Table 3.
Model | Performance |
|||||
---|---|---|---|---|---|---|
strict |
lenient |
|||||
precision | recall | F1 score | precision | recall | F1 score | |
LSTM-CRFs+SVMs-1a | 0.8337 | 0.7773 | 0.8045 | 0.9112 | 0.8468 | 0.8778 |
RCNN-KB+SVMs-1 | 0.8406 | 0.7730 | 0.8054 | 0.9171 | 0.8400 | 0.8769 |
LSTM-CRFs+SVMs-4 | 0.8298 | 0.7810 | 0.8046 | 0.9089 | 0.8521 | 0.8796 |
RCNN-KB+SVMs-4 | 0.8400 | 0.7762 | 0.8069 | 0.9159 | 0.8430 | 0.8779 |
LSTM-CRFs+GB-4 | 0.8403 | 0.7881 | 0.8134 | 0.9187 | 0.8593 | 0.8880 |
RCNN-KB+GB-4 | 0.8504 | 0.7827 | 0.8151 | 0.9261 | 0.8495 | 0.8861 |
CRFs, conditional random fields; GB, gradient boosting; KB, knowledge embedding; LSTM, long-short term memory; RCNN, recurrent convolutional neural networks; SVMs, Support Vector Machines.
aLSTM-CRFs+SVMs-1 is the final end-to-end system submitted during this challenge (ranked second).