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ABSTRACT

Objective: An adverse drug event (ADE) refers to an injury resulting from medical intervention related to a drug

including harm caused by drugs or from the usage of drugs. Extracting ADEs from clinical records can help

physicians associate adverse events to targeted drugs.

Materials and Methods: We proposed a cascading architecture to recognize medical concepts including ADEs,

drug names, and entities related to drugs. The architecture includes a preprocessing method and an ensemble

of conditional random fields (CRFs) and neural network–based models to respectively address the challenges of

surrogate string and overlapping annotation boundaries observed in the employed ADEs and medication ex-

traction (ADME) corpus. The effectiveness of applying different pretrained and postprocessed word embed-

dings for the ADME task was also studied.

Results: The empirical results showed that both CRFs and neural network–based models provide promising so-

lution for the ADME task. The neural network–based models particularly outperformed CRFs in concept types

involving narrative descriptions. Our best run achieved an overall micro F-score of 0.919 on the employed cor-

pus. Our results also suggested that the Global Vectors for word representation embedding in general domain

provides a very strong baseline, which can be further improved by applying the principal component analysis

to generate more isotropic vectors.

Conclusions: We have demonstrated that the proposed cascading architecture can handle the problem of over-

lapped annotations and further improve the overall recall and F-scores because the architecture enables the de-

veloped models to exploit more context information and forms an ensemble for creating a stronger recognizer.
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INTRODUCTION

An adverse drug event (ADE) is “an injury resulting from medical inter-

vention related to a drug” based on the definition of World Health Or-

ganization. An ADE includes the harm caused by the drug at normal

dose (ie, adverse drug reaction) and the harm due to the use of a drug

(eg, overdose or inappropriate dosage).1 An ADE is considered to be

more comprehensive and clinically significant than adverse drug reac-

tion, which also cause excess length of stay, extra costs, and mortality

of patients.2,3 Extracting ADEs from clinical records can help physi-

cians associate adverse events to the targeted drugs.4

Natural language processing has been applied by researchers to

extract ADEs and other meaningful information from large amounts
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of unstructured records.5–8 Through the participation of the ADEs

and medication extraction (ADME) in electronic health records

(EHRs) track of the 2018 n2c2 shared task, we used the released

ADME corpus to develop a cascading architecture that combined a

conditional random field (CRF) model9 and 2 neural network mod-

els based on the bidirectional long short-term memory (LSTM)-CRF

(BiLSTM-CRF). The training set of the ADME corpus includes 303

discharge summaries collected from the MIMIC-III (Medical Infor-

mation Mart for Intensive Care III) clinical care database.10 The test

data include exclusive 202 discharge summaries. The annotations

contains 9 types of named entities including drugs, the strength, dos-

age, duration, frequency, form, route of administration, reason of a

drug, and ADEs. The detail distributions of the number of the anno-

tated entities are available in the Supplementary Appendix S1.

One major challenge of the released corpus is that the annota-

tions among different entity types may have overlapping boundaries

(the other observed challenges are described in Supplementary Ap-

pendix S1). Figure 1 displays examples in which we can observe 2

overlapping annotations. One is the phrase “[[narcotic]DRUG in-

duced respiratory distress]ADE/REASON,” which was assigned to 2

medical concepts, reason and ADE, with one drug annotation being

a substring of the above 2 annotations. Another is the word agitated,

which belongs to both ADE and reason. The figure also demon-

strates examples of arbitrary sentence breaking. Take the same

phrase, narcotic induced respiratory distress, as an example. The

phrase was segmented into 2 pieces: narcotic and induced respira-

tory distress.

Among all overlapping boundaries, the drug entity overlaps with

the most types of entity including reason, frequency, ADE, form,

strength, and route, while the ADE entity has the most overlapped

instances. To handle the overlapping mention spans, the cascading

architecture was proposed in which classifiers in the cascade were

trained sequentially, and the output of one stage in the cascade

affects the training instances given to the next.11 Similar approaches

have been applied in several domains for improving the performance

of individual classifiers. For instance, Zanoli et al,12 the winner of

the Italian named entity recognition (NER) task at EVALITA 2009,

developed a cascaded NER system combining the hidden Markov

model and CRF to exploit contextual information from unlabeled

data. Along the same line, Corbett and Copestake13 demonstrated

that the F-measure of chemical NER can be improved by 0.06 by

capitalizing on information generated by classifiers in the cascade.

Esuli et al14 and Wang and Patrick15 also exhibited improved per-

formances over traditional batch learning techniques for recognizing

entities in the clinical domain. The idea of cascades is also leveraged

in the field of computer vision. To illustrate, Heitz et al16 proposed

a cascaded classification framework to combine off-the-shelf classi-

fiers with the intention to improve the performance of each of them.

The main advantage of the architecture of cascaded classifiers is that

it enables cascaded classifiers to utilize more dependencies among

similar or different subtasks of a target problem to enhance the over-

all classification performance. Unlike most previous works focused

on the improvement of the final accuracy along with the improved

computational efficiency, we adapted the idea of cascaded classifiers

to not only improve the performance of the developed models, but

also attack the problem of overlapped entities.

From our review of the methodologies employed by the official

announced top 10 systems among the concepts subtask of the

ADME track (our review of the top-performed methodologies are

available in Supplementary Appendix S2), we realized that our

method has several similar characteristics with other competing

approaches. For instance, the main methodology employed by most

top-performed teams, including ours, was based on a neural net-

work architecture consisting of a core layer of the BiLSTM-CRF.

Some systems also combined the neural network–based approaches

with other machine learning algorithms to build an ensemble. The

purpose of creating such an ensemble is to address the challenge of

overlapping annotations by training individual models on subsets of

nonoverlapping entity types and combining the results by using vot-

ing methods.

In addition to the techniques applied in the preprocessing and

the final ensemble steps, one significant difference of our imple-

mented method and the others is the choice of the pretrained word

embedding. Most of the top-ranked teams utilized the entire

MIMIC-III dataset to create pretrained word embeddings with the

word2vec package while we used a pretrained embedding released

by Moen and Ananiadou.17 A variety of approaches have been pro-

posed to learn the word representations, along with several publicly

available pretrained word representations, such as word2vec (GN)

trained with Google News,18 Global Vectors for word representa-

tion (GloVe),19 and fastText20 trained with Wikipedia and the pre-

trained model released by Moen and Ananiadou17 in the biomedical

domain. Recently, there has been an emphasis on further improving

the pretrained vectors through combinations21,22 or postprocessing

algorithms.23,24 The selection of the pretrained word embeddings is

known to have a larger impact on the performance of sequence la-

beling task25 than many other hyperparameters. In light of this, in

addition to present our cascaded architecture for the ADME track,

we study the effectiveness of different word embedding methods ap-

plied for the problem of ADME in EHRs.

MATERIALS AND METHODS

Figure 2 demonstrates the general workflow applied by all top-

ranked systems. We elaborate on all the steps in the following sub-

sections.

Preprocessing step
The typical preprocessing applied by all teams including tokeniza-

tion, sentence segmentation, and the extraction of part-of-speech

(PoS) information. Some teams further exploited off-the-shelf natu-

ral language processing tools such as cTAKES (clinical Text Analysis

Knowledge Extraction System) and MetaMap to extract medication

Figure 1. An example of the overlapping annotations.
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information. In our implementation, a discharge summary was pre-

processed by our clinical toolkit26 to segment sentences and generate

the tokens and corresponding PoS information based on MedPost.27

The numerical normalization method proposed in our previous

work28 was employed to normalize variations in the numerical parts

of each token.

However, the detailing of preprocessing steps of the ADME

track turns out to be quite complicated due to the following chal-

lenges. For the situation of overlapping boundaries illustrated in Fig-

ure 1, we generated 3 training sets, each of which contains

nonoverlapping annotations. The rationale to compile the 3 sets is

to enable the development of a cascading architecture to train our

supervised learning models, each of which uses information col-

lected from the output of the previous classifier as additional infor-

mation in the cascade. Owing to the reasons that the drug entity is

the most frequent overlapping type and all other entities considered

in the ADME track are related to drugs, we decided to include anno-

tations of the drug entity and other entities that do not overlap with

drugs in the first subtraining set. On the other hand, because recog-

nizing ADE requires wide context information, we reserved the

annotations of the ADE entity and excluded entities overlapping

with ADEs (ie, drugs and reasons) in the last subtraining set so that

the recognizer developed based on that can have more context infor-

mation to perform a finer learning. The second subtraining set fi-

nally contained annotations for entities overlapped with drugs or

ADEs.

Furthermore, some sections, such as “DISCHARGE MEDI-

CATIONS” and “DISCHARGE INSTRUCTIONS,” may contain

ordered or unordered lists of items. The descriptions in those sec-

tions may also contain a variety of arbitrary line breaks which cause

sentence breaking errors. We therefore exploited our section recog-

nizer,29 along with 31 keywords collected from the training set of

the ADME corpus, to identify sections and classify them into 4 cate-

gories. For each category, we developed regular patterns to fix the

line-breaking errors after sentence breaking.

Handcrafted feature extraction
Table 1 summarizes the features extracted for a target word. Those

features were commonly used in the NER tasks, and most of them

were also adopted by the other top-ranked teams. Note that the last

feature shown in Table 1 was extracted only for the CRF model.

Core cascading architecture for supervised learning
As described in the preprocessing section, we compiled 3 nonover-

lapping subtraining sets. To learn from the compiled datasets at the

same time making use of the outcome from the preceding models in

order, we applied a cascading architecture to develop our recogniz-

ers. The workflow is shown in Figure 3. In the first stage (steps 1.1-

1.3), the first subtraining set was used to train the first set of super-

vised learning models including 1 CRF model and 2 BiLSTM-CRF

models. The developed models are similar to most of the stand-

alone NER systems, which just produced a sequence of predicted

labels learned from the training set. In the second stage, the output

from the trained recognizer (step 2.1), along with the features

extracted from the second subtraining set, which composed of a dif-

ferent set of nonoverlapping labels (step 2.2), were merged to train

the second set of NER models (step 2.3). By collecting the outputs of

the first and second sets of recognizers (step 3.1) and combining

them with the features extracted from the third training set (step

3.2), the last set of NER models was built (step 3.3). In the predic-

tion time, the outputs of all models (9 models in our implementa-

tion; step 4.1) were combined by an ensemble algorithm to produce

the final predictions (step 4.2).

For each stage in the cascade, we used CRFs, the LSTM-

BiLSTM-CRF network,32 and a convolutional neural network

(CNN)-BiLSTM-CRF network33 to develop our NER models. In the

first stage, the handcraft features described in the previous section

were extracted for all models. In the second and third stages, the

handcraft features along with the output from the preceding stage(s)

were extracted for building the models. The annotations were repre-

sented in the BIO notation, where B denotes the beginning of an en-

tity, I denotes inside but not at beginning of an entity, and O

indicates outside of an entity. All sentences, including those that did

not contain any annotations, were included in our subtraining sets.

For CRF, the linear chain architecture was used.9 For BiLSTM-

CRFs, we used the structure developed in our previous work for the

task of family history information extraction.34 The structure con-

sists of 3 layers: the character sequence representation layer, the

word sequence representation layer based on LSTM, and the CRF

inference layer. Herein, we created 2 BiLSTM-CRFs, whose differ-

ence is their character representation layers. The first BiLSTM-CRF

used CNN with max-pooling to capture the morphological informa-

tion, whereas the second one used LSTM. The generated character

embedding was then concatenated with the pretrained word embed-

ding vectors and the aforementioned handcrafted features, which

were represented by a randomly initialized 20 dimensional vectors

to form the input vector of the BiLSTM sequence layer. Hereafter,

we refer to them as C-BiLSTM-CRF and L-BiLSTM-CRF, respec-

tively.

In the last stage of the cascading architecture is an ensemble al-

gorithm. The algorithm uses a voting method to judge the final pre-

dictions and the corresponding boundaries. The input of the

algorithm includes all cascaded models’ predictions. The algorithm

can be configured into 3 modes: strict, the lenient, and optimal (the

detail of the 3 modes is described at Supplementary Appendix S3).

In the present study, we applied the optimal model, which first

assigns the tokens with labels predicted by all models. For each to-

Figure 2. The general workflow applied by top-ranked systems.
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ken, the algorithm examines whether the assigned entity type label

received votes exceeding the optimal voting count estimated by us-

ing a holdout development set. If the number of votes of an entity

type label does not receive the required counts, the label is dis-

carded. If there are more than 1 label met the required vote counts,

the label with higher number of votes was output. If the vote ties

and the assigned labels are different but allowed be overlapped (esti-

mated based on the training set), the labels are assigned as such, or

the actual labels are determined based on the label distribution esti-

mated on the training set.

Pretrained word embedding methods
In the architecture of our C- and L-BiLSTM-CRF models, a pre-

trained word embedding was used for the word sequence representa-

tion layer. Table 2 shows the pretrained word representations

considered in the study.

The first to sixth embeddings listed in Table 2 are publicly avail-

able pretrained vectors. In our implementation, if a word was listed

in the pretrained embedding, the corresponding vector was assigned.

Otherwise, the corresponding embedding was randomly initialized.

In both cases, the embeddings were updated during training by the

backpropagation step. During the participation of the ADME track,

the nlplab embedding was used.

In addition to the pretrained vectors, we generated the following

4 word representations. The first was word2vecMIMIC: a self-trained

word representation trained by using the skip-gram algorithm18 on

the MIMIC-III corpus.10 The same preprocessing procedure was ap-

plied on the MIMIC-III corpus before generating the representation.

The second was ConcatedVec, in which we directly concatenated

the embeddings of GloVe, fastText, and the self-trained word2vec-

MIMIC. Third was AddedVec, in which the embeddings of fastText

and the self-trained word2vecMIMIC were added by using the vector

addition. The last to be generated was PurifiedVec, a postprocessed

vector, by applying the principal component analysis on the GloVe

embedding to generate a more isotropic vectors. Here, we followed

the suggestion by Mu et al23 to postprocessed the first dominating

D/100 dimensions, where D is equals to 200 for GloVe.

RESULTS

The official evaluation metrics in terms of precision (P), recall (R),

and micro F-measure (F) were used to report the performance of the

proposed methods. The evaluation includes 2 boundary matching

Table 1. Handcraft features extracted for the ADME task.

Feature name Description

PoSa PoS information generated in the preprocessing step was extracted for the current word.

Context wordsa A context window of 7 was set to extract the current word and its surrounding words.

Chunk The chunk information of the current word was extracted.

Morphological featuresa The morphological features such as prefixes and suffixes defined in our previous work28 were extracted, which

were empirically shown to provide clues for classifying the type of concepts.

Orthographic featuresa The orthographic features defined in our previous work28 were extracted, which were empirically shown to be

able to detect patterns of named entities.

Common medical abbreviations Whether the current word matched with the common medical abbreviations defined in the annotation guide-

line.30 The following list of names and the corresponding entity types was used:
• Route: IV, PO, Gtt, drip(s), Inhalation, Topical
• Drug: IVF(s), PRBC(s)
• Frequency: PRN, QD, bid

ADE, drug and disease

dictionary featuresa

The dictionaries used in our previous work31 were encoded based on the occurrence encoding presented in our

previous work.29 The encoded information of the current word was extracted.

Word cluster featuresa The cluster number where the current word belongs to was extracted as a feature. The cluster was generated by

using the k-means algorithm from the word embedding vectors.

ADE: adverse drug event; ADME: adverse drug events and medication extraction; PoS: part of speech.
aFeature also used by other top-ranked teams.

Figure 3. A cascading architecture developed for the ADME task.
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methods: (1) the lenient mode, in which an overlapped boundary be-

tween the gold annotation and the system’s prediction is allowed;

and (2) the strict mode, in which the boundary of the system’s pre-

diction must exact match with the gold annotation. The lenient eval-

uation mode was the primary evaluation metric used by the

organizers of the ADME track therefore we only listed the PRF-

scores under the lenient mode.

Official evaluation results
We used a holdout development set to study the performance of the

developed models along with the proposed cascading architecture.

The hyper-parameters used for the C- and L-BiLSTM-CRF models

as well as the parameters of the ensemble algorithm were also tuned

on the developed set (the organizers of the ADME track released

their training data by sets, and we used the last set released by the

organizers as the development set [38 summaries] and the other data

as the training set [265 summaries]). The final parameters are listed

in Supplementary Appendix S3. The 3 best performed configura-

tions on the development set were chosen as the configurations for

the 3 submitted runs for the ADME track. The first run was based

on the cascading architecture with the C-BiLSTM-CRF model. The

second run is the full cascading system including CRF, C-BiLSTM-

CRF, and L-BiLSTM-CRF models, which was ranked second on the

development set. The last is a cascading system, including the C-

and L-BiLSTM-CRF models, which was the best-performing model

on the development set. The official results on the test set are shown

in Table 3. Note that the word embedding used by all runs was

nlplab, which listed in Table 2.

Overall, we can see that the 2 ensemble runs have better F-scores

than do those of the individual cascading run (run 1). Specifically

run 3, with the 2 BiLSTM-CRF models, achieved the highest RF-

scores, whereas run 2, with all 3 models, had the best P. Similar to

our observation on the development set, the inclusion of the CRF

model’s predictions did not improve the overall F-score on the test

set.

Figure 4 further shows the detailed PRF-scores for each entity

type, in which the F-scores of run 1 were used as the baseline, with

the PRF-scores are shown in Table 4. Overall, we can observe that

the individual cascading run performed best in recognizing the

strength entity type, while it also had the lowest F-score for the ADE

type. On the other hand, except for ADEs, reasons, and durations,

both ensemble systems achieved better F-scores in entity types, in-

cluding drugs, strengths, routes, forms, dosages, and frequencies.

Both systems had better recalls in entity types, including drugs,

strengths, and dosages, and better P-scores in types including reason,

ADEs, forms, and routes. In particular, the P-scores of the ADE and

reason entity types were significantly improved with the cost of re-

duced R-scores. This may be due to the strict threshold settings for

the 2 entities, which require that they have more than half of the

votes. For example, for the ADE type, our setting (the optimal

mode) requires all involved models to have committed the annotated

boundaries, or the annotations may be ignored (in case there is no

overlapping) or sliced into a smaller overlapped piece.

Performance comparison with different word

embedding methods
In this section, we further study the effectiveness of different word

embeddings listed in Table 2. Here, we only applied the listed

embeddings with the C-BiLSTM-CRF model because it was the

best-performing single model on the development set. Each embed-

ding was used for training 3 models on the 3 subtraining sets. The

proposed cascading architecture configured with the same setting

for run 1 was used to generate the final predictions. In all developed

models, the embeddings were updated during training by the back-

propagation step. Figure 5 depicts the performance comparison in

which the F-score of the C-BiLSTM-CRF model with the nlplab em-

bedding was used as the baseline (detailed results are available at

Supplementary Appendix S4).

Table 2. The pretrained word embeddings used in the study

Name Corpus Dimension Vocab. size

GloVea Wikipedia and English Gigaword 200 400 000

fastTextb Wikipedia 300 2 519 370

nlplabc PubMed and PMC 200 2 231 684

word2vecGN Google News 300 3 000 000

Numberbatchd Hybrid of ConceptNet, word2vecGN and GloVe 300 417 194

BioWordVece PubMed and MIMIC-III 200 16 545 451

word2vecMIMIC MIMIC-III 300 320 313

ConcatenatedVec Hybrid of GloVe, fastText, and word2vecMIMIC 700 228 763

AddedVec Hybrid of fastText and word2vecMIMIC 300 46 404

PurifiedVec Postprocessed GloVe vectors 200 400 000

MIMIC-III: Medical Information Mart for Intensive Care III; PMC: PubMed Central.
ahttps://nlp.stanford.edu/projects/glove/.
bhttps://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md.
cThis is the embedding we used during the n2c2 ADME track, which is available at http://evexdb.org/pmresources/vec-space-models/.
dhttps://github.com/commonsense/conceptnet-numberbatch.
ehttps://github.com/ncbi-nlp/BioSentVec#biowordvec-biomedical-word-embeddings-with-fasttext.

Table 3. Official overall evaluation results on the test set under the

lenient evaluation mode

Submitted run P R F

Run 1: C-BiLSTM-CRF 0.935 0.892 0.913

Run 2: all models 0.944 0.892 0.917

Run 3: all BiLSTM-CRF models 0.939 0.900 0.919

BiLSTM-CRF: bidirectional long short-term memory conditional random

field; C-BiLSTM-CRF: convolutional neural network bidirectional long short-

term memory conditional random field; F: micro F-score; P: precision; R: recall.
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From the results shown in Figure 5, we can see that replacing

nlplab with other pretrained embeddings resulted in improved F-

scores, in addition to the Numberbatch embedding. The most suit-

able pretrained embedding for the ADME track is GloVe because it

demonstrates more improvement on the F-score than others do. Fur-

ther, if we take the combinations or postprocessing techniques into

consideration, the model with the PurifiedVec achieved the best

overall F-score, and performed better than the others in terms of the

drug, strength, ADEs, and frequency concepts.

DISCUSSION

Performance comparison with different machine

learning algorithms
Under the proposed cascading architecture, we employed 3 machine

learning algorithms: CRF, C-BiLSTM-CRF, and L-BiLSTM-CRF.

The overall PRF-scores of the 3 individual models on the develop-

ment and test sets are listed in Table 5.

We can see that the 2 BiLSTM-CRF models consistently achieved

better recall and F-scores on both the development and test sets, in-

dicating that the architecture can learn generalizable morphological

and lexical patterns of the target concepts. The characteristics of the

CNN and LSTM character sequence representation layers of the 2

models are different: the CNN approach takes only n-grams into

account, without considering the position information, while

the LSTM approach considers all characters and concerns their

positions. Intuitively, the L-BiLSTM-CRF model should be superior

to the C-BiLSTM-CRF model because the former one exploits more

information. However, our results demonstrated that the C-

BiLSTM-CRF model achieved a slightly better overall F-score. In

our experiments, the training time of the L-BiLSTM-CRF model in-

creased 11.7% relative to that of the C-BiLSTM-CRF model, so the

C-BiLSTM-CRF model should be preferred because of its higher

computational efficiency.

On the other hand, the CRF models have better P-scores, but

underperformed in comparison with neural network–based models

in terms of RF-scores. The CRF models only relied on the hand-

crafted features and seem to have lower generalizability in particular

for concepts such as ADEs and reasons. Compared with other entity

types, the annotations for these 2 types tend to have more narrative

descriptions, such as “lip and tongue swelling” for ADE and

“prevent more clots from forming” for reason, which can be suc-

cessfully recognized by neural network–based models but not by

CRFs.

Effectiveness of the proposed cascading architecture
We have proposed a cascading architecture combining cascading in-

formation and the ensemble method to deal with the challenge of

overlapping boundaries. Although combining the results of noncas-

caded recognizers (the information collected from the output of the

previous classifier was ignored in the cascade) via an ensemble can

also address this challenge, we observed that the proposed cascaded

architecture can exploit more context information to improve the

performance of recognizing drug-related entities. Overall, by com-

paring the recognition performance of the cascaded recognizer and

noncascaded recognizer both trained on the third subtraining set, we

observed that the cascaded recognizer had higher recall on the test

set under both the strict and lenient evaluation modes, resulting in

improved F-scores, around 0.025. In particular, for the recognition

of ADEs, which turned out to be the most difficult among the 9

types in the ADME track, we observed that the cascaded recognizer

can recognize more ADEs co-occurring with drugs described in the

same sentences, such as “[cefepime]DRUG was discontinued second-

ary to drug [rash]ADE,” “An [ACEi]DRUG was held due to [intoleran-

ce]ADE in the past,” and “. . . he reports always getting [diahrrea]ADE

with his [chemotherapy]DRUG.” On the other hand, the noncascaded

classifier could recognize more individually mentioned ADEs such

as “excessively somnolent” in the sentence, “This was subsequently

discontinued when he was found to be [excessively somnolent]ADE,”

Figure 4. Entity type performance comparison for submitted runs using Run 1 as the baseline.

Table 4. The performance of the C-BiLSTM-CRF model (run 1) for

each entity type on the test set under the lenient evaluation mode

Entity Type P R F

Drug 0.9306 0.8742 0.931

Strength 0.9558 0.9452 0.9741

Duration 0.7767 0.6534 0.8161

Route 0.9284 0.9337 0.947

Form 0.9249 0.9153 0.9494

ADE 0.4328 0.2784 0.3875

Dosage 0.8969 0.8829 0.9267

Reason 0.5849 0.521 0.6267

Frequency 0.8479 0.828 0.9695

ADE: adverse drug event; C-BiLSTM-CRF: convolutional neural network

bidirectional long short-term memory conditional random field; F: micro F-

score; P: precision; R: recall.
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whose induced drugs were mentioned far from the mentions’ resi-

dent sentences. However, the cases are occurred less in the ADME

corpus, resulting in a reduced F-score by 0.011. Furthermore, al-

though we did not find overlapping ADEs and drugs in the test set,

such cases do appear in the training set. We believe that the pro-

posed cascaded recognizer can recognize more overlapping ADE-

drug mentions at the prediction time due to the preceding observa-

tions.

The previously mentioned slight improvement also revealed the

limitation of the current implementation in identifying ADEs. One

way to improve the performance of the ADE recognition based on

the proposed cascading architecture is to improve the recognition

performance of the classifiers developed in the preceding stages. We

conducted an experiment on the test set to study the performance

ceiling, by replacing the system-predicted named entities corre-

sponding to each preceding stage with the gold annotations, and ob-

served that the recall can be significantly improved by 0.440,

resulting in an improved F-score of 0.472 in the case of the CRF

model. However, even with the improvement, the recall of ADEs is

still far from satisfaction. Studying the false negative cases revealed

that most of the ADE mentions that appeared in the test set were

not described in the training set or even annotated as the “reason”

type. One possible solution could be to incorporate external knowl-

edge sources like SNOMED CT (Systematized Nomenclature of

Medicine Clinical Terms) and RxNorm, or other standard terminol-

ogies described in Goss et al.35 Another considerable solution is to

adopt an attention-based neural network architecture, which could

leverage more contextual information to alleviate the problem.

Effectiveness of different word embeddings
Similar to the observation of Reimers and Gurevych25 and Ma and

Hovy,33 the use of GloVe embedding turns out to give the best over-

all F-score in the ADME task. Reimers and Gurevych25 described

that the coverage of the employed embedding have a high impact on

the achieved performance. Among the employed embeddings, the

Numberbatch embedding has the lowest coverage (16.5%) on the

test set, resulting in the lowest overall F-score. However, it is sur-

prising to see that the models with the 2 high coverage embeddings

trained from the MIMIC-III corpus (BioWordVec: 68.2%; word2-

vecMIMIC: 55.3%) did not outperform the model with GloVe embed-

ding, which was trained on the general domain. Our in-house

word2vecMIMIC has lower coverage but a higher F-score than Bio-

WordVec does, which may be because we applied the same prepro-

cessing methods before generating the embedding. As shown in

Figure 4, the inclusion of domain-specific embeddings like word2-

vecMIMIC can improve the effectiveness in recognizing domain-

specific concepts like drugs, but the general domain embeddings

such as fastText and GloVe are preferred in cases involving narrative

descriptions like ADEs and reasons. The results coincide with the

observation of Wang et al36 in which they stated that the word

embeddings trained on biomedical domain corpora do not necessar-

ily have better performance than those trained on general domain

corpora do for any downstream biomedical natural language proc-

essing task.

Finally, the best performed embedding in our experiments is the

postprocessed GloVe vectors. Unlike other embedding, both the PR-

scores of the model with the PurifiedVec can be improved as shown

in Figure 5. We have further applied the same postprocessing on the

word2vecMIMIC embedding, but did not see any improvement on the

overall F-score. The results demonstrated that the principal compo-

nent analysis–based postprocessing operation could be a candidate

technique to refine the original word representations. In the future,

we would like to consider other advanced word embedding techni-

ques such as ELMo37 or the postprocessing method for dimensional-

Table 5. The microevaluation results on the development and test

sets under the optimal mode for the 3 machine learning algorithms

Dataset Algorithm P R F

Development CRF 0.937 0.892 0.914

C-BiLSTM-CRF 0.929 0.913 0.921

L-BiLSTM-CRF 0.934 0.907 0.920

Test set CRF 0.946 0.871 0.907

C-BiLSTM-CRF 0.935 0.892 0.913

L-BiLSTM-CRF 0.937 0.890 0.913

C-BiLSTM-CRF: convolutional neural network bidirectional long short-

term memory conditional random field; CRF: conditional random field; F: mi-

cro F-score; L-BiLSTM-CRF: long short-term memory bidirectional long

short-term memory conditional random field P: precision; R: recall.

Figure 5. Performance comparison for models with different word embeddings. Here the y-axis is the difference between the F-scores of each model for different

entity types and that of the model with the nlplab embedding.
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ity reduction,38 or variance normalization and dynamic embed-

ding.39

Effectiveness of the preprocessing step and

handcrafted features
As described in the Preprocessing Step section, we developed meth-

ods to process descriptions containing lists of items and arbitrary

line breaks to resolve sentence breaking errors. To investigate the

sensitivity of the developed neural network–based models on such

errors, we conducted an experiment to compare the performance of

the C-BiLSTM-CRF models on the corresponding test sets with the

GloVe embedding trained on the preprocessed and nonpreprocessed

training sets, respectively. We observed that the model trained on

the nonpreprocessed dataset had a better P-score (þ0.035) but a

lower R-score (–0.055), which resulted in a reduction of 0.01 of the

overall F-score. Further examination revealed that the model

obtained lower recall and F-scores for all medical concepts except

the drug concept, and is particularly deficient in recognizing the du-

ration and form concepts, whose F-scores were reduced by more

than 0.02. These concepts usually appear in narratives described in

ordered or unordered lists that often contain arbitrary line breaks.

The narratives may be incorrectly segmented, leading to noisy con-

textual information or extremely lengthy sentences (based on our es-

timation, the longest sentences in the nonpreprocessed and

preprocessed datasets contain 1253 words and 480 words, respec-

tively. On average, the sentences in the nonpreprocessed dataset are

longer than those in the preprocessed dataset [15.57 words vs. 12.95

words]), which may hinder the training of a reliable model.

An ablation study was conducted to gain a better insight into the

impact of the extracted handcrafted features on the neural network–

based models. To this end, we used the same aforementioned C-

BiLSTM-CRF architecture trained on the preprocessed dataset as

the baseline. Results indicated that the handcrafted features did not

contribute equally on the recognition of all medical concepts. For

example, the inclusion of the dictionary features improved the P-

scores for recognizing all medical concepts, while the R-scores for

ADEs, duration, and route concepts remain the same or were

slightly increased to contribute to better F-scores. However, con-

cepts such as drug, strength, and frequency had lower R- and F-

scores, which may be due to the insufficient coverage of the

employed lexicons, the noise introduced in the dictionary matching

process, and the possibly overlapping annotations among these con-

cepts. For the overall F-scores, a performance degradation was ob-

served when eliminating the PoS, morphological, or orthographic

features, respectively. This reveals that the combined contribution of

these features with the overall recognition performance

exceeded that of learning these features through neural networks

alone. On the other hand, the inclusion of chunk and dictionary fea-

tures turned out to reduce the overall F-scores. An additional study

will be required to understand whether the inclusion of these fea-

tures is redundant or not for the deep learning models. Detailed

results of the previous 2 studies are available in Supplementary Ap-

pendix S4.

CONCLUSION

We have proposed a cascading architecture combining 2 well-

known sequence labeling models including CRFs and BiLSTM-CRF

along with the study of the effectiveness of a variety of word repre-

sentation techniques to deal with the task of ADME. The developed

system can recognize medical concepts including ADEs, drug names,

and entities related to drugs, which was officially ranked seventh of

28 teams in the concepts subtask of the ADME track. From our ex-

perimental results, we can come to the following conclusions. First,

with the proposed cascading architecture, we can deal with the

problem of overlapped annotations and improve the overall RF-

scores because the architecture renders cascaded recognizers more

context information. Second, the 2 popular sequence labeling tech-

niques provide promising solution for the ADME task. CRFs with

well-defined features come very close to the performance of the

stronger BiLSTM-CRF models, except in the concept type involving

narrative descriptions. The GloVe embedding provides a very strong

baseline, which can be further improved by applying postprocessing

to eliminate the common mean vector and a few top dominating

directions from the word vectors. Last, in accordance with the ob-

servation of other previous works, the empirical results show that

BiLSTM-CRF models using either CNN- or LSTM-char layers

achieved similar overall F-scores, but the C-BiLSTM-CRF model

should be preferred due to its higher computational efficiency.
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