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• Background and Aims Light interception is closely related to canopy architecture. Few studies based on multi-
view photography have been conducted in a field environment, particularly studies that link 3-D plant architecture 
with a radiation model to quantify the dynamic canopy light interception. In this study, we combined realistic 3-D 
plant architecture with a radiation model to quantify and evaluate the effect of differences in planting patterns and 
row orientations on canopy light interception.
• Methods The 3-D architectures of maize and soybean plants were reconstructed for sole crops and intercrops 
based on multi-view images obtained at five growth dates in the field. We evaluated the accuracy of the calculated 
leaf length, maximum leaf width, plant height and leaf area according to the measured data. The light distribution 
within the 3-D plant canopy was calculated with a 3-D radiation model. Finally, we evaluated canopy light inter-
ception in different row orientations.
• Key Results There was good agreement between the measured and calculated phenotypic traits, with an R2 
>0.97. The light distribution was more uniform for intercropped maize and more concentrated for sole maize. At 
the maize silking stage, 85 % of radiation was intercepted by approx. 55 % of the upper canopy region for maize 
and by approx. 33 % of the upper canopy region for soybean. There was no significant difference in daily light 
interception between the different row orientations for the entire intercropping and sole systems. However, for 
intercropped maize, near east–west orientations showed approx. 19 % higher daily light interception than near 
south–north orientations. For intercropped soybean, daily light interception showed the opposite trend. It was 
approx. 49 % higher for near south–north orientations than for near east–west orientations.
• Conclusions The accurate reconstruction of 3-D plants grown in the field based on multi-view images provides 
the possibility for high-throughput 3-D phenotyping in the field and allows a better understanding of the relation-
ship between canopy architecture and the light environment.

Key words: Multi-view, planting pattern, row orientation, canopy architecture, light interception, Zea mays, 
Glycine max.

INTRODUCTION

Global food demand is expected to double by 2050, and crop 
production is facing tremendous pressure due to the increase in 
the human population (Tilman et al., 2011; Cobb et al., 2013). 
One of the most effective measures to solve this problem is to 
breed more high-yield varieties and use more advanced cultiva-
tion techniques (Bongiovanni and Lowenberg-Deboer, 2004). 
Currently, gene sequencing technology is under rapid devel-
opment. It has become more affordable and efficient, and thus 
enables researchers to explore more detailed information re-
garding genes (Mullan and Reynolds, 2010). To make full use 
of the progress of molecular technology, high-throughput, high-
precision, low-cost and comprehensive phenotypic analysis 
is indispensable and valuable for genetic gains on investing 
breeding resources (Houle et  al., 2010). Exhaustive field in-
vestigations of plant phenotypic traits are time-consuming, 
and their accuracy cannot be fully guaranteed. Therefore, high-
throughput phenotyping is the core technology to solve the 

bottleneck from genomic to phenotypic research (Minervini 
et al., 2015; Varshney et al., 2018; Costa et al., 2019).

Unlike 2-D planar images, plant 3-D architecture utilizes in-
tuitive characteristics that describe the canopy orientation and 
shapes. There are many ways to obtain the 3-D information on 
crop canopies. Three-dimensional digitization technology can 
be used to obtain morphological and spatial information on plant 
organs (Chambelland et al., 2008; Zheng et al., 2011). However, 
it is time-consuming, invasive and easily affected by wind and 
position. With the development of sensors and information tech-
nology, non-invasive methods have been widely used to obtain 
3-D spatial information on the crop canopy, such as the TOF 
(time of flight) camera (Jiang et al., 2016), depth camera (Xiong 
et al., 2017) and LiDAR (Sun et al., 2017). These methods can 
be used to extract canopy phenotypic traits such as plant height, 
canopy width and leaf area index (Bietresato et  al., 2016). 
However, individual leaf shape, inclination angle and area 
cannot be extracted with these methods. Functional–structural 
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plant models (FSPMs) can quantify the 3-D canopy architecture 
dynamically according to detailed input on the size and angles 
of individual organs and require intensive manual measurements 
indoors or outdoors (Ma et al., 2007; Chen et al., 2014; Louarn 
et al., 2015; Douma et al., 2019).

In recent years, 3-D reconstruction based on multi-view image 
sequences has been widely applied indoors for pepper, aubergine, 
cucumber, wheat and maize (Lou et al., 2014; Pound et al., 2014; 
Duan et al., 2016; Burgess et al., 2017; Hui et al., 2018), due to 
its advantages of low cost, high accuracy and its non-invasive and 
simple operation. Early plant vigour and growth parameters are 
characterized throughout plant growth based on the established 3-D 
canopy architecture. However, few studies have been conducted in 
a field environment, particularly studies that link 3-D plant archi-
tecture with a radiation model to quantify dynamic canopy light 
interception throughout the entire plant growth season.

Intercropping systems have been widely adopted globally 
for their favourable ecological and yield-increasing effects 
(Mucheru-Muna et  al., 2010). The utilization of light and 
land resources can be maximized through complementarity 
among different species (Zhu et al., 2010; Kermah et al., 2017; 
Yang et al., 2017) to achieve sustainable agricultural develop-
ment and high yield (Lithourgidis et al., 2011). The focus of 
intercropping is on how to best combine the characteristics of 
different species to improve the performance of the entire crop-
ping system (Brooker et al., 2015). However, increasing spe-
cies diversity does not always lead to higher yields (Letourneau 
et al., 2011; Cardinale et al., 2012). Higher crops have shading 
effects on lower crops, and different row orientations have dif-
ferent shading levels (Tsubo and Walker 2004), resulting in 
different patterns of canopy light interception which in turn 
will affect crop yields (Karanja et al., 2014). Therefore, it is 
very important to quantify the differences in canopy light inter-
ception under different row orientations for each intercropped 
plant to maximize the advantages of the intercropping system.

The aim of this study is to use an inexpensive and portable 
set-up to rapidly characterize 3-D plant architecture for sole 
and intercropping systems in the field. Based on the 3-D archi-
tecture, the canopy light interception at different growth stages 
and row orientations for each plant was quantitatively evalu-
ated. This will provide a better understanding of yield advan-
tage and different growth behaviours within the intercropping 
system and can guide field management.

MATERIALS AND METHODS

Field trial design

The field trial was conducted at the Lishu Experimental Station 
of China Agricultural University, Jilin Province (43°16'N, 
124°26'E) for 2  years.The soil type in the experimental area 
is black soil with a bulk density of 1.3 g cm–3. Maize XY335 
(Zea mays L.) and soybean JY47 (Glycine max) were selected 
as the targeted crops. Plants were sown in three treatments: sole 
maize, sole soybean and intercropped maize (two rows) with 
soybean (two rows). There was 50  cm between rows, 20  cm 
between plants within the rows of maize and 10 cm between 
plants within the rows of soybean.

We selected two rows and two adjacent plants within a row in 
the sole systems, and three adjacent intercropped plants within 

a row in the intercropped systems. In total, four sole maize, 
four sole soybeans and three intercropped soybeans and maize 
were used for the 3-D reconstructions. All selected plants were 
bound with white, red, yellow or blue non-reflective straps at 
the base with the aim of easily differentiating the targeted plants 
for measurement. We then placed a label (30 × 30 cm) between 
two rows of plants to facilitate the subsequent size conversion 
of the 3-D reconstructed plants (Fig. 1A).

Five dates were chosen during the emergence and silking 
stages of the maize corresponding to 21, 25, 33, 42 and 62 d 
after emergence. All measurements were performed in wind-
less and sunny weather. The trial design and data processing 
are shown in Fig. 1. To avoid the influence of wind on plant 
architecture during the measurements, a windshield device was 
designed and is shown in Fig. 1B. The equipment was mainly 
composed of a cloth with a black and white checkerboard pat-
tern that was non-reflective and was supported by an iron frame. 
The black and white pattern, with a strong contrast of colour, 
aids the capture of feature points from the targeted plants. We 
then manually held the Cannon 500D DSLR camera (Canon, 
Inc., Tokyo, Japan; Fig. 1C) to capture the multi-view images 
of the targeted plant canopy.

The distribution of image positions is shown in Fig. 1D. The 
images taken from the top view are shown in the red rectangle. 
The side-view image positions are shown in the blue rectangle. 
Ideally, the spacing interval of adjacent multi-view images is 
relatively uniform. However, according to the actual field en-
vironment and plant occlusion, the actual interval between the 
adjacent side-view images can be between 10° and 30°. The ad-
jacent images taken from the top view were more evenly spaced 
than those from the side view because there was less occlusion 
by the plants. Finally, we obtained multi-view images of the 
targeted plants (Fig. 1E).

Reconstruction and treatment of 3-D point clouds of plants

The obtained multi-view images were pre-processed using 
an SVM (support vector machine) algorithm (Agrawal et al., 
2011). A series of images containing the pixel information of 
the targeted plants were acquired with automatic removal of the 
non-plant background pixels (Fig. 1F). We selected vegetation 
pixels as a foreground training set and non-target plant pixels as 
a background training set. The SVM algorithm was then used 
to discriminate the two types of pixels. Finally, the main part of 
the plant pixels was kept while deleting non-plant background 
pixel information.

The open source software Visual SFM (Wu et  al., 2011; 
Wu, 2013) was used to automatically reconstruct the 3-D point 
clouds containing only the targeted plants (Fig. 1G). The soft-
ware included the following functions. (1) The scale-invariant 
feature transform (SIFT) descriptor with scale and rotation 
invariance was used. This descriptor is robust and is suitable 
for feature point extraction of the scale transformation and ro-
tation angle (Gibbs et al., 2016). (2) An approximate nearest-
neighbour classification algorithm was used to match the 
feature points between each pair of images (Arya et al., 1998). 
(3) Because the images may possibly have rotation, scaling or 
brightness changes, the random sample consensus algorithm 
(RANSAC) was used to eliminate possible matching errors. (4) 
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Camera parameters and the projection matrix were calculated 
using the SFM method and were optimized using bundle ad-
justment to obtain sparse point clouds. (5) A multi-view stereo 
clustering method was used to reduce the amount of dense data 
reconstructed from the SFM result images. (6) Finally, using 
patch-based multi-view stereo (PMVS) software (Furukawa 
and Pounce, 2010), the dense point clouds with the true colour 
of the targeted plants were generated through matching, dif-
fusion, expansion and filtering under the constraints of local 
photometric consistency and global visibility (Fig. 1H, I, J, cor-
responding to the intercropped maize, sole maize and sole soy-
bean treatments, respectively).

Camera shaking and wind in the field when taking photo-
graphs will inevitably produce noise points. Therefore, pre-
processing filtering needs to be performed to remove noise 
points and outliers to obtain smoother dense point clouds. We 
selected the point clouds in the filter module to eliminate the 
points of the non-ontological RGB colour information points, 
such as the red dots in Fig. 1K, and to obtain relatively clean 
plant point clouds in the Geomagic Studio software (Raindrop 
Geomagic, Morrisville, NC, USA; Hui et al., 2018). The fil-
tering module in the Point Cloud Library (PCL) was used to 
automatically reduce the noise from the targeted plants (Rusu 
and Cousins, 2011). The PCL-based point cloud denoising 
includes the steps of creating a filter object, setting the point 
cloud to be filtered, setting the number of proximate points to 
be queried when performing statistics, and determining whether 
outliers are thresholds. For different crops, the denoising thresh-
olds needed to be adjusted to achieve the best noise reduction. 
Geomagic Studio was used to manually extract the point cloud 
data of individual targeted plants from the population point 
clouds (Fig. 1L). The Octree model in CloudCompare (http://

www.danielgm.net/cc/; 3-D point cloud and mesh processing 
software) (Fig.  1M) was used to segment individual organs 
from individual plants. We manually merged the divided points 
into individual organs depending on the topology relationship 
(Duan et al., 2016). Afterwards, the point clouds of the plant or-
gans were transformed into triangular meshes using Geomagic 
Studio. Finally, the meshes of individual plant organs were inte-
grated into the mesh of the plant populations (Fig. 1T).

Estimation of phenotypic traits

A series of phenotypic traits such as plant height, crown area, 
leaf length and leaf maximum width were automatically ex-
tracted for maize and soybeans in the current study. The maize 
plant is used as an example in Fig.  1I. The plant height was 
defined as the vertical distance between the base of the stem 
and the highest point of the plant. From the top view of the 
canopy, the definitions of canopy maximum length and width 
are shown in Fig. 1R. The product of the maximum length and 
width of the canopy was defined as the crown area, as shown 
in the green rectangle in Fig. 1R. Automatic extraction of plant 
height followed a similar procedure. We use a t-test to compare 
the difference in plant height and crown area between the inter-
cropped system and sole crops. Geomagic Studio was used to 
patch the selected leaves, and then output the individual leaf 
area. The actual size of the plant was obtained by a proportional 
conversion based on the ratio of actual size to point cloud size 
of the label (Fig. 1S).

After separation of the individual leaf (Fig.  1N), the leaf 
base was moved to the origin and the leaf tip was rotated in the 
positive direction of the x-axis. A local polynomial regression 
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algorithm was used to fit the leaf midribs and automatically ob-
tain the leaf length (Fig. 1O; Duan et al., 2016). We then made 
a series of vertical planes perpendicular to the midrib plane 
to obtain the intersection points between the two edges of the 
leaf. A series of leaf widths were therefore obtained, and the 
maximum value was recorded as the maximum width of the 
leaf (Fig.  1P). The leaf area (LA) was calculated as the sum 
of all facets of the area of the individual leaf (Fig. 1Q). The 
plant height, leaf length (LL) and leaf maximum width (LW) of 
2–3 leaves of all targeted plants were measured with a ruler to 
verify the accuracy of the reconstructed 3-D models. The refer-
ence leaf area (LAr) was calculated using eqn (1) (Montgomery, 
1911). The accuracy was evaluated using the coefficient of de-
termination (R2) and the root mean square error (RMSE).

LAr = LL × LW × 0.75 (1)

Calculation of light interception within the canopy

We calculated direct and sky diffuse radiation within the canopy 
using the DSHP (dividing sky hemisphere with projection) model 
(Wang et  al., 2008; Zheng et  al., 2011) based on the meshed 
canopy. The canopy light distribution for each measurement date 
was simulated. The instantaneous canopy light distribution was 
simulated at each hour of the day when the solar elevation angle 
was >6°. To avoid the border effect and ensure the reliability of 
the virtual experiments, separated individual plants were ran-
domly rotated to form different populations. Duplications were 
constructed for ten rows for sole and intercropped crops, and 14 
columns were constructed for sole crops, 21 columns for inter-
cropped maize and 42 columns for intercropped soybean. The 
central plants with two rows and two columns for sole crops and 
four rows and six columns for intercropping were used to cal-
culate the light distribution (Fig. 1U). Five random simulations 
were run for each treatment at each measuring date to observe the 
differences among simulations. The radiation was characterized 
by PPFD (photosynthetic photon flux density) for all canopy fa-
cets. We set the total radiation to incorporate 90 % solar direct 
radiation and 10 % diffuse radiation from the sky hemisphere on 
sunny days.

One row of three maize plants and soybean plants was 
selected as the targeted plants for photographing and cali-
brating the phenotypic traits. To simulate the complete canopy 
for the intercropping treatment, we first manually separated 
the point clouds of the maize plants from point clouds of the 
soybean plants within the intercropping canopy. Then, we du-
plicated the plants randomly for two rows of maize and soy-
beans according to the field arrangement of the intercropping 
treatment. In this study, we defined Pi as the PPFD value of 
each facet, Si as the area of each facet, and i = 1,2 ….n, where 
n represented the number of facets. The product of Pi and Si 
is the instantaneous light interception of each facet (LI), as 
shown in eqn (2):

LIi = Pi × Si (2)

We first counted the LI at each integral time (t) in a day and 
then interpolated LI by a cubic spline method (McKinley and 
Megan, 1998) and integrated the interpolation function [eqn 
(3)] to obtain the daily light interception TL [eqn (4)]

ft (x) = at(x−xt)
3
+ bt(x−xt)

2
+ ct (x−xt) + dt (3)

where ft(x) is a spline between integral times; at, bt, ct and dt are 
coefficients calculated by the rule of cubic spline method.

TL =
n∑

i=1

etˆ

st

f (t) dt (4)

where f(t) is numerically integrated; st represents the starting 
time of the day (sunrise) and et represents the ending time of 
the day (sunset). We used light interception per unit leaf area 
(IA) to evaluate the light interception efficiency of the leaves, 
as shown in eqn (5).

IAi =

´ et
st f (t) dt

si
 (5)

Furthermore, we divided the TL by the occupied ground area A 
to obtain the daily light interception per unit ground area (TLg) 
to evaluate the canopy light interception efficiency, as shown 
in eqn (6):

TLg = TL/A (6)

We used the ratio of daily light interception at each hori-
zontal stratum (LR) to evaluate the light distribution on dif-
ferent measurement dates, as shown in eqn (7), where TLh 
represents the daily light interception at each horizontal 
stratum:

LR = TLh/TL (7)

The TLg and LR were calculated at different growth stages to 
evaluate the changes in light interception for the simulated plant 
canopy. To calculate LR, we first determined the size of the 
canopy space based on the maximum and minimum values of 
the x, y and z axes of the canopy. We then sub-divided the canopy 
space from the ground with 20 × 20 × 20 cm voxels (Fig. 2A) and 
calculated the centre of each small facet to determine its position 
(Wang et  al., 2008). The light interception at each horizontal 
stratum was characterized by summing the daily light intercep-
tion of the facets in each layer of the vertical profiles.

Evaluation of planted row orientations

At 62 d after emergence, all plants in the different treat-
ment groups were simulated in different row orientations. Each 
clockwise rotation of 20° was recorded as a new orientation for 
a total of nine row orientations. Each orientation was simulated 
five times for a total of 135 simulations. The light interception 
at different orientations was evaluated.

RESULTS

Evaluation of the reconstructed 3-D canopy

We evaluated the accuracy of the calculated individual leaf 
length, maximum leaf width, plant height and leaf area based on 
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the measured data. For maize, the calculated leaf length is gen-
erally lower than the real leaf length (Fig. 3A) and the calculated 
leaf area is generally lower than the real leaf area (Fig. 3D). There 
was good agreement between the measured and calculated leaf 
length, with an R2 = 0.98 and RMSE = 0.45 cm for soybean and 
an R2 = 0.98 and RMSE = 2.67 cm for maize (Fig. 3A); max-
imum leaf width with an R2 = 0.99 and RMSE = 0.30 cm for soy-
bean and an R2 = 0.97 and RMSE = 0.44 cm for maize (Fig. 3B); 
plant height with an R2 = 1 and RMSE = 3.07 cm for soybean 
and an R2=0.99 and RMSE = 2.98 cm for maize (Fig. 3C); and 
leaf area with an R2 = 0.98 and RMSE = 4.56 cm2 for soybean 

and an R2 = 0.98 and RMSE = 32.07 cm2 for maize (Fig. 3D). We 
emphasize here that the measured leaves for model calibration 
were mainly distributed on the top of the canopy surface to iden-
tify each leaf easily from the reconstructed plant architecture.

Growth measurement of plants

Plant height and crown area were extracted from all 3-D 
architecture reconstructions. The height and crown area were 
larger for intercropped soybean than for sole soybean 33 d 

A B

Fig. 2. Voxelization of the 3-D canopy for calculation of the daily light interception rate at different canopy heights. (A) Voxel schematic, (B) separating canopy 
into different layers with rectangles in different colours.
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after emergence (Fig. 4). The height of sole maize was higher 
than that of intercropped maize before 42 d after emergence. 
However, these differences were not significant. The crown 
area was larger for intercropped maize than for sole maize 25 
d after emergence, and the difference was significant at 33 and 
42 d after emergence (P < 0.05).

Three-dimensional light interception within the canopy

The reconstructions of 3-D point clouds were generated for 
five dates from emergence to the silking stage. The plant archi-
tecture was well preserved at the four early stages (Fig. 5). At 
62 d after emergence, the maize plants around the targeted 
plants were pushed over manually to ensure complete access to 
the targeted plants due to severe occlusion.

At 25 d after emergence, the intercropped maize plant 
intercepted more light than sole maize, because less light 
penetrated into the sole maize canopy compared with the inter-
cropped maize canopy. The intercropped soybean intercepted 
slightly more light than sole soybean 21 d after emergence, 
because the intercropped maize had no occlusion on the soy-
bean at this time. The difference in light interception between 
the intercropped and sole soybean was caused by the different 
arrangement of canopy architecture (Liu et al., 2017). With the 
increasing gap between maize and soybean height, the occlu-
sion of maize on soybean became stronger, which resulted in 
less light interception by the intercropped soybean compared 
with the sole soybean (Fig. 6).

The light interception within the different canopies was 
visualized by colouring the reconstructed canopies according 
to the value of light interception per unit leaf area (Fig. 7). 
More red colours at the top of the canopy indicate higher light 
interception, whereas darker green colours indicate lower 
light interception. At 62 d after emergence, the radiation is 
mainly concentrated at the canopy surface for intercropped 

soybean and sole soybean (Fig. 7A, B). The radiation of the 
intercropped maize plant is concentrated at the higher part 
over the soybean plant (Fig. 7A). However, the radiation of 
sole maize is concentrated within a narrower range in the ver-
tical direction than the intercropped maize and is mainly dis-
tributed on the top of canopy (Fig. 7C).

The light distribution was more uniform for intercropped maize 
and more concentrated for sole maize, mainly due to the ser-
ious occlusion among neighbouring maize in the sole treatment 
(Fig. 8). In the middle growth stages (33 and 42 d after emer-
gence), nearly 85 % of the radiation was intercepted by 80 cm 
from canopy surface for both sole maize and intercropped maize. 
At the late growth stage (62 d after emergence), 85 % of the ra-
diation was intercepted by 140 cm from the canopy surface for 
intercropped maize and by 120 cm for sole maize. The light dis-
tribution was similar for intercropped and sole soybean before 42 
d after emergence. At the later growth stages (42 and 62 d after 
emergence), 85 % of the radiation was intercepted by 40 cm from 
the canopy surface.

Effects of different planted row orientations on light interception

There was little difference in daily light interception per 
unit ground area among the various row orientations for 
intercropping, with an increase of approx. 2.5 % for near 
south–north orientations (80–100°) compared with the other 
orientations (Fig.  9). For sole cropping systems, the light 
interception was approx. 10 % higher for near south–north 
orientations than the other orientations. In the intercrop 
system, there were clear differences in light interception 
for the intercropped maize and soybean among the various 
row orientations (Fig. 10). For intercropped maize, the near 
east–west (20–40°) and near west–east (140–180°) orien-
tations showed approx. 19 % higher daily light intercep-
tion than the near south–north orientations (60–120°). For 
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the intercropped soybean, the opposite trend was observed. 
Daily light interception was approx. 49 % higher for the near 
south–north orientations (80–100°) than for the near east–
west (20–40°) and near west–east (160–180°) orientations.

DISCUSSION

Efficient acquisition of canopy 3-D architecture in the field based 
on multi-view images

In this study, we obtained canopy point clouds with high 
accuracy for crops grown in the field. At the early growth 

stages, it required approx. 15 min to capture 80–120 multi-
view images for each treatment and approx. 3.5  h to re-
construct the 3-D architecture of the targeted canopy. To 
guarantee the accuracy of the canopy architecture under ser-
ious occlusion at 62 d after emergence, it required approx. 
30 min to capture 160–200 multi-view images for each treat-
ment and approx. 5 h to reconstruct the canopy architecture. 
Ten seconds were required for each radiation simulation of 
each canopy. Therefore, there was still a substantial advan-
tage compared with that of manual measurements (Lu et al., 
2014; Pound et al., 2014). We were able to optimize the pho-
tography modes including camera parameters, shooting per-
spectives, space intervals and image numbers in our study 
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Fig. 5. 3-D architecture reconstructions of the plant canopy of sole maize (A), sole soybean (B) and intercrops (C), corresponding to 21, 25, 33, 42 and 62 d after 
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to balance the reconstruction efficiency and accuracy. We 
were also able to spontaneously transform a green-sensitive 
camera to enhance the contrast between vegetation and back-
ground pixels to improve the reconstruction results (Duan 
et al., 2016).

It was relatively easy to extract canopy information on 
crown area, LAI, plant height, etc. Information on individual 
organs such as leaf length, maximum leaf width, angle and 
ear length cannot be fully extracted automatically (Rose 

et al., 2015; Hui et al., 2018). At present, precise automatic 
segmentation of the individual plant from the population is 
the bottleneck due to the severe occlusion between plants in 
the field environment. Good results have been obtained at 
low plant densities (Jin et al., 2018) and in plants with open 
and flat leaves (Paproki et al., 2012). Further algorithm op-
timization is still needed, particularly for relatively high 
densities with severe occlusions. There is still an urgent 
need to construct an automatic image acquisition platform 
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to achieve the task of simultaneous multi-view photography 
(Rahaman et al., 2015; Duan et al., 2016). Based on such 
high-throughput image data sets, the need for phenotypic 
traits required for breeding and cultivation will be larger. 
Linking these phenotypic traits with the genetic background 
to predict plant yield under different climatic environments 
can ultimately be achieved (Pieruschka and Poorter, 2012).

High-throughput acquisition of canopy architecture and 
simulation of light distribution in the field

Compared with FSPM (Ma et  al., 2011; Sarlikioti et  al., 
2011; Song et  al., 2013; Nguyen et  al., 2015), accurate 3-D 
architecture of the crop canopy was reconstructed, which can 
avoid any changes among correlated architectural traits derived 

from measurements (Perez et al., 2019). Although we can ac-
quire canopy architecture with high accuracy, the range of 
measurement is still limited (Duan et al., 2016). More efficient 
methods are needed to acquire canopy architecture at a larger 
scale. Unmanned aerial vehicles (UAVs) with different sensors 
are widely used in high-throughput field phenotyping to obtain 
relatively accurate phenotypic traits such as seedling number, 
ground coverage and plant height (Chapman et  al., 2014; 
Holman et al., 2016; Duan et al., 2017; Hu et al., 2018). The 
use of UAVs mounted with LiDAR will be needed to acquire 
relatively complete canopy 3-D architecture for sole cropping 
patterns (Tao et al., 2015). Due to the difference in the spatial 
arrangement of tall (maize) and dwarf (soybean) plants, high-
throughput 3-D architecture and automatic segmentation of in-
dividual organs can be obtained in intercropping at the early 
growth stages.
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Leaf area and light distribution in the canopy direction play 
an important role in plant physiological and biochemical regu-
lation. The light distribution in the vertical direction is a meas-
urement of canopy light penetration, and it is a reference index 
for breeders to select better varieties (Chen et al., 2019). Under 
stress conditions, more uniform leaf area and light distribution 
can regulate stomatal movement and conserve water in plants 
(Chen et al., 2019). In this study, we evaluated the light distribu-
tion of maize and soybean for all treatments at different growth 
stages. At the silking stage in maize (62 d after emergence), a 
140 cm depth (i.e. 50 % of plant height) for intercropped maize 
and a 120 cm depth (i.e. 42 % of plant height) for sole maize 
from the canopy top intercepted approx. 85 % of the radiation. 
The deeper penetration of light within the intercropped maize 
canopy may enhance photosynthetic capacity compared with 
sole maize (Migliavacca et al., 2017). This reference value can 
provide a basis for large-scale evaluation of 3-D canopy light 
interception by UAVs. Even if the complete 3-D architecture of 
the lower part of the plant cannot be obtained by UAVs, it can 
still be used to estimate the daily light interception by the con-
structed upper canopy layers.

Evaluation of light interception in different row orientations

In our virtual row orientation experiments, we evaluated the 
light interception simply by relying on our actual 3-D canopy 
architecture. In our 2 year experiment, we conducted east–west 
and south–north orientation experiments for all treatments. 
The phenotypic traits showed no significant difference in the 
various orientations (Supplementary data Fig. S1). Therefore, 
the reliability of our virtual experiments can be guaranteed.

In North-east China, various planting patterns are applied for 
maize with different row orientations and row spacing. A  re-
cent study has shown the effects of different row orientations on 
crop growth (Tian et al., 2019). In our current study, an accurate 
canopy model was established and integrated with a 3-D radi-
ation model to quantify the light interception with different row 
orientations at intervals of 20°. Our simulations showed that 
there was no significant difference in canopy light interception 
among all treatments with different row orientations (Fig. 8). 
This result is consistent with that of Tsubo (2001). However, 
clear differences in daily light interception were found for 
maize and soybean individually within the intercropped system 
among different row orientations (Fig. 9). Therefore, we can im-
prove the radiation use efficiency of maize plants by adjusting 
row orientation and selecting shade-loving varieties of soybean 
in the future.

In addition, appropriate row orientations can increase the 
crop shading effect for weeds, thus inhibiting their growth 
(Alcorta et al., 2011; Borger et al., 2016). The effectiveness of 
the planting orientation in suppressing weeds depends on the 
latitude and crop/weed species within the agronomic system. 
Borger (2016) found that barley and wheat planted in an east–
west row orientation could effectively reduce the light inter-
ception and seed production of Lolium rigidum. Alcorta (2011) 
found that less light penetrated to the weed canopy zone for 
rows oriented east–west vs. rows oriented south–north in vine-
yards. The leaf, stem and root dry weight of horseweed planted 
in east–west rows was reduced by 30 % compared with those 

of horseweed planted in a south–north row orientation. We can 
quantify the shading effect of crops on the weed canopy zone 
and explain the shading inhibition of weed growth with the 
method proposed herein. This will enable us to better under-
stand the competition for light in a field environment and to 
alter the row orientation of crops to suppress weeds in an envir-
onmentally friendly way.
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Supplementary data are available online at https://academic.
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