigour: for instance in LIGNUM 
(Lo et al., 2001) the number of activated buds is a function of the 
segment foliage mass of the bearing tree. As soon as such an inter-
action between development and a functional variable is included, 
the dynamics of the model become more complex because a feed-
back loop is at play, which is a well-known feature of dynamic 
systems theory. However, the widespread use of such feedback 
mechanism is strongly hampered by the difficulties induced for 
parameter estimation, because the supply-to-demand ratio is, by 
definition, a ‘hidden’ variable that cannot be directly measured.

(4) Development is stochastic and driven by assimilate 
supply-to-demand ratio: a reference work was published by 
Pallas et al. (2010) for the Greenlab model ‘GL4’. In this GL4 
model, the plant is considered as a stochastic self-regulating 
system that can react to exogenous (e.g. environmental stresses 
that reduce plant production; organ or branch pruning that re-
duce plant demand) or endogenous (e.g. growth of new branches 
or fruits that increase demand) influences. Following on from 
this pioneering work, here we present a more systematic meth-
odology for parameterization of the Greenlab model ‘GL4’ and 
define a new sampling strategy for designing an experimental 
protocol relevant to this methodology.

This study of typology highlights the importance of the vari-
able representing the internal trophic state of the plant in sev-
eral FSPMs (types 3 and 4). Using this variable as a regulator 
of plant development, either in a deterministic or in a stochastic 
way, is appealing as it has an intuitive rationale: raising a new 
branch by lateral bud outbreak has a cost that the plant should be 
able to sustain in its biomass budget. One can therefore legitim-
ately examine to what extent this assumption can be considered 
valid or, at least, to be a reasonable proxy allowing growth dy-
namics to be reproduced. This question has a long history but 
is still not fully resolved, and tackling it is hampered by three 

important bottlenecks: (1) How do we define and quantify the 
plant internal trophic pressure (local or global allocation pro-
cess, absolute or relative definition of organ demand)? (2) How 
do we estimate its value and evolution throughout plant growth 
by disentangling it from other processes? (3) How do we es-
timate the parameters of plant development, especially in the 
stochastic framework? Question (1) represents a modelling hy-
pothesis. In GreenLab, the choice was to use a global alloca-
tion process (Heuvelink, 1995) with a dimensionless relative 
demand computed based on leaf sink strength as a reference. 
The rationale is that absolute sink strength is generally defined 
using potential growth rate (e.g. Evers et al., 2010), which can 
be difficult to measure experimentally. The choice of leaf as 
a reference is purely arbitrary (but applicable to nearly every 
plant species) and could be easily changed. It is not our pur-
pose to discuss point (1) further here. Our aims are to propose a 
methodology to tackle points (2) and (3) in the framework of a 
new stochastic and retroactive version of the GreenLab model, 
and to investigate the possible relationship between internal 
trophic state and plant development by applying this new meth-
odology to a dataset on coffee trees.

The paper is organized as follows: we first present the model 
version ‘GL4’, which accounts for plant development as a sto-
chastic process driven by the ratio of biomass supply to demand. 
The procedure proposed for its parameter estimation is then 
presented. This procedure is the latest achievement of a con-
tinuous long-term study that has tackled the problems of model 
parameterization for the different versions of GreenLab, from 
the simplest to the most complex. It uses organ-scale samples 
and exploits the concept of ‘organic series’ (Buis and Barthou, 
1984), in line with the work presented by Kang et al. (2018) but 
with adaptations to take into account the retroactions between the 
plant trophic status and its organogenesis. In the Results, after 
a case study illustrating some emergent properties of the ‘GL4’ 
model, the core of the paper is the application of this new meth-
odology to a dataset collected on 2-year-old coffee trees (Coffea 
canephora) grown in the Ivory Coast: the estimated parameters 
then allow us to reconstruct the source–sink dynamics (Q/D) of 
the plants and to investigate, for the first time for this species, the 
existence and shape of the potential dependencies between or-
ganogenesis probabilities and this variable. For the sake of con-
sistency and clarity, the model presentation and all illustrations 
will use virtual young plants that feature the Roux architectural 
model (Fig. 1) as defined by Hallé et al. (1978): the architecture 
is determined by a monopodial orthotropic trunk meristem sub-
ject to rhythmic growth; the branches are plagiotropic and in-
serted continuously, with no branching delays or apical death of 
the stem and branches. These assumptions are consistent with the 
growth patterns of young Coffea trees.

MATERIALS AND METHODS

Main equations of the GreenLab model core

As already briefly discussed, the GreenLab model has been 
adapted to many versions, each corresponding to different mod-
elling objectives (a detailed description of their common base is 
given by Letort, 2008). Here, we consider its dynamic, discrete 
and stochastic version with a time step, termed development 
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cycle (CD), characteristic of the specific growth dynamics of 
the simulated species. At a given time, the associated number 
of CDs can be estimated by fitting the parameters of a binomial 
distribution to the numbers of phytomers counted on a collec-
tion of stems (Kang et al., 2016).

In GreenLab, a deliberately simplified set of physiological 
phenomena is described, with the aim of representing only the 
common base to the growth of quasi-all plants whatever the 
species and of keeping the delicate balance between model 
complexity, generality and realism (Fig. 1).

Biomass acquisition Q(t) is computed as in eqn  (1), based 
on the formalism of Beer–Lambert’s law for light intercep-
tion, used at the single plant scale as a parametric empirical 
relationship:

Q(t) = E(t)Spµ

Å
1 − e−

S(t)
Sp

ã
� (1)

where S(t) is the sum of the photosynthetically active blade 
areas at time t; µ is a parameter of light use efficiency that rep-
resents the conversion from light energy to assimilate produc-
tion; Sp is an estimated parameter termed ‘production surface’ 
driving the saturation of intercepted light due to self-shadowing 
or to competition with neighbours. This amount of assimilate 
is shared between all growing organs o (o = b: blades, o =  i: 
internodes), regardless of their position (Heuvelink, 1995) and 
proportionally to their relative demand. Leaf sink strength is 
chosen as a reference and set to 1. The increment of biomass 
Δqo(h,i,t) acquired by an organ at age i and branching order h at 
growth cycle t is then:

∆qo (h, i, t) = Po (h)ϕo (i; αo, βo, To)
Q(t − 1)

D(t)� (2)

where D(t) is total plant demand, namely the sum, over all plant 
organs and compartments, of their respective demands. The de-
mand of expanding organs is defined as the product of a sink 

strength parameter Po(h) (h = 1, 2 in this paper’s illustrations) 
and a sink variation function i �→ φo(i;αo, βo, To), defined on 
R  → [0, 1], that can take for instance the form of a normalized 
beta density law (Yin et  al., 2003) of parameters αo and βo 
whose support is included in [0, To]. A particular formalism is 
used for ring growth demand, which is calculated at the global 
scale as a function of Na(t) (the number of active leaves at time t 
in the tree), with reference to the so-called ‘pipe-model’ theory 
(Letort et al., 2008; Lehnebach et al., 2018):

Dr (t) = Pr · Na(t)� (3)

where Pr is the sink value for ring growth. Once globally al-
located, the biomass for ring growth is then spread along each 
internode proportional to the number of active leaves located 
above its position in the plant architecture. Leaf area is deter-
mined from the amount of allocated biomass through an allo-
metric relationship involving a thickness parameter e. This 
parameter is estimated from a linear regression between leaf 
area and leaf mass. Note that the root compartment is omitted 
here for the sake of clarity but could be easily included. The 
simulation is initialized by Q(0), the biomass provided by the 
seed at emergence.

Introducing the assimilate supply-to-demand ratio as a key state 
variable with feedback effect on organogenesis

In eqn (2), it is clear that the ratio of biomass supply to de-
mand Q(t − 1)/D(t) is a key state variable of the plant seen as a 
dynamic system. This ratio can be interpreted as an indicator of 
the internal state of trophic competition within the plant.

Based on both Kang et al.’s (2008) ‘GL2’ in their stochastic 
version without feedback of plant physiology on organogenesis 
and Mathieu et  al.’s (2009) ‘GL3’ in their deterministic ver-
sion with feedback, we introduce here the hypothesis that the 
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Fig. 1.  The dynamic loop of the processes included in the GreenLab model. Plant topology at time t is described by its structure, Strt, whose formal definition 
can be based on graph, L-system or dual-scale automation, and updated at each organogenesis event, regulated by stochastic rules and by the ratio of supply to 

demand as introduced in this paper.
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probabilities of phytomer emission from respectively apical and 
lateral buds depend on the ratio of assimilate supply to demand, 
Q/D. Thus, two parameters of the original stochastic version 
of the development model, as presented by Kang et al. (2016, 
2018) and noting that, in our simplified illustration, meristem 
mortality is not considered, are modified into functions of Q/D 
instead of being fixed as input:

	•	 ah,t ← f(Q/D(t), Ka(h)): the probability of branch appearance 
at branching order h (h ≤ 2 in this case), at time t, with Ka a 
vector of associated parameter values

	•	 bh,t ← f(Q/D(t), Kb(h)): the probability of phytomer emission 
along an axis at branching order h, at time t, with Kb a vector 
of associated parameter values

Several forms could be considered for these functions that take 
their values in [0, 1], a first natural choice being the sigmoid 
form, widespread in many biological processes, for instance 
under the form:

bh,t

Å
Q
D

, Kb (h)
ã
=

Kb · Q(t − 1)/D(t)
1 + Kb · Q(t − 1)/D(t)� (4)

where in this instance the vector Kb is of dimension 1 and the 
index h has been omitted for the sake of clarity. For the branching 
probability a, the same function form is set, with parameter Ka, 
with Ka = 200 arbitrarily chosen to accentuate the base effect 
presented in our simulated case study, for illustration purposes 
(see Results for the definition of the base effect). Of course in 
this simulation study this choice is purely user-defined and an 
adequate function shape will need to be thoroughly investigated 
when applications to real plants are considered.

Formally, the development model can therefore be written 
under the form of a F0L-System [as introduced for GreenLab 
by Loi and Cournède (2008); see also Diao et al. (2012) for 
the formal description of the production rules in the stochastic 
model of Eucalyptus development) with conditions for the ap-
plication of the production rules.

Although seemingly insignificant, this modification implies 
some changes in the simulation loop. Indeed, assuming that the 
plant has been simulated until time t − 1, the demand of the next 
time step is now computed as follows:

	 •	 Compute the demand of organs and compartments that 
were created at previous time steps, Dprev(t) (their demand 
being zero if they have already finished their expansion 
phase).

	 •	 Track every phytomer bearing functional buds and com-
pute the demand Pphyt(h (bud) , 1) of the phytomer that 
might emerge from this bud, weighted by its probability 
of appearanceπ(bud, Q/D): phytomers that have very low 
probability of appearance will thus have less impact on this 
‘potential’ demand.

	 •	 The demand is thus the solution of the following equation:

D (t) = Dprev (t) +
∑

bud
π(bud, Q/D) · Pphyt(k (bud) , 1)

� (5)

which has to be solved either analytically (but tractable only in 
very simple cases) or numerically using the Newton algorithm. 
For young plants with the Roux architectural model (presented 
in the Results), π takes the values:

π

Å
bud,

Q(t − 1)
D(t)

ã
=




Kb(1) · Q
D

1+Kb(1) · Q
D

if bud is apical on main stem

Kb(2) · Q
D

1+Kb(2) · Q
D

if bud is apical on branch

Ka(2) · Q
D

1+Ka(2) · Q
D
· Kb(2) · Q

D

1+Kb(2) · Q
D

if bud is lateral

� (6)
	•	 Using this value of D(t), determine for each bud whether it 

breaks to create a new phytomer drawn by random with prob-

ability π
Ä

bud, Q(t−1)
D(t)

ä

	•	 Re-compute the effective value of the demand, taking into 
account only the phytomer that appeared.

	•	 Allocate biomass to each organ.

A new methodology for model parameterization and experimental 
sampling

De Reffye et al. (2018) presented a new methodology for par-
ameter estimation of the ‘GL4’ model and tested it on virtual 
data. The method relies on a series of average measured organ 
weights to estimate simultaneously both functional (sinks, effi-
ciency, etc.) and topological parameters (Ka, Kb). This in silico 
exercise allowed them to test the method because the exact so-
lution was known and could be compared with the obtained 
estimates. The number of plant samples could also conveni-
ently be varied, while this is obviously not possible with real 
experimental data. In summary, they observed that the average 
of N stochastic simulations converged towards the theoretical 
average plant computed with the potential structure using the 
same parameter values when N increased. They found that the 
model parameters could be satisfactorily estimated using the 
procedure described above and that the parameters Ka and Kb 
showed the highest bias. This is logical, as their estimation re-
lies on the fact that information regarding plant development is 
embedded in data for organ mass, owing to the influence of plant 
development on its functioning. The results of this necessary in 
silico step now allow us to consider its application on real data.

As this is the first study to investigate the dependency be-
tween the internal trophic state of the plant (quantified by the 
Q/D ratio of GreenLab) and the organogenesis probabilities ah,t 
and bh,t of coffee trees, there was no a priori available know-
ledge on the shape of this dependency. The homographic func-
tional family introduced in eqn  (6) was purely arbitrary, and 
used for illustration purposes only. Therefore, our objective is 
here to first extract empirical information on the shape of this 
functional dependency. To this end, we applied the following 
procedure:

	1.	 Estimation of development parameters by the ‘crown anal-
ysis’ method, as in the GL2 model

	2.	 Estimation of physiological parameters from organic series
	3.	 Reconstruction, throughout the growth process, of the evolu-

tion of demand and supply and therefore that of the trophic 
pressure Q/D

	4.	 Examination and discussion of the possible existence of a 
functional relationship that would consider the Q/D ratio as 
a determinant of the variations of development probabilities 
throughout plant growth.
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	5.	 Simulations of the full model with retroaction terms and its 
evaluation.

The first two points correspond to the parameter estimation pro-
cedure as detailed below.

Regarding step 1, the methodology of ‘crown analysis’ de-
veloped in the ‘GL2’ model for constant probabilities is pre-
sented by Diao et al. (2012) for young eucalyptus and by Kang 
et al. (2016) in a theoretical study. Using this method, the prob-
ability values of the organogenesis model are estimated based 
on counts of phytomers at each position in the architecture: the 
probability of branch appearance (a), the development prob-
ability for the stem (b1) and branches (b2) as well as the rhythm 
ratio between them (w). The rhythm ratio parameter describes 
the deterministic part of the ratio of the rate of phytomer emis-
sion on branches to the rate of phytomer emission on the trunk 
(in practice the effects of parameters w and b2 can be disen-
tangled via the estimation procedure). The term ‘crown’ indi-
cates that the analyses and experimental sampling must be done 
using the tips of axes as origin points. In ‘GL4’, the probability 
of branch appearance and the development probability for the 
branches, denoted ak and b2,k, can vary with their rank k because 
they depend on Q/D. We present below the associated equa-
tions, adapted to take into account this variation.

It can be shown that for Nk the number of phytomers on a 
branch at rank k from the top:

E (Nk) = w · k
b1

· b2,k� (7)

V (Nk) = w · k
b1

· b2,k (1 − b2,k) + (w · b2,k)
2 · k · (1 − b1)

b2
1

� (8)

The mean and variance in eqns  (7) and (8) can be estimated 
using the experimental dataset consisting of phytomer counts 
on a collection of stems and their sets of first-order living 
branches, indexed by the position of the branch from the top 
(rank k). The system can thus be solved to obtain estimates of 
b2,k and w. The probabilities of branch appearance a2,k (hereafter 
simply noted ak because there is no higher branching order) 
are estimated as the ratio of the number of branches observed 
at rank k (their average age being k/b1) to the total number of 
positions, 2NT. If there are branches of higher order, the same 
procedure is sequentially repeated for each pair of successive 
branch orders (Diao et al., 2012).

In step 2, the parameters of the functional part are estimated 
(sinks and source parameters) from the organic series, using 
a two-stage Aitken estimator as presented by Cournède et al. 
(2011) based on the generalized least-squares method. This step 
is unchanged from the work of Kang et al. (2018) so we briefly 
recall here its main principles, for the sake of self-consistent 
understanding of our paper. The main difficulty for this step 
is that, because of the stochasticity of plant development, the 
real age i of a phytomer at rank k from the axis tip is not known 
(the only information available is that we have k ≤ I ≤ t, t being 
the age of the plant). Besides, when several plant samples are 
measured that do not all share the same topology, the question 
is to determine how to aggregate these different measurements. 
To this end, the strategy presented by Kang et al. (2018) con-
sists of averaging weights of organs sorted according to their 

rank k from the axis tip. The resulting sequence is called sto-
chastic topological organic series 

Ä
qo (k, t)

ä
1≤k≤t

 (Fig. 2). The 

main idea is then to construct an equivalent average theoretical 
simulated plant that can match the measurements in the opti-
mization procedure for parameter estimation. To this end, we 
define the potential structure as the union set of all possible 
structures: it corresponds to the plant structure that would grow 
if all the probability values were set to 1.  Each phytomer of 
this structure is assigned a real value corresponding to its prob-
ability of existence, as illustrated in Fig. 2.

This potential structure allows us to compute the theoretical 
demand of the potential average plant:

Dθ (t) =
∑

id

π (id) · Pphyt (h (id) , age (id))� (9)

where the summation is performed over all phytomers of the 
potential structure arbitrarily indexed by an integer id. The 
superscript index θ is used here for to indicate variables corres-
ponding to the theoretical average plant that can be computed 
using the random processes defining the architectural rules. The 
term π(id) represents the probability of existence of phytomer 
id of physiological age h(id) and Pphyt (h(id), age(id)) is its as-
sociated demand. An example of these probability values π(id) 
obtained for our Roux model illustration is given in Fig. 2.

By applying the usual GreenLab equations, the theoretical 
biomass q p,θ

o (i, t)of each organ of age i of the potential struc-
ture in the plant of age t can be deduced. Superscript p indi-
cates that the ‘potential’ structure is considered, that is to say 
the plant with the maximum possible number of phytomers 
(obtained if they all had a probability of existence equal to 1). 
The final step is computation of the topological organic series: 
the average organ weight at rank k in the potential structure is 
expressed as:

qθ
o (k, t) =

∑t
i=k πage(k, i) · q p,θ

o (i, t)∑t
i=k πage(k, i)

� (10)

where t is plant age and πage (k, i) is the probability that the 
chronological age of a phytomer of rank k from the tip is i, 
computed from a truncated negative binomial distribution (k, 
b). This simulated output can be compared to the vector of aver-
aged measured values stored in the stochastic topological or-

ganic series, 
Ä

qo (k, t)
ä

1≤k≤t
.

The model and the methods for parameter estimation were 
implemented in MATLAB version R2012b and are available 
on request.

Data acquisition

An experimental study was undertaken at the Divo research 
station at the National Research Centre for Agronomy (CNRA, 
5°46′04.07″N, 5°13′22.09″W) in central western Ivory Coast. 
This experiment was conducted under common field condi-
tions. Average relative air humidity is ~80 %, average annual 
rainfall is between 1100 and 1400 mm, and mean temperature 
ranges between 28 and 32 °C. The 6-month-old seedlings were 
planted in July 2015 with a spacing of 1.50 m and 3 m between 
the lines. Fifteen 2-year-old coffee trees (C. canephora) were 
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measured. At this stage, no branch mortality nor flowering was 
observed. All plants were described phytomer by phytomer (i.e. 
a segment of the shoot, which includes an internode, the leaf 
and axillary buds). The number of phytomers was recorded for 
each branch, starting from the top of the main stem. The absence 
or presence of branches on the trunk and their positions were 
noted. Plant topology was recorded following the Multi-scale 
Tree Graph (MTG) formalism (Godin and Caraglio, 1998) and 
analysed using Xplo software (Griffon and de Coligny, 2014, 
http://amapstudio.cirad.fr/). For each phytomer, the length of 
the underlying internode, the diameter in the middle of the 
internode and the presence of branches were measured. We re-
corded the number of leaves, their length and width. The dry 
weight of each phytomer (stem and leaves were separated) was 
recorded (dried at 100 °C for 48 h).

RESULTS

Case study 1: simulating the base effect

Some interesting emergent properties can be simulated with 
the model. In this first case study, we consider simulation of 
the base effect during the young growth stages of trees. The 
base effect is generally due to a phase of primary biomass in-
vestment to the root system rather than to the aerial part. It is 
defined as the progressive set up of the architectural unit and, 
in our example of the Roux model, is characterized by few and 
sometimes short-lived branches at the base of the main stem, 
followed by branches that are progressively more vigorous and 
numerous (Barthélémy and Caraglio, 2007).

In this virtual experiment, we arbitrarily set the parameters 
to their values listed in the caption to Fig. 3. Simulations were 
run for a population of 50 plants with the Roux architectural 
model until 30 CDs. Figure  3 presents the variations of the 
average branching probability a(Q/D) with time ± the standard 
deviations computed over those 50 simulations: the base effect 
can clearly be observed on the simulated trees with a first zone 
without branches, then a progressive increase in branch number 
at older growth stages. This effect is directly related to vari-
ations in the supply-to-demand ratio (see Fig. 4C for the Q/D 
ratio and Fig. 4E for the evolution of biomass production). The 

slight decrease at time step 11 is caused by the appearance of 
branches at that time for a large number of plants, leading to 
a sharp increase in demand and consequently this temporary 
slowdown in growth as a feedback effect. Once the quasi-
equilibrium state is reached, the development probabilities 
become quasi-constant and the model is thus equivalent to a 
purely stochastic model without feedbacks.

Case study 2: simulating the effect of branch pruning on 
phytomer emission probability

Another interesting emergent property of the model is the 
effect of branch pruning on the rhythm of phytomer emission 
on the main stem of a monopodial plant. In a dedicated experi-
ment on six different Coffea species, Okomas (2018) estimated 
the phytomer emission probabilities for plants with systematic 
branch pruning treatments (b p

1 )and for a control plant population 
(bc

1), respectively: C. canephora (b p
1 = 0.910.91, bc

1 = 0.88
0.88), C.  dewewrei (b p

1 = 0.920.92, bc
1 = 0.770.77), C.  liberica 

(b p
1 = 0.950.95, bc

1 = 0.770.77), C. stenophylla (b p
1 = 0.890.89, 

bc
1 = 0.780.78), C. pseudozangebarie (b p

1 = 0.790.79, bc
1 = 0.8

0.8) and C. racemosa (b p
1 = 0.910.91, bc

1 = 0.70.7). These re-
sults indicate that, except for C. pseudozangebarie, pruning in-
volves not only larger organs but also a faster development of 
the stem.

Our hypothesis is that this might be the result of a decrease 
in the trophic pressure within the plant, which can be simulated 
owing to its dependency on the supply-to-demand ratio.

Using the same simulation specifications as in the previous 
paragraph, we performed 50 stochastic simulations until age 30 
CDs to compare the growth of plants featuring the Roux archi-
tectural model with plants virtually submitted to a total pruning 
treatment of all lateral branches (therefore featuring a Corner 
architectural model). The values computed over those 50 simu-
lations are presented in Fig. 4 for, respectively, the probability 
of phytomer appearance on the main stem (Fig. 4A), supply-
to-demand ratio (Fig. 4C), biomass production (Fig. 4E) and 
mass of the organic series (series consisting of the average 
mass of organs that share the same characteristics, namely here 
same rank and branching order) along the main stem, aligned 
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Fig. 2.  The concept of potential structure and its application to a plant featuring the Roux architectural model with branching and phytomer appearance probabil-
ities. The sampling strategy is illustrated: organs from the same rank and branching order are pooled together to build the organic series.
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at their tips (Fig. 4D). The variance in these variables in the 
population is not particularly important: the standard deviation 
represents only a few per cent of the average. This can be ex-
plained by the fact that, due to the choice of the Beer–Lambert 
equation for the production equation, plant topology has a 
limited impact on its functioning (Letort et al., 2010, 2012): 
the evolution of biomass supply is similar for the two architec-
tures, with a relative difference of 14.5 % in average simulated 
duration. The ‘base effect’ presented in case study 1 explains 
that there is nearly no difference between the two populations 
at the beginning of growth. Figure 4 shows that the average 

supply-to-demand ratio is larger in the pruned plant group, as 
expected given that they experienced a reduced internal tropic 
competition due to a reduction in their demand. Therefore, the 
phytomers on the main stem are clearly larger in the pruned 
group (Fig. 4D) and they are also more numerous: note that on 
the graph, the phytomers have been aligned from the axis tip 
so the ranks at the main stem base are empty for the branched 
plants that have fewer phytomers. Indeed, the associated 
mean values of phytomer emission probability on the main 
stem, b1(t), are correspondingly larger in the pruned group: it 
stabilizes at an average of 0.97, vs. 0.92 for branched trees 
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The maximum life span of branches is not stochastic here and is fixed at 20 CDs.
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(Fig.  4A). In turn, this results in a distribution of phytomer 
number on the main stem that is shifted towards higher values 
for pruned plants (Fig.  4B), a trend consistent with the ob-
servations reported above. Visual representations of the plant 
shapes are displayed to illustrate the adequacy of this virtual 
case study to real observations (Fig. 4F, G).

Illustration of the whole estimation process on real experimental 
data and investigations on source–sink ratio influences

Results of the crown analysis step.  The method of crown ana-
lysis, as briefly recalled in the previous section, was applied 
to the coffee dataset. Figure  5 presents in a schematic form 
the topology of four different trees out of the 15 measured, 
illustrating the variability in their development. Some branches 
are always missing at the bottom and the ramification rate in-
creases with plant age. In this first step, this observed variability 
is assumed to be simply driven by stochastic events with con-
stant or varying probability rates that have to be estimated.

Figure 6A shows the variability of the number of phytomers of 
the branches located at rank k below the top of the trunk. Based 
on eqns (7) and (8), the values of phytomer emission probabil-
ities for the trunk (b1 = 0.88) and the lateral axes (b2 = 0.93, this 
average value is obtained considering all branches pooled regard-
less of their rank) as well as the rhythm ratio between branches 
and trunk (w = 0.9) are computed. Because the values of b1 and b2 
are similar, they are considered identical in the simulations below.

A bottom-up analysis of the progressive implementation of 
the branching makes it possible to quantify the branching rate 
evolution on the ranks of the trunk phytomers (Fig. 6B). The 
increase in the rate of branching observed is close to linear, up 
to rank 14 at which it stabilizes to a constant value of 1. Fitting 
of a power function to these data gives:

a(x) = (
x

14
)

1.25
if x ≤ 14

a (x) = 1 if x > 14� (11)

These development parameter estimates now makes it possible to 
compute the rate of realization of phytomers in the potential struc-
ture at any position, as represented in Fig. 2. The average produc-
tion of phytomers resulting from this stochastic development at 27 
CDs is N1 = 24 for the trunk and N2 = 261 for the branches.

Results of the organic series analysis.  Some model parameters 
can be directly extracted from observations: the duration of 
photosynthetic activity of the leaves ta = 10 CDs, the expansion 
duration of the leaf and internodes tx = 4 CDs. Average specific 
leaf area, a proxy for leaf thickness, is e = 0.0095 g cm–2. We 
consider a normalized environment with radiation E = 1 at each 
CD. This strong modelling assumption amounts to considering 
the average environmental conditions throughout tree growth. 
This is reasonable here as our objective with GreenLab is not 
detailed exploration of the environmental influences on plant 
growth (which would be challenging to decipher for growth 
in open conditions) but rather representation of the main dy-
namics of growth.

The values for hidden parameters are presented in Table 1 
and the graphs comparing simulated to observed data are given 
in Fig. 7. The higher variability of data points for the base of 
the branches is due to the fact that the means are computed over 
a decreasing sample size (older phytomers are less numerous 
because branches are aligned from their tips and longer axes 
are less probable).

Reconstruction of the trophic dynamics during coffee 
growth.  Using the estimated parameter values, simulations 
provide in-depth insights into the growth dynamics. Fitting of 
the model on the organic series allows us to simulate supply 
and demand at each growth cycle (Fig. 8). After a first expo-
nential phase, the demand increase slows down and becomes 
linear. Biomass produced at each time step exhibits a sigmoidal 
shape. The saturation effect is generally considered as being 
due to self-shadowing of leaves and to competition with neigh-
bouring trees (density is about one plant per m2). Note that the 
development and growth observed on these coffee trees is for a 
relatively short period (27 CDs correspond to 2 years).

We can now examine the ratio of supply to demand, Q/D, in 
Fig. 8C. The curve irregularity at CD 10 corresponds to the first 
fall of the oldest leaf. It is thus an artefact of the model due to 
the fact that leaves abruptly cease contributing to production 
while in reality the process is of course smoother. In the first 
phase, Q/D progressively increases, which corresponds to the 
establishment of plant architecture, with a gradual increase in 
organ size and the appearance of first branches. The subsequent 
decline in the second phase is due to the increase in demand 
while production reaches saturation. Interestingly, Q/D reaches 
a maximum at about CD 15, close to the time when branching 
probability stabilizes. This is now investigating in more detail.

Fig. 5.  Schematic representation of four coffee tree crowns among the 15 plants measured.
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Influence of growth on development parameters.   Results from 
Figs  6 and 8, once combined, allow us to investigate the re-
lationship between internal trophic competition, represented 
by Q/D, and development probabilities. In Fig.  9A, a clear 
increasing relationship is observed for branching probability, 
with two successive quasi-linear phases separated at the point 
corresponding to the first leaf fall. To maintain a unique rela-
tionship, it was fitted by a power function, giving:

a (x) = 23483x5.61, R2 = 0.95� (12)

Note that only the data from the establishment phase were in-
cluded in the regression, because for subsequent values, the 
probability of branching was consistently equal to 1 although 
Q/D decreased.

The same type of analysis was performed for the probability 
of phytomer emission, using the values b2,k estimated from 
eqns  (7) and (8) (Fig.  9B). The rhythm ratio w is kept con-
stant. Only those points corresponding to large enough sample 
of branches (n  >  15) were kept, which excluded most basal 
branches. The points are more dispersed so the linear regression 
should be considered as indicating a global trend:

b (x) = 1.72x + 0.64, R2 = 0.52� (13)

Recalculation of demand and biomass with trophic pressure. 
Equations  (12) and (13) allow us to compute the parameter 
values for branching and development probabilities as func-
tions of the trophic pressure Q/D at each CD. They were intro-
duced in the model and the resulting complete simulations were 
compared to previous ones (those without a feedback effect of 
Q/D on the development probabilities) in Fig. 10 for plant de-
mand (Fig. 10A), biomass production (Fig. 10B) and organic 
series (Fig.  10C). The agreement is good for production and 
demand as well as the organic series of leaves. For internodes a 
slight divergence appears at the stem base, which is essentially 
due to the calculation of secondary growth.

DISCUSSION

Use of Q/D ratio as a regulating variable

This work investigated, for the first time, the possible use of in-
ternal trophic competition as a regulator of plant development 
in the GL4 GreenLab model using the ‘crown analysis’ method 
to guide our sampling strategy. Following the in silico study by 
De Reffye et al. (2018), the model was tested on a real dataset 
from 15 coffee trees.

The estimation procedure can be considered as globally sat-
isfactory with good adjustment between observed and simu-
lated data for the organic series in Fig. 7. Although this does 
not prove the validity of the model, it is an encouraging sign 
for assuming that the trophic dynamics generated by the model 
are consistent with real dynamics throughout the plant life. 
Clearly some remaining discrepancies can be tackled, such as 
the dramatic effect of first leaf fall on biomass production, but 
we consider that the global trends are interpretable, which is 
our goal in this study. The same precautions apply to interpret-
ations of the estimates of branching and phytomer emission 
probabilities. Our sample size is very limited: only 15 plants, as 
compared with the 250 plants measured by De Reffye (1981). 
Therefore, inter-plant variability is likely to produce important 
biases in the results, especially because the method relies on 
analytical expressions for the statistical distributions of the 
number of organs.
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Table 1.  Estimated parameter values (with their estimated 
standard deviation values). The reference value for sink values 
is that of leaf of the trunk, set to 1. Due to practical non-
identifiability, and without loss of generality, only one parameter 
of the beta density function was estimated. The other one was 
empirically fixed.

Symbol Name Estimated value

R ( = 1/μ) Efficiency (inverse) 164.1 (13)
Sp Saturation parameter 6417 (939)
Q0 Seed biomass 8.3 (2.1)
Pa(1) Leaf sink on trunk 1 (reference)
Pa(2) Leaf sink on branches 1 (0.06) 
Pi(1) Internode sink on trunk 5.2 (3.6)
Pi(2) Internode sink on branches 0.77 (0.4)
Pc Sink for ring growth 0.2 (0.02)
α i Beta density function parameter 1 for internodes 2.8 (1.1)
β i Beta density function parameter 2 for internodes 6 (fixed)
α a Beta density function parameter 1 for leaves 1.7 (0.36) 
β a Beta density function parameter 2 for leaves 2.5 (fixed)
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With all these sources of uncertainties in mind, we can use 
the results to address the question raised in the title of this 
paper: is internal trophic competition a relevant candidate for 
regulating plant development in plant growth models? Note 
that our point of view is here a pragmatic one, i.e. we simply 
question the relevance of using this variable to design a fully 
retro-active model that would behave like a plant: no causality 
is claimed nor any biological interpretation, and our tentative 
answer to that question is based on a statistical point of view.

Figure 9 provides mitigated conclusions to that question. The 
results seem very promising for the branching probability in the 
establishment phase (t < 15 CDs), with good correlation of this 
parameter with Q/D. Interestingly, Q/D reaches its maximum at 
about CD 15, close to the time when the branching probability 
stabilizes. Thus, in this establishment phase, the reconstructed 
source–sink dynamics are consistent with the model hypoth-
esis that the source–sink ratio could have a regulatory role in 
plant development. However, after 15 CDs, the correlation 
no longer holds: the branching probability remains equal to 1 
while Q/D decreases. This could be due to a hysteresis effect: 
once a threshold is reached, the system switches behaviour and 
another threshold value can provoke a new change. Here we ex-
pect that, after some period, the observed branching probability 
of these coffee trees would have decreased again. Indeed, De 
Reffye (1981) reported that the branching probability was 0.69 
on older coffee trees (300 nodes were measured).

Regarding phytomer emission probability, no clear cor-
relation was obtained, although a general trend could be 
observed. However, the amplitude of the variation of this par-
ameter is far more limited than for the branching probability: 
bh varies between just 0.87 and 0.96. So the effects of noise 
are likely to have much more impact especially with small 
sample sizes.

Despite these limitations, the full model with retroaction 
generates simulations that correctly reproduce the data on the 
average organic series. This is encouraging for pursuing further 
similar studies, especially as the resulting model gains in mech-
anistic degree.

Moreover, this result is in line with other studies using pre-
vious versions of GreenLab. Kang et al. (2011) found correl-
ations between fruit-set probabilities and supply-to-demand 
ratio on tomato plants but the resulting relationship was not im-
plemented in the model: fruit position was forced as observed. 
Mathieu et al. (2012) reported that periodic fruit-set patterns 
can be simulated in an FSPM when it is controlled by source–
sink ratio: oscillations can be generated for certain ranges of 
parameter values, a pattern often observed in particular in fruit 
trees. Using a GL4-like model for grapevine but with an esti-
mation procedure that relied for some part on a deterministic 
version of the model and that did not consider the average age 
of individual phytomers, Pallas et al. (2010) found that the rate 
of phytomer appearance according to thermal time was strongly 
affected by the plant’s trophic status.

Generalizing this approach is hampered by the fact that this 
trophic competition is a non-measurable quantity that can be 
only assessed through estimation and that cannot be validated 
easily. Models such as GreenLab are therefore interesting in 
their role as ‘source–sink solvers’, i.e. as tools giving access to 
the internal trophic dynamics throughout growth. The probabil-
istic aspect nevertheless adds one more degree of complexity to 
the identification task and requires important methodological 
developments, as we have presented here. It is therefore ex-
pected that many further studies, based on experimental data 
collected on plants grown in controlled conditions, will be ne-
cessary to give a robust methodology and a consensual quanti-
fication of the trophic pressure. A promising avenue to explore 
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will then be to find measurable biological quantities that would 
be correlated to this Q/D variable: starch accumulation, for in-
stance, or some other growth markers such as the pith diameter 
for the tropical genus Cecropia (our unpublished data).

Limitations and perspectives

The methodology developed for estimation of the ‘GL4’ 
model has the advantage of relying on a relatively light experi-
mental protocol and our first in silico tests revealed correct re-
sults for the estimation (De Reffye et al., 2018). Further tests are 
needed, especially by Monte-Carlo simulations with increasing 
sample sizes, to better quantify the accuracy of the estimation 
process. Indeed, even though the dataset can theoretically be 
built using only a few randomly sampled phytomers, in practice 
the large variability in both organ numbers and weights requires 
large sample sizes to provide reliable mean values. Such uncer-
tainties should be better quantified by systematic analysis.

Clearly the ratio of biomass supply to demand is not the sole 
variable regulating plasticity of real plants. Environmental ef-
fects, and hormonal or biomechanical constraints also need to be 
taken into account. For instance, Pallas et al. (2010) found that 
a stochastic development model driven by trophic competition 
could reproduce more adequately their experimental datasets 
for grapevine when the additional influence of water stress 
was taken into account. Water is also a main influential vari-
able for Coussement et al. (2018), who argue that plant growth 
can be sink-limited under water stress conditions. Inclusion of 
environmental variables could therefore be considered in our 
‘GL4’ GreenLab version, as well as several modelling refine-
ments, to provide added realism. The current simplified ver-
sion has nevertheless many advantages that we have exploited 
in this study. In particular, as a ‘toy-model’, it provides a useful 
framework to test new methodologies such as the procedure of 
parameter estimation presented in the current paper. It is also 
interesting because its behaviour can be more easily understood 
and interpreted than complex ‘blackbox’ models and therefore 
helps to gain a good intuitive grasp of the different mechan-
isms at play in source–sink dynamics: complex emergent prop-
erties can already be simulated with basic processes owing to 
the feedback effect. Importantly, its further application to more 
real experimental data will allow us to investigate in more depth 
to what extent such source–sink mechanisms can explain or, at 
least, reproduce observed plant plasticity and variability.
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