Skip to main content
. 2019 Aug 28;27(1):65–72. doi: 10.1093/jamia/ocz144

Table 3.

Performance of end-to-end evaluation on the test set (best F1 scores are highlighted in bold)

Model Performance
strict
lenient
precision recall F1 score precision recall F1 score
LSTM-CRFs+SVMs-1a 0.8337 0.7773 0.8045 0.9112 0.8468 0.8778
RCNN-KB+SVMs-1 0.8406 0.7730 0.8054 0.9171 0.8400 0.8769
LSTM-CRFs+SVMs-4 0.8298 0.7810 0.8046 0.9089 0.8521 0.8796
RCNN-KB+SVMs-4 0.8400 0.7762 0.8069 0.9159 0.8430 0.8779
LSTM-CRFs+GB-4 0.8403 0.7881 0.8134 0.9187 0.8593 0.8880
RCNN-KB+GB-4 0.8504 0.7827 0.8151 0.9261 0.8495 0.8861

CRFs, conditional random fields; GB, gradient boosting; KB, knowledge embedding; LSTM, long-short term memory; RCNN, recurrent convolutional neural networks; SVMs, Support Vector Machines.

aLSTM-CRFs+SVMs-1 is the final end-to-end system submitted during this challenge (ranked second).