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ABSTRACT

Objective: To develop a natural language processing system that identifies relations of medications with ad-

verse drug events from clinical narratives. This project is part of the 2018 n2c2 challenge.

Materials and Methods: We developed a novel clinical named entity recognition method based on an recurrent

convolutional neural network and compared it to a recurrent neural network implemented using the long-short

term memory architecture, explored methods to integrate medical knowledge as embedding layers in neural

networks, and investigated 3 machine learning models, including support vector machines, random forests and

gradient boosting for relation classification. The performance of our system was evaluated using annotated

data and scripts provided by the 2018 n2c2 organizers.

Results: Our system was among the top ranked. Our best model submitted during this challenge (based on

recurrent neural networks and support vector machines) achieved lenient F1 scores of 0.9287 for concept ex-

traction (ranked third), 0.9459 for relation classification (ranked fourth), and 0.8778 for the end-to-end relation

extraction (ranked second). We developed a novel named entity recognition model based on a recurrent convo-

lutional neural network and further investigated gradient boosting for relation classification. The new methods

improved the lenient F1 scores of the 3 subtasks to 0.9292, 0.9633, and 0.8880, respectively, which are compara-

ble to the best performance reported in this challenge.

Conclusion: This study demonstrated the feasibility of using machine learning methods to extract the relations

of medications with adverse drug events from clinical narratives.

Key words: named entity recognition, relation extraction, recurrent convolutional neural network, deep learning, clinical natural

language processing

INTRODUCTION

Adverse drug events1 (ADEs) are associated with increased health

care costs and significant patient morbidity and mortality.2–4 Sys-

tems that can help detect and prevent ADEs are of great value for

patient safety. Electronic health record (EHR) data contain detailed

treatment and response information which could be a valuable re-

source for the detection of ADEs. As much of the detailed informa-

tion of ADEs is buried in clinical narratives, natural language

processing (NLP)5 systems are needed to identify medications,

ADEs, and their relations. Although researchers have invested
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significant efforts in developing clinical NLP systems to extract vari-

ous medical concepts, it is still challenging to identify the relations

between the drugs and associated ADEs from clinical notes.

To examine current NLP systems on detecting relations of medi-

cations with ADEs, the 2018 National NLP Clinical Challenge

(n2c2) organized a shared task focusing on the relation extraction of

medications with ADEs. The challenge consists of 3 subtasks: 1) ex-

traction of drug names, dosage, and duration of ADEs and other en-

tities; 2) identifying relations of medications with ADEs and other

entities; and 3) an end-to-end task of identifying medications, ADEs,

and their relations in 1 system. In this article, we describe our NLP

system developed for the n2c2 challenge. Our system participated in

all 3 subtasks and was ranked third in subtask 1, fourth in subtask

2, and second in subtask 3. After the n2c2 challenge, we further ex-

amined new NLP methods to improve our model performance.

BACKGROUND

As a key technology to extract information from clinical narratives,

NLP has received great attention in the medical domain.6–8 Most

clinical NLP systems focus on the extraction of medical concepts,

which is a typical named entity recognition (NER)5 task. A number

of NER algorithms have been developed in general NLP systems,

such as MedLEE9, MetaMap,10 KnowledgeMap,11 and cTAKES12 .

These early clinical NLP systems often applied rule-based methods

that rely on expert-created rules and existing medical terminologies

such as those in Unified Medical Language System (UMLS)13. More

recently, statistical machine learning (ML) models, such as condi-

tional random fields14 (CRFs) and structured support vector

machines (SSVMs)15 have been increasingly applied with good per-

formance. Statistical ML models have consistently shown good per-

formance in a number of clinical NLP challenges, including the

Informatics for Integrating Biology and the Bedside (i2b2)16,17,

SemEval,18 and Share/CLEF.19 While previous studies20–23 have ex-

plored features from linguistics (eg, capitalization of letters, prefix,

and suffix), disclosure (such as sections in the clinical notes), and

medical knowledge (eg, semantic tags from the UMLS), they also

identified a critical bottleneck caused by low-frequency medical con-

cepts (medical concepts occurred with a low-frequency in the train-

ing data). To solve this bottleneck, unsupervised ML algorithms

were used to generate word clusters or word vectors from unlabeled

clinical text. For example, De Bruijn et al23 and Tang et al20 ex-

plored the Brown clustering algorithm and distributional word vec-

tors, respectively.

Recently, NLP methods based on deep learning (DL) models24

have demonstrated superior performance than traditional ML mod-

els for clinical NER. A breakthrough in DL-based NLP methods is

the distributed feature representation25 using word vectors (ie, word

embeddings). Instead of explicitly collecting features, DL models uti-

lized unsupervised learning algorithms (ie, word embedding algo-

rithms), such as word2vec26 and Glove,27 to learn word vectors.28

In previous studies, we and other researchers have examined various

word embedding algorithms22,29,30 and developed convolutional

neural networks (CNNs)28,31 and recurrent neural networks

(RNNs)28–30 for clinical NER tasks. Several recent studies have

reported that the RNN implemented using the long short-term mem-

ory (LSTM)32 with a CRFs layer (ie, LSTM-CRFs model) achieved

better performance among DL-based NER methods.28,29,33,34

Relation extraction35 is a challenging NLP task that aims to

identify relations between medical concepts (eg, treatment relations

between drugs and diseases). In the medical domain, researchers

have focused on relations such as treatment relation16 between

drugs and diseases, and temporal relations17 among clinical events.

Until recently, Liu et al36 organized the Medication and Adverse

Drug Events challenge to extract relations of medications with

ADEs. One critical challenge of relation extraction is that the search

space can be very large—the combinations among all medical con-

cepts within a document must be considered. Therefore, state-of-

the-art systems often adopted heuristic rules to reduce the searching

space.37 Most of the relation extraction systems in the medical do-

main approached relation extraction as a classification problem—

determine a predefined category for a given pair of 2 medical con-

cepts. Researchers have applied SVMs,16 kernel methods,30,31 tree

kernel methods,32 and semisupervised machine learning methods33

for relation extraction.

In this article, we proposed a novel NLP method to extract the

relations of medications with ADEs using recurrent convolutional

neural networks (RCNNs)38 for concept extraction and gradient

boosting (GB)39 for relation classification. We also examined meth-

ods to integrate medical knowledge as embedding layers in DL-

based NER models. The proposed method outperformed the systems

that we submitted during the n2c2 challenge and is comparable to

the best performance reported in this challenge.

MATERIALS AND METHODS

Data set
The 2018 n2c2 challenge organizers developed a corpus of 505 de-

identified clinical notes from the MIMIC-III 40 database. Annotators

manually annotated 9 types of clinical entities and 8 categories of

relations. The relations were annotated at the document level with

instances crossing multiple sentences. The corpus was divided into a

training set of 303 notes and a test set of 202 notes. Supplementary

Material Table S1 provides the detailed statistics for the training

and test sets.

Concept extraction
We approached concept extraction as an NER task and developed

ML-based methods. To apply ML models, we transformed the

annotations using the BIO format. Thus, the NER becomes a classi-

fication problem—classify words into 3 categories of labels (B, I, or

O). We reused the preprocessing pipelines developed in our previous

study34 to perform tokenization, sentence boundary detection, and

BIO format transformation. We developed a new DL model

(RCNN, which combines CNN and RNN), compared it with a

state-of-the-art DL-based NER method (LSTM-CRFs), and further

explored methods to integrate medical knowledge as embedding

layers.

Machine learning algorithms for NER
LSTM-CRFs

The LSTM-CRFs model41 is a special implementation of RNN

designed for sequential data that follows a consecutive order. Our

previous studies28,34 and studies from others29,30 have reported

that the LSTM-CRFs model demonstrated superior performance

than other ML-based NER methods. In this study, we utilized a

TensorFlow implementation developed in our previous study.42

Figure 1 shows an overview of the main architecture for LSTM-

CRFs.
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RCNN

The LSTM-CRFs model determines BIO labels using a CRFs layer

according to the hidden vectors generated by the word-level bidirec-

tional LSTM. We derived the RCNN model by adding a CNN layer

with a max-pooling strategy between the word-level bidirectional

LSTM layer and the CRFs layer to generated global features. We

combined the global features with the sequence of hidden vectors

generated by the word-level bidirectional LSTM layer as new input

for the CRFs layer. Figure 2 shows an overview of the main architec-

ture of RCNN. This architecture was inspired by the CNN model

developed by Collobert et al,25 where they applied a CNN layer to

capture global features from words and demonstrated good perfor-

mance.

Medical knowledge as embeddings
One important challenge of clinical NLP is how to integrate existing

medical knowledge with statistical ML models.8 Current DL models

are based on word embeddings, which are linguistic knowledge de-

rived from unlabeled clinical text. In a previous study,42 we explored

methods to utilize medical knowledge as features in an LSTM-CRFs

model for extraction of diseases, treatments, and lab tests. To ex-

tract knowledge-based features, we identified medical concepts from

clinical text using existing medical terminologies through a

dictionary-lookup algorithm. Then, we extracted semantic catego-

ries (medication, ADE, and indication), matching boundaries (repre-

sented using BIO), and matching conditions (exact or partial) as

features. Similar to the word embedding layer, the knowledge-based

features were initialized as random values in the beginning and later

optimized using stochastic gradient descend. In this study, we fur-

ther examined the knowledge embeddings in both LSTM-CRFs

(denoted as LSTM-CRFs-KB) and RCNN (denoted as RCNN-KB)

using a new corpus developed for medications and ADEs. We com-

pared the 2 models’ performance with and without the knowledge

features. The drug names, indications, and ADEs from the Side Ef-

fect Resource version 4 database (SIDER)43 were used to generate

knowledge-based features. SIDER contains medications, their indi-

Figure 1. Main architecture of the long short term-memory (LSTM) with a CRFs layer (ie, the LSTM-CRFs) model.

Figure 2. Main architecture of the recurrent convolutional neural network (RCNN) model.
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cations, and related ADEs, which is ideally fit for this task. We de-

veloped a fuzzy matching algorithm to generate semantic categories

and concept boundaries for the input clinical text. The matching al-

gorithm utilized concepts from SIDER as a dictionary to match in-

put text to identify medications, ADEs, and indications. When there

was no exact match, our algorithm also considered partial match if

more than half of the words in a concept could be matched.

Handling overlapped concepts

The 2018 n2c2 corpus contains overlapped annotations; 1 concept

can be annotated multiple semantic types. For example, in the fol-

lowing sentence “Other side effects during IL-2 therapy induced

mild chills; development of an erythematous skin rash; nausea, im-

proved with lorazepam; diarrhea, improved with Lomotil and

fatigue”, entities “nausea” and “diarrhea” were annotated as both

Reason and ADE at the same time. Another type of overlapping is

nested entities where an entity is part of another entity. For example,

“itching from morphine” was annotated as a Reason, where

“itching” was annotated as ADE, and “morphine” was annotated

as a Drug. A possible solution would be to randomly keep 1 annota-

tion and drop others, which led to performance drop as reported in

our previous study.34 Therefore, in this study, we trained multiple

NER models for each of the 3 concepts: Drug, ADE, and Reason.

For example, we only keep the annotations of Drug during the train-

ing of NER model for Drug. During testing, we applied all 3 NER

models to identify corresponding entities and used a postprocessing

pipeline to merged the 3 types of entities. We also compared training

individual model for each entity with training 1 model for all enti-

ties; the evaluation scores on the validation set show that training in-

dividual model achieved better performance (strict F1 score of

0.9150 for individual model vs 0.9015 for 1 model for all).

Word embedding algorithms

Word embeddings have a significant impact on DL-based NER

methods.44 We examined 2 word embedding algorithms including

word2vec26 and fastText45 and examined different dimensions using

clinical notes from the MIMIC-III database.40

Relation extraction
Relation extraction determines whether there is a relation and if so,

the type of relation between 2 medical concepts. Similar to our pre-

vious study,34 we applied heuristic rules to generate candidate con-

cept pairs and then applied ML models to classify the relations.

Heuristic rules to generate concept pairs

The critical challenge of relation extraction is that the permutation

space is large when considering all possible combinations among the

concepts. In this study, we applied a simple heuristic rule to control

the permutation space: only consider concept pairs composed of a

nondrug concept and a drug concept.

Single-sentence and cross-sentence relations

Previous studies34,37 have demonstrated that handling single-

sentence relations and cross-sentence relations in 2 classifiers out-

performed 1 classifier for all. Therefore, we developed multiple clas-

sifiers to classify relations according to their cross-distance—defined

as the number of sentence boundaries between the 2 entities (eg, the

distance of a single-sentence relation is 0; for a relation crossing 2

sentences, the distance is 1) In this study, we divided the relations

into different groups according to their cross-distance. For each

group, we developed a classifier for relation classification. Subse-

quently, we applied the classifiers to classify candidate relations

within each group and then merged the results from all classifiers.

We determined a maximum cross-distance N according to the train-

ing set. Effectively, the relation extraction system will only consider

candidate relations with cross-distance �N.

Machine learning models for relation classification

We investigated 3 machine learning algorithms including SVMs,

RFs, and GB. The SVMs model achieved state-of-the-art perfor-

mance in our previous studies on relation extraction.34,37 RFs and

GB are also widely used for various classification tasks. For SVMs,

we used the implementation in the LIBSVM-3.22 package46 and op-

timized the regularizer c and the tolerance of termination criterion e.

For RFs, we used the implementation in the sciki-learn library

(http://scikit-learn.org) and optimized the number of trees (n_esti-

mators) and used the Gini impurity method as the tree-splitting

function. For GB, we used the implementation in the XGBoost pack-

age (https://github.com/dmlc/xgboost) and optimized the learning

rate (eta), the maximum depth of a tree (max_depth), and the num-

ber of boost trees (n_estimators). To accelerate the training process,

we used the GPU implementation of the Fast histogram optimized

approximate greedy algorithm (gpu_hist).

Feature extraction for relation classification

For all 3 machine learning methods, we extracted the same features.

Based on our previous studies on relation extraction,34,37,47 we

extracted features including 1) local context information of entities

including lower cased words inside each entity, unigrams of each en-

tity, and words inside the entity; 2) the distance between 2 entities at

token level (ie, word level); 3) unigrams, bigrams, and trigrams be-

fore and after each entity; and 4) semantic information, such as the

types of the 2 entities and the unique types of the entities in-between

the 2 entities.

An integrated pipeline for the end-to-end task

We integrated NER with relation classification in a unified pipeline

for the end-to-end task. The end-to-end pipeline applied NER meth-

ods to identify concepts and then applied heuristic rules to generate

concept pairs and machine learning algorithms to determine their

relations.

Experiments and evaluation
Based on our previous study,42 we implemented the DL models us-

ing Tensorflow.48 We divided the original training set into a short

training set of 273 notes and a validation set of 30 notes. We com-

pared 2 word-embedding algorithms (word2vec and fastText) for

NER with various embedding dimensions using the MIMIC-III cor-

pus.40 The comparison results (Supplementary Material Table S2)

show that the word2vec package49 with the skip-gram option and

100-dimension outperformed the fastText with various dimensions.

We trained DL models using the short training set and optimized

hyperparameters according to NER performance on the validation

set. The optimal hyperparameters are as follows: the character em-

bedding dimension was 25, the word embedding dimension was

100, the character-level bidirectional LSTM layer dimension was

25, the word-level bidirectional LSTM layer was 100 with a dropout

probability of 0.5, the learning rate was fixed at 0.005, and the sto-

chastic gradient descending applied a gradient clapping at [-5.0,

5.0]. For the RCNN model, the dimension of the convolution layer
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was optimal at 150. For the knowledge embedding layer, the dimen-

sion of the semantic category was 10 and the dimension for concept

boundary was 5.

For relation extraction, we optimized the SVMs, RFs, and GB us-

ing 5-fold cross validation and grid searching. For RFs and GB, we

mapped the categorical features into a dense vector with a dimen-

sion of 4000 using a feature hashing algorithm.50

Evaluation metrics

We calculated evaluation scores using the official evaluation script

provided by the 2018 n2c2 challenge and reported performance for

all subtasks using precision, recall, and F1 score at the microaverage

level under both strict (exact matching of both type and boundary)

and lenient (partial matching boundary) criteria. We used the lenient

scores for comparison as it was used as the primary metric to rank

all participating systems. We also conducted statistical tests to ex-

amine whether the improvement is significant.

RESULTS

Figure 3 compares the performance of relation classification using

SVMs with different maximum crossing-distance of N on the train-

ing set. The SVMs-0 (only considered single-sentence relations)

achieved an F1 score of 0.9398. The performance increased consis-

tently until N reached 5. Therefore, we used the maximum cross-

distance � 4 in the following experiments. Supplementary Material

Table S3 shows the number of candidate relations generated from

the training set using heuristic rules.

Table 1 summarizes the performance of concept extraction for

all models on the test set (subtask 1). The RCNN-KB achieved both

the best strict (0.8849) and lenient (0.9292) F1 scores, outperform-

ing the LSTM-CRFs model with a significant P value of < .001

(strict score) and 0.0391 (lenient score), respectively. The RCNN-

KB outperformed RCNN on both strict and lenient F1 scores with a

significant P value <.001. The LSTM-CRFs-KB obtained the best

precisions (strict: 0.9057; lenient: 0.9541) and the RCNN achieved

the best recalls (strict: 0.8852; lenient: 0.9327).

Table 2 compares SVMs, RFs, and GB for relation extraction us-

ing the gold standard concepts on the test set (subtask 2). We used a

maximum cross-distance � 4 according to the comparison shown in

Figure 3. GB-4 achieved the best lenient F1 score of 0.9633 and the

best strict F1 score of 0.9632, which outperformed the second-best

algorithms, SVMs-4, with a significant P value of < .001 for both

strict and lenient scores.

Table 3 shows the end-to-end performance for subtask 3. We

compared the best end-to-end system (based on RCNN-KB and GB)

with our previous best system (based on LSTM-CRFs and SVMs)

Figure 3. Performance of SVMs when considering candidate relations with cross-distances � N. In SVMs, N denotes the SVMs model that considered relations

with a cross-distance less or equal than N. For example, SVMs-2 contains 3 classifiers handling relations with cross-distance in [0, 1, 2].

Table 1. Performance of concept extraction on the test set (best

strict and lenient precision, recall, and F1 scores are highlighted in

bold)

Model Performance

strict lenient

precision recall F1 score precision recall F1 score

LSTM-CRFsa 0.8893 0.8728 0.8810 0.9392 0.9184 0.9287

LSTM-CRFs-KB 0.9057 0.8552 0.8797 0.9541 0.8991 0.9258

RCNN 0.8727 0.8852 0.8789 0.9230 0.9327 0.9278

RCNN-KB 0.9016 0.8593 0.8849 0.9482 0.9110 0.9292

Abbreviations: CRFs, conditional random fields; KB, knowledge embed-

ding; LSTM, long short-term memory; RCNN, recurrent convolutional neu-

ral networks.
aLSTM-CRFs is the final concept extraction model we submitted during

this challenge (ranked third).
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submitted during the challenge. The LSTM-CRFsþGB-4 achieved

the best lenient F1 score of 0.8880, outperforming RCNN-KBþGB-

4 with a significant P value of .0042. The RCNN-KBþGB-4

achieved the best strict F1 score of 0.8151. However, this improve-

ment is not significant (P value of .0954) compared with the LSTM-

CRFsþGB-4 model. Both of them outperformed the system we sub-

mitted during the challenge (LSTM-CRFsþSVMs-1 was ranked sec-

ond). Consistent with the subtask 2, the GB-based relation

extraction systems demonstrated better precision, recall, and F1

score in subtask 3.

Error analysis and future work
Supplementary Material Table S4 shows that the performance ADE

and Reason entities are relatively lower than other entities. We con-

ducted an error analysis to examine possible reasons. We found that

the training data contains limited annotations for ADE and Reason

entities. They roughly account for only 2% and 8% of the total an-

notated medical concepts in the training set, respectively. Typically,

oversampling strategies51 can be used to alleviate the imbalanced

distribution. However, there are no improvements observed when

oversampling methods were directly applied to bring more samples

for ADEs and Reason entities. We also found that some medications

detected by our NER models are actually true positives that were

not annotated. For relation extraction, the ADE-Drug relation and

Reason-Drug have notably lower F1 scores (Supplementary Mate-

rial Table S5) compared with other relation types. Similar to concept

extraction, it’s challenging to distinguish between ADE-Drug and

Reason-ADE relations as the context of these 2 relations are similar.

DISCUSSION AND CONCLUSION

Clinical narratives are valuable resources for drug safety surveillance

to improve patient safety and health care outcome. The 2018 n2c2

open challenge was organized to solicit state-of-the-art methods for

relation extraction of medications and ADEs. We participated in all 3

subtasks and our system (LSTM-CRFsþSVMs-1) achieved the

second-best performance (lenient F1 score of 0.8778) in the end-to-

end evaluation. Based on this challenge, we explored new NLP meth-

ods and further improved performance (a new best lenient F1 score of

0.8880). In this article, we presented a DL-based clinical NLP system

that can effectively detect relations of mediations and ADEs from

clinical narratives. For concept extraction, we developed a novel

RCNN model and compared it with our best model submitted to the

challenge (ie, LSTM-CRFs). We also examined methods to integrate

medical knowledge as features. The experimental results show that

the proposed RCNN-KB model achieved the best lenient F1 score of

0.9292, outperforming LSTM-CRFs. For relation extraction, we sys-

tematically examined 3 ML methods including SVMs, RFs, and GB.

We also conducted experiments to examine cross-sentence relations

with different cross-distances. The relation extraction algorithm

based on GB achieved the best lenient F1 score of 0.9633 for subtask

2, which outperformed other methods. Our system achieved compa-

rable performance to the best results reported in the challenge for sub-

task 2 (0.9633 vs 0.960) and subtask 3 (0.8880 vs 0.8905).

We proposed a new RCNN-based NER method and explored

methods to use medical knowledge for clinical NER. From Table 1,

we observe that the RCNN model achieved a better lenient recall

(0.8852 vs 0.8728), whereas the LSTM-CRFs achieved a better le-

nient precision (0.8893 vs 0.8727). After integrating medical knowl-

edge features, both RCNN and LSTM-CRFs achieved a higher

precision—but a lower recall—indicating that medical knowledge

could improve the precision of detecting medication and ADEs. The

RCNN-KB model outperformed the LSTM-CRFs and LSTM-CRFs-

KB in terms of both lenient and strict F1 scores, suggesting the ad-

vantage of RCNN in integrating medical knowledge with statistical

ML models. Our previous study21 reported that medical knowledge

from the UMLS could improve both the precision and recall in a tra-

ditional CRFs model for extraction of diseases, treatments and lab

tests. However, the knowledge from the SIDER database only im-

proved the precision in this study. One possible reason may be that

the coverage of SIDER for medications and ADEs is not comparable

to UMLS coverage of diseases, treatments, and lab tests.

RCNN-KB achieved the best performance for concept extrac-

tion. Supplementary Material Table S4 provides detailed scores for

each concept category. The RCNN-KB achieved decent performance

for most of the concept categories. However, the F1 scores for ADE

and Reason are relatively low (0.4467 and 0.6647) suggesting that

more focused work is needed. Compared with general medical con-

cepts, the semantic categories of ADE and Reason entities are often

related to the context (eg, a symptom may be annotated as an ADE

caused by 1 medication, and a Reason for another medication),

which is challenging to discriminate.

For relation extraction, GB achieved the best performance

among the 3 ML methods, outperforming SVMs and RFs. In previ-

ous studies,34,37 we have applied SVMs in several top-performing re-

lation extraction systems. This study showed that GB is another ML

Table 2. Performance of relation extraction on the test set (best pre-

cision, recall, and F1 score are highlighted in bold)

Model Performance (lenient/relaxed)a

precision recall F1 score

SVMs-1b 0.9623 0.9300 0.9459

SVMs-4 0.9605 0.9422 0.9512

RFs-4 0.9612 0.9350 0.9479

GB-4 0.9730 0.9541 0.9635

Abbreviations: GB, gradient boosting; RFs: random forests; SVMs, support

vector machines; .
aThe lenient score and relaxed score are the same for subtask 2.
bSVMs-1 is the final relation extraction system submitted during this chal-

lenge (ranked fourth).

Table 3. Performance of end-to-end evaluation on the test set (best

F1 scores are highlighted in bold)

Model Performance

strict lenient

precision recall F1 scoreprecision recall F1 score

LSTM-CRFsþSVMs-1a 0.8337 0.7773 0.8045 0.9112 0.8468 0.8778

RCNN-KBþSVMs-1 0.8406 0.7730 0.8054 0.9171 0.8400 0.8769

LSTM-CRFsþSVMs-4 0.8298 0.7810 0.8046 0.9089 0.8521 0.8796

RCNN-KBþSVMs-4 0.8400 0.7762 0.8069 0.9159 0.8430 0.8779

LSTM-CRFsþGB-4 0.8403 0.7881 0.8134 0.9187 0.8593 0.8880

RCNN-KBþGB-4 0.8504 0.7827 0.8151 0.9261 0.8495 0.8861

CRFs, conditional random fields; GB, gradient boosting; KB, knowledge

embedding; LSTM, long-short term memory; RCNN, recurrent convolutional

neural networks; SVMs, Support Vector Machines.
aLSTM-CRFsþSVMs-1 is the final end-to-end system submitted during this

challenge (ranked second).
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classifier comparable to SVMs for relation extraction. We further

examined cross-sentence relations and developed a strategy to train

multiple classifiers for each group of relations with the same cross-

distance. The maximum cross-distance N can be determined accord-

ing to the training set. The experimental results show that our strat-

egy is better than a previous strategy37 to divide the relations into a

single-sentence group and a cross-sentence group.
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