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ABSTRACT

Objective: This article summarizes the preparation, organization, evaluation, and results of Track 2 of the 2018

National NLP Clinical Challenges shared task. Track 2 focused on extraction of adverse drug events (ADEs) from

clinical records and evaluated 3 tasks: concept extraction, relation classification, and end-to-end systems. We

perform an analysis of the results to identify the state of the art in these tasks, learn from it, and build on it.

Materials and Methods: For all tasks, teams were given raw text of narrative discharge summaries, and in all

the tasks, participants proposed deep learning–based methods with hand-designed features. In the concept ex-

traction task, participants used sequence labelling models (bidirectional long short-term memory being the

most popular), whereas in the relation classification task, they also experimented with instance-based classi-

fiers (namely support vector machines and rules). Ensemble methods were also popular.

Results: A total of 28 teams participated in task 1, with 21 teams in tasks 2 and 3. The best performing systems

set a high performance bar with F1 scores of 0.9418 for concept extraction, 0.9630 for relation classification, and

0.8905 for end-to-end. However, the results were much lower for concepts and relations of Reasons and ADEs.

These were often missed because local context is insufficient to identify them.

Conclusions: This challenge shows that clinical concept extraction and relation classification systems have a

high performance for many concept types, but significant improvement is still required for ADEs and Reasons.

Incorporating the larger context or outside knowledge will likely improve the performance of future systems.

INTRODUCTION

The National NLP Clinical Challenges (n2c2), organized in 2018,

continued the legacy of i2b2 (Informatics for Biology and the Bed-

side), adding 2 new tracks and 2 new sets of data to the shared tasks

organized since 2006.1–12 Track 2 of 2018 n2c2 shared tasks fo-

cused on the extraction of medications, with their signature infor-

mation, and adverse drug events (ADEs) from clinical narratives.

This track built on our previous medication challenge,9 but added a

special focus on ADEs. ADEs are “injur[ies] resulting from a

medical intervention related to a drugs,13 and can include allergic

reactions, drug interactions, overdoses, and medication errors

(https://health.gov/hcq/ade.asp). Collectively, ADEs are estimated to

account for 30% of all hospital adverse events; however, ADEs can

be preventable. Identifying potential drug interactions, overdoses,

allergies, and errors at the point of care and alerting the caregivers

of potential ADEs can improve health delivery, reduce the risk of

ADEs, and improve health outcomes.
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A step in this direction requires processing narratives of clinical

records that often elaborate on the medications given to a patient, as

well as the known allergies, reactions, and adverse events of the

patient. Extraction of this information from narratives complements

the structured medication information that can be obtained from

prescriptions, allowing a more thorough assessment of potential

ADEs before they happen.

Natural language processing techniques can extract medication

information from narratives and make it available for computerized

systems that rely on structured representations.13 Medication infor-

mation that is detailed in the narratives include: medications, their

strengths and dosages, duration and frequency of administration,

medication form, route of administration, reason for administration,

and any observed ADEs associated with each medication. We cap-

ture this information by identifying mentions of these concepts, and

linking them to their medication to define relations. This allows all

the information related to an ADE to be organized together, inform-

ing health care, and allowing for adjustments.

The 2018 n2c2 shared task Track 2, hereon referred to as the

ADE track, tackled these natural language processing tasks in 3 dif-

ferent steps, which we refer to as tasks:

1. Concept Extraction: identification of concepts related to medica-

tions, their signature information, and ADEs

2. Relation Classification: linking the previously mentioned con-

cepts to their medication by identifying relations on gold stan-

dard concepts

3. End-to-End: building end-to-end systems that process raw narra-

tive text to discover concepts and find relations of those concepts

to their medications

Shared tasks provide a venue for head-to-head comparison of

systems developed for the same task and on the same data, allowing

researchers to identify the state of the art in a particular task, learn

from it, and build on it.14 In the recent decades, shared tasks have

gained popularity for many problems, and a variety of datasets have

become available.15 Data and tasks include clinical notes,9,16–21

death reports,22,23 drug labels,24,25 biomedical literature,22,23 and

social media data,22,23,26,27 as well as synthetic patient data and

nursing notes.24,26,28,29 This challenge includes tasks that build on

previous ADE30 and medication extraction9 shared tasks but covers

a broader set of concepts and relations.

Previous ADE-related shared tasks include: MADE (Medications

and Adverse Drug Events from Electronic Health Records) 1.0,14

which consisted of 3 tracks which mirror our concept extraction, re-

lation classification, and end-to-end tasks. Text Analysis Conference

(TAC) 2017 adverse drug reaction extraction from drug labels

track24 created 4 challenges, including (1) extracting ADEs and

modifier terms; (2) relation identification between ADEs and mod-

ifiers; (3) finding all non-negated, nonhypothetical ADEs; and (4)

normalizing these ADE strings to MedDRA (Medical Dictionary of

Regulatory Activities) terms. ADE Eval (https://sites.mitre.org/

adeeval/) focused on identification of ADEs in publicly available

drug labels. This shared task was similar to TAC, but focused on

ADEs identified by the U.S. Food and Drug Administration Office

of Surveillance and Epidemiology and mapping them to the Med-

DRA terms. The Social Media Mining for Health (SMM4H) shared

tasks focused on extracting information from social media, specifi-

cally Twitter tweets. SMM4H 201731 and SMM4H 201832 consist

of multiple challenges, and both include detection of tweets men-

tioning an ADE and classification of tweets mentioning first-person

medication intake. The 2017 task includes a normalization of ADE

mentions to MedDRA terms challenge, and the 2018 task includes

detection of tweets mentioning drug name and classification of vac-

cine behavior in tweets challenges.

MATERIALS AND METHODS

Data
The data for this shared task consisted of 505 discharge summaries

drawn from the MIMIC-III (Medical Information Mart for Intensive

Care-III) clinical care database.33 These records were selected using

a query that searched for an ADE in the International Classification

of Diseases code description of each record. The identified records

were manually screened to contain at least 1 ADE, and were anno-

tated for the concept and relation types shown in Table 1. Each re-

cord in the dataset was annotated by 2 independent annotators

while a third annotator resolved conflicts.

The data were split into training and test sets. A total of 303 an-

notated files were used as the training set, with 202 files used for

testing. The number of concepts and relations of each type in the

test and training sets are shown in Table 1. The class distributions

for both concepts and relations are very similar for the test, training,

and full datasets, and are shown in parentheses in Table 1 for the

full dataset.

Methods
Shared task setup

The ADE track training data were provided to participants under a

data use agreement through an online portal (https://portal.dbmi.

hms.harvard.edu/projects/n2c2-t2/). Test data were released after a

1.5-month development period. The release of test data was stag-

gered so that concept extraction outputs and end-to-end outputs

were collected before the test data for relation classification were re-

leased. Participants had 3 days to run their systems on the test data

and submit system outputs for concept extraction and end-to-end.

They were given 2 days for submitting system outputs for relation

classification. Each participating team could submit up to 3 system

runs for each task. System outputs were evaluated against the gold

standard, and each team was ranked on their best performing run.

Evaluation metrics

Evaluation methods included precision, recall, and F1 calculated at

micro- and macro-averaged levels, with both strict and lenient

matching. For strict matching, the first and last offset of a span must

match exactly; and for lenient, it was sufficient for tags to overlap.

Lenient micro-averaged F1 scores were used as the primary evalua-

tion metric for system ranking.

Significance tests

We used approximate randomization (code available: https://github.

com/henryst57/n2c2_2018_task2_significance)34 to test for statisti-

cal significance between systems. Other commonly used significance

tests often underestimate statistical significance because an indepen-

dence assumption is often violated.35 Approximate randomization is

a computationally intensive randomization test, which is a type of

stratified shuffling.34 When comparing 2 systems, the null hypothe-

sis states that 2 systems will produce identical scores. To test this,

predictions for both systems are gathered, shuffled, and reassigned.

Using the reassigned predictions, an evaluation metric (eg, precision,

recall, F score) is calculated and the significance of the change in

score is found. This is exhaustively repeated for all possible shuffles
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or, for larger datasets, is approximated by randomly shuffling a pre-

determined number of times. Based on the count of shuffles that pro-

duced significant changes, and the number of shuffles compared, a

significance score is found that determines if the 2 systems are, in

fact, statistically significantly different. We ran this test with 50 000

shuffles, and the significance level set to .05.

Systems
A total of 28 teams participated in the ADE track. All 28 teams par-

ticipated in the concept extraction task, with 21 in relation classi-

fication and 21 in end-to-end. A total of 158 system outputs were

submitted. All participating teams are listed in Supplementary

Table 7, but in our analysis, we focus on the top 10 ranked teams

for each task. Ranking was based on the (micro-averaged lenient) F1

of the best run of that team. The next 3 subsections describe and

summarize these top-performing systems for each task.

Concept extraction systems

Table 2 summarizes the top 10 performing concept extraction sys-

tems, more detailed descriptions are included in the Supplementary

Appendix. Conditional random fields (CRFs)44 were extremely pop-

ular, and every top-performing team incorporated them in their sys-

tem. CRFs are sequence labelers that model dependencies between

terms. bidirectional long short-term memory CRF (BiLSTM-CRF)45

models were also extremely popular, and 9 of the top-performing

teams used them. BiLSTM-CRFs use a BiLSTM to create a series of

state representations that are then used as input into a CRF for label-

ling. Ensemble and 2-step systems, which combine the output of

multiple classifiers were also common, and there were 4 ensemble/2-

step systems total, and 1 joint entity-relation extraction system that

used a 2-step type architecture.

Many teams experimented with incorporating additional fea-

tures into their model, and most teams noted that these features in-

creased performance. These features most often included pretrained

word embeddings46,47 (often pretrained on the entire MIMIC III

dataset) and part of speech tags. Other features included character

embeddings (Alibaba Inc [Ali], University of Florida [UFL], Na-

tional Taiwan University Hospital [NTUH], IBM Research

[IBM]),48 dictionary-based features (UM, NTUH, VA Salt Lake

City/University of Utah [VA], University of Michigan [UMI]), where

the presence or absence of a term in a dictionary (eg, Unified Medi-

cal Language System, RXNorm) is marked, cluster information,49

where the cluster ID of clustered words’ embeddings is used as a fea-

ture (Medical University of South Carolina [MSC], NaCTeM at Uni-

versity of Manchester/Toyota Technological Institute/AIST [NaCT],

UMI), and section title (Ali, NaCT). One team (IBM) commented

on the difficulty in handling the complex, nonstandard sentence

structure of clinical notes, and manually created rules to create

pseudo-paragraphs before sentence segmentation.

Table 1. Distribution of concepts and relations in gold standard and distribution in the training and test set split

Concept extraction samples

Relations identification samplesType Full Training Test

Drug 26 800 (32) 16 225 10 575 Type Full Training Test

Strength 10 921 (13) 6691 4230 Strength-Drug 10 946 (18) 6702 4244

Form 11 010 (13) 6651 4359 Form-Drug 11 028 (19) 6654 4374

Dosage 6902 (8) 4221 2681 Dosage-Drug 6920 (11) 4225 2695

Frequency 10 293 (12) 6281 4012 Frequency-Drug 10 344 (17) 6310 4034

Route 8989 (11) 5476 3513 Route-Drug 9084 (15) 5538 3546

Duration 970 (1) 592 378 Duration-Drug 1069 (2) 643 426

Reason 6400 (8) 3855 2545 Reason-Drug 8579 (15) 5169 3410

ADE 1584 (2) 959 625 ADE-Drug 1840 (3) 1107 733

Total 83 869 (100) 50 951 32 918 Total 59 810 (100) 36 384 23 462

Values are n (%) or n.

ADE: adverse drug event.

Table 2. The methods and features used by the top-performing

concept extraction teams (listed in order of performance) (see

Figure 1)

Team name Concept extraction method and features

Alibaba Inc (Ali) BiLSTM-CRF with ELMo36 language

model, character, and section infor-

mation features

UTHealth/Dalian (UTH)37 Ensemble of a CRF, BiLSTM-CRF, and

ADDRESS, a BiLSTM-CRF–based

joint topic-relation extraction method

University of Florida (UFL) BiLSTM-CRF with word and character

embeddings

The University of Manchester

(UM)

BiLSTM-CRF with word embeddings

augmented with additional token-level

features

Medical University of South

Carolina (MSC)38

Stacked generalization39 ensemble of

multiple sequential taggers with many

features

NaCTeM at University of

Manchester/Toyota Tech-

nological Institute/AIST

(NaCT)40,41

Ensemble of a feature-based CRF and a

stacked BiLSTM-CRF using many

features

National Taiwan University

Hospital/National Taitung

University (NTUH)42

Ensemble of BiLSTM-CRF and CRF

with many features

VA Salt Lake City/University

of Utah (VA)

Two-step model combining a BiLSTM-

CRF and externally trained CRF

IBM Research (IBM) BiLSTM-CRF with word, character, PoS

and dependency embeddings

University of Michigan

(UMI)a

BiLSTM-CRF with word embeddings,

PoS tags, semantic types, and posi-

tional features43

BiLSTM: bidirectional long short-term memory; CRF: conditional random

field; PoS: part of speech.
aTeam also included members from the Ramakrishna Mission Viveka-

nanda Educational and Research Institute, India.
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Relation classification systems

Table 3 summarizes the top 10 relation classification systems, more

detailed descriptions are provided in the Supplementary Appendix.

Compared with the concept extraction task, there was a larger vari-

ety of systems. Five teams used deep learning-based methods, these

included 2 attention-based BiLSTMs (Med Data Quest, Inc, IBM),

an LSTM-CRF (UM), a deep learning ensemble (NaCT), and a

BiLSTM-CRF–based joint entity/relation system (UTHealth/Dalian

[UTH]). Four teams used more traditional machine learning classi-

fiers, including 3 SVMs (UFL, MSC, Boston Children’s Hospital/

Harvard Medical School/Loyola University) and one 2-stage random

forest (VA). One team created a rule-based algorithm (Cincinnati

Children’s Hospital Medical Center) and 2 teams used different clas-

sifiers for inter- and intrasentence relations (UFL, NaCT). Features

commonly used included tokens around the source and target enti-

ties, tokens between them, entity types, positional information, and

word embeddings. As relations most often occur between entities

that are mentioned near each other, most teams used a manually

tuned threshold of character, word, or sentence distance to generate

a list of potential relations. Two teams used more complex methods,

which include using an alternating decision tree (IBM), and using a

random forest to reduce the number of potential candidate

pairs (VA).

End-to-end systems

Table 4 summarizes the top 10 end-to-end systems. Most of these

were also top-performing concept extraction and relation classifica-

tion systems, and therefore, most end-to-end submissions were a

straightforward pipeline of the best performing methods of that

team. Teams using direct combinations of their concept extraction

and relation classification systems include UFL, NaCT, MSC, VA,

and UM. More detailed descriptions of the end-to-end systems are

provided in the Supplementary Appendix.

RESULTS

Table 5 summarizes the aggregate results over all teams, using their

best run only. The highest lenient micro-averaged F1 scores were:

0.9418 for concept extraction, 0.9630 for relation classification,

and 0.8905 for end-to-end. The results of each task are discussed in

the following subsections.

Concept extraction results
Figure 1 shows the overall and per concept results of the top 10 sys-

tems sorted by lenient micro-averaged F1 score, which is shown

next to their team name. Supplementary Tables 8 and 10 show more

detailed micro- and macro-averaged scores. The highest lenient

micro-averaged precision, recall, and F1 scores were 0.9418,

0.9461, and 0.9376, respectively. As strict matching requires the

span of concepts be precisely defined, the highest strict matching

results were slightly lower, with micro-averaged precision, recall,

and F1 scores of 0.8973, 0.8939, and 0.8956, respectively. All of the

top-performing teams had high F1 scores (�0.9140), with the me-

dian of all 28 participating teams at 0.9023 and the mean at 0.8347.

The lower mean and standard deviation of 0.1563 are the result of a

few poorly performing teams. The top 10 systems’ lenient micro-

Table 3. The method and features used by the top-performing rela-

tion classification teams (listed in order of performance) (see Fig-

ure 3)

Team name Relation classification method and fea-

tures

UTHealth/Dalian (UTH)37 ADDRESS, a BiLSTM-CRF–based

joint concept/relation extraction

system

VA Salt Lake City/University

of Utah (VA)50

Two stages of random forests with

many features

NaCTeM at University of

Manchester/Toyota Tech-

nological Institute/AIST

(NaCT)40,41

Deep learning ensemble with multiple

embeddings

University of Florida (UFL) SVM with standard and semantic type

features.

Med Data Quest, Inc (MDQ) Attention-based BiLSTM with

standard features

IBM Research (IBM) Attention-based Piecewise-BiLSTM51

with standard features and unique

candidate pair generation

Medical University of South

Carolina (MSC)38

SVM with many features

The University of Manchester

(UM)

LSTM-CRF with word embeddings

and marker embeddings52

Boston Children’s Hospital/

Harvard Medical School/

Loyola University (BCH)53

SVM with many features

Cincinnati Children’s Hospi-

tal Medical Center

(CCH)54

Rule based algorithm with position

and distance information

BiLSTM: bidirectional long short-term memory; CRF: conditional random

field; SVM: support vector machine.

Table 4. The concept extraction and relation classification methods

of the top-performing end-to-end teams (listed in order of perfor-

mance, see Figure 4)

Team name End-to-end description

UTHealth/Dalian (UTH)37 ADDRESS, a BiLSTM-CRF–based

joint topic-relation extraction sys-

tem

University of Florida (UFL) BiLSTM-CRF to SVM classifier

NaCTeM at University of

Manchester/Toyota Tech-

nological Institute/AIST

(NaCT)40,41

CRF and stacked BiLSTM-CRF ensem-

ble to deep learning ensemble

Medical University of South

Carolina (MSC)38

Stacked generalization ensemble to

SVM classifier

VA Salt Lake City/University

of Utah (VA)

Two-step model with BiLSTM-CRF

and CRF to 2 stages of random for-

ests

IBM Research (IBM) BiLSTM-CRF to Attention-based

Piecewise-BiLSTM

The University of Manchester

(UM)

BiLSTM-CRF to LSTM-CRF

Cincinnati Children’s Hospi-

tal Medical Center

(CCH)54

4-CRF-Random Forest to rule based

relation classification

Boston Children’s Hospital/

Harvard Medical School/

Loyola University (BCH)53

SVM and cTAKES dictionary look ups

to SVM classifier

Roam Analytics (RA) CRFs and logistic regression to

XGBoost55

BiLSTM: bidirectional long short-term memory; CRF: conditional random

field; SVM: support vector machine.

6 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 1

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz166#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz166#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz166#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz166#supplementary-data


averaged F1 scores have a standard deviation of 0.0091.We per-

formed a statistical significance analysis (Supplementary Table 9),

and found the top-ranked team, Ali achieved a significantly better

F1 scores than UTH, and a significantly better F1 score, precision,

and recall than UFL. However, UTH achieved significantly better

precision than Ali and UFL achieved a significantly better recall than

UTH but not Ali. Interestingly, although MSC ranked fifth in F1

score, it achieved significantly better precision than every other

team. IBM also achieved significantly better precision than most sys-

tems. Analysis at a per concept type level shows that most concept

types have very high performance. Drugs, Strength, Form, Dosage,

Frequency, and Route have F1 scores greater than 0.89 for all top

systems. Duration, Reason, and ADE have the worst performance

for all systems. This mirrors difficulties experienced by human anno-

tators, in which Strength, Route, and Form were the more straight-

forward concepts to annotate, but Durations, ADEs, and Reasons

were the most difficult. Duration, Reason, and ADE also contain

the fewest examples, and consist of 1%, 8%, and 2% of the all con-

cepts, respectively. Performance for ADEs and Reasons were the

worst for all systems, due largely to superfluous predictions, but

also some confusion between Reasons and ADEs (see Figure 2).

Figure 2 shows a confusion matrix between predictions of each

concept type and every other concept type. It shows the true concept

type (in columns) of each predicted concept (in rows) as a percent of

total predictions (of the top 10 systems). Cells are shaded, such that

darker cells indicate a higher percentage of predictions. The no type

column indicates that a concept was predicted, where no gold stan-

dard annotation existed. Figure 2 shows that there is some confusion

between Reason and ADE, as 7.38% of ADE predictions were

actually reasons, and 2.36% of Reason predictions were actually

ADEs. It also shows that systems overtag both Reasons and ADEs;

22.30% of all Reason predictions, and 33.26% of all ADE predic-

tions were superfluous. Only 58.73% of all ADE predictions were

actually ADEs, and 75.52% of all Reason predictions were actually

reasons. Confusion between other concept types is low, with confu-

sion between Duration and Frequency constituting the next highest

amount, at 1.94%.

Relation classification results
Figure 3 shows the overall and per relation type results of the 10

best-performing systems sorted by micro-averaged F1 score. Supple-

mentary Tables 11 and 13 show more detailed micro- and macro-

averaged scores. A single team, UTH achieved the highest results for

all evaluation metrics, achieving micro-averaged precision, recall,

and F1 of 0.9715, 0.9548, and 0.9630, respectively. All of the top-

performing teams had high F1 scores (�0.9023), and the median of

all 21 participating teams was 0.9023. The mean of all teams was

lower, at 0.8347, and the lowest score of all submitted teams was

0.4588. The standard deviation between all teams was 0.1563, but

is much smaller between the top-performing teams, at 0.0201.

We performed a statistical significance analysis (Supplementary

Table 12), and found that the top ranked team, UTH, achieved sig-

nificantly better precision, recall, and F1 scores than every other

team. The second-ranked team, VA achieved significantly better F1

score and precision than NaCT, but not significantly better recall.

UFL and IBM achieved significantly better precision than most sys-

tems. Analysis at a per relation level shows that performance is high

for all relation types, but performance for Reason-Drug and ADE-

Drug is notably lower for all teams, and Duration-Drug for most

teams. The low F1 scores are caused by similarly low precision and

recall for each of these, but recall tended to be slightly lower than

precision for ADE-Drug relations. Just as Reasons and ADEs were

the most difficult concepts to extract, their relations to drugs were

Figure 1. Lenient micro-averaged F1 scores of each concept type for the top-performing teams. The overall micro F1 score is shown next the team name. ADE:

adverse drug event.

Table 5. Aggregate F1 score statistics (best runs, lenient micro F1)

for all competing teams for each task

Concepts Relations End-to-End

Maximum 0.9418 0.9630 0.8905

Minimum 0.0111 0.4588 00452

Median 0.9052 0.9023 0.7988

Mean 0.8051 0.8347 0.7335

Standard deviation 0.2434 0.1563 0.2038

Teams 28 21 21
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also the most difficult for submitted systems and annotators to

identify.

End-to-end results
Figure 4 shows the overall and per relation type results of the 10

best performing systems sorted by micro-averaged F1 score. Supple-

mentary Tables 14 and 16 show more detailed micro- and macro-

averaged scores. A single team, UTH, achieved the highest results

for all micro-averaged evaluation metrics, with the highest precision,

recall, and F1 score being 0.9292, 0.8549, and 0.8905, respectively.

The top ranked team, UTH achieved significantly better F1 and re-

call than every other team, but NaCT and IBM achieved signifi-

cantly better precision (Supplementary Table 15 shows the

statistical significance table).

On a per relation level, the results reflect the good performance

of concept extraction and relation classification in Figures 1 and 3,

respectively. However, the low performance of ADE-Drug,

Reason-Drug, and Duration-Drug for relation classification is are

amplified by the low performance of concept extraction. This

shows a strong need for improved ADE-Drug and Reason-Drug

extraction and classification systems. The best performing ADE-

Drug system achieves an F1 score of only 0.4755, and the best

performing Reason-Drug system achieves an F1 of 0.5961. Dura-

tion-Drug performance is also low, with the best system achieving

an F1 of 0.7861. F1 scores for other relation types are fairly high,

and have F1 scores >0.86.

DISCUSSION

To gain insight into why errors are made, and how systems can be

improved, we perform an error analysis for both concept extraction

and relation classification. For this, we found samples that were

missed by all top 10 performing teams and manually analyzed the

annotation, and its true and predicted values.

Concept extraction error analysis
There were 1087 concepts that were either not extracted or incor-

rectly labeled by all of the top 10 performing systems. Table 6 sum-

marizes the error types for these concepts. It shows for each concept

type, the number of instances, the percentage no prediction was

made, and the percentage an incorrect prediction was assigned (mis-

labeled). For example, there were 109 Drug concepts that were

missed by all the top-performing systems. For 98.4% of these instan-

ces, no prediction was made, and for 1.6% the instance was pre-

dicted, but mislabeled. In subsequent paragraphs, we analyze these

cases, and provide example texts in which concepts are underlined

Figure 2. Percentage of predictions for each concept type (row) that were of each true type (column). ADE: adverse drug event.

Figure 3. Lenient micro-averaged F1 score of each relation type for the top-performing teams. The overall micro F1 score is shown next the team name. ADE: ad-

verse drug event; BCH: Boston Children’s Hospital/Harvard Medical School/Loyola University; CCH: Cincinnati Children’s Hospital Medical Center; IBM: IBM Re-

search; MSC: Medical University of South Carolina; NaCT: NaCTeM at University of Manchester/Toyota Technological Institute/AIST; UFL: University of Florida;

UM: University of Michigan; UTH: UTHealth/Dalian; VA: VA Salt Lake City/University of Utah.
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to gain an understanding of the reasons behind these errors. Overall,

most of these cases require inference, or use ambiguous language,

but there is some variation by concept type.

The majority of Drug-related errors were caused by the use of

general terms for drug names (eg, “given nutrition,” “increased 02

requirement”) or linguistic shorthand (eg, “with 2 liters of lavage,”

in which “lavage” indicates lavage fluid).

Strength concepts were often tagged as Dosage, which is not sur-

prising, as both are often numeric quantities, and are used in similar

contexts. Strength defines the amount of the active ingredient a drug

contains, whereas Dosage refers to the amount that is taken. Exam-

ples include use of the word unit to describe strength, which requires

context to distinguish it from dosage (eg, “1 unit of blood,” and

“insulin glargine 10 units daily”) or within complex series of num-

bers: “Levothyroxine 25 mcg Tablet Sig: 0.75 Tablet PO DAILY

(Daily).” Cases in which Strength was not tagged were cases of non-

numeric quantities (eg, “baby ASA” [baby aspirin]).

Form errors often required inference that the form was a liquid,

for instance, “One (1) mL Injection,” “5–10 cc,” “prior to flushing

with 10 mL NS,” “lovenox injections,” and also commonly used

terms, such as “Tablet,” and “Extended-Release,” knowledge of a

drug, such as packed red blood cells (pRBC), in which form is

implicit (eg, “6 units pRBC” and “4 units of non-crossmatched

PRBCs”).

Dosage was commonly mislabeled as Strength, and its errors

were similar to Strength, in particular, context is required to distin-

guish between Dosage and Strength (eg, “300 mg ih monthly

dilute,” “1 gram of tylenol”). Cases in which Dosage was not la-

beled often involved lists of numbers (eg, “24 Units 281–300 mg/dL

27 Units 301–320 mg/dL.”

Frequency errors were most often caused by colloquial language

use (eg, “four times a day,” “as needed,” and “2 weeks per

month”). Other reasons include use of continuous or continuously

as a measure of frequency, and abbreviations (eg, “ASDIR” [as

directed] and “prn” [pro re nata - as needed]). Frequency was most

often confused with Duration, again due to colloquial language (eg,

“two day dosing,” “5 more days”).

Route errors were nearly always caused by abbreviations (eg,

“NC” [nasal cannula], “NRB” [nonrebreather mask], “PEG” [per-

cutaneous endoscopic gastrostomy], “PICC” [Peripherally Inserted

Central Catheter]). Additionally, confusion with Form was common

in the case of “injection.”

Duration was often mislabeled as Dosage, Strength, or Fre-

quency when medications were listed and there is little context to

distinguish between concept types (eg, “arfarin 1 mg PO/NG DAILY

16,” “Clonidine 0.3 mg/24 hr”). Duration was also mislabeled as an

ADE or Reason due to colloquial language use causing an overlap

of concepts “Only use while you have the rash,” and “as long as

your rash is itching,” in which the whole phrase refers to the dura-

tion, but only “rash” and “itching” refer to the ADE or Reason. Du-

ration was not labeled commonly due to inexact durations (eg, “up

to three times,” “ongoing,” “chronic,” “while on feeding tubes.”

Reason errors constitute 41% of the examples missed by all the

systems. This is much more than any other error type, and for 89%

of them, no prediction was made. These “no prediction” errors

Figure 4. Lenient micro-averaged F1 score of each relation type for the top-performing end-to-end teams. The overall micro F1 score is shown next the team

name. ADE: adverse drug event; BCH: Boston Children’s Hospital/Harvard Medical School/Loyola University; CCH: Cincinnati Children’s Hospital Medical Center;

IBM: IBM Research; MSC: Medical University of South Carolina; NaCT: NaCTeM at University of Manchester/Toyota Technological Institute/AIST; UFL: University

of Florida; UM: University of Michigan; UTH: UTHealth/Dalian; VA: VA Salt Lake City/University of Utah.

Table 6. Error types for concept instances missed by all of the

top-performing systems

Gold concept type Instances No Prediction Mislabeled

Drug 109 (10) 98.4 1.6

Strength 34 (3) 64.5 35.5

Form 145 (13) 98.4 1.6

Dosage 41 (4) 38.0 62.0

Frequency 35 (3) 72.3 27.7

Route 93 (9) 93.8 6.2

Duration 28 (3) 72.3 27.7

Reason 446 (41) 89.0 11.0

ADE 156 (14) 84.6 15.4

Total 1087 (100) 79.5 20.5

Values are n (%) or %.

ADE: adverse drug event.
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often required inference, especially when the language states the

reason in passing, rather than directly (eg, “In the setting of his en-

cephalopathy, his renal function did improve” and “was signifi-

cantly limited by pain”). Inference may require a deeper

understanding of a drug and its effects, for example, terbafine cream

applied to a rash “terbinafine 1% Cream Sig: One (1) Appl Topical

[**Hospital1**] (2 times a day): apply until rash resolves,” or Rea-

sons that are procedures or activities, for example, “angioplasty/

stenting” is a reason for taking the drug, “Plavix,” and “Liver trans-

plantation” for taking “immunosuppressive agents,” or “Heparin

Lock Flush (Porcine) 100 unit/mL Syringe Sig: Two (2) ML Intrave-

nous DAILY (Daily) as needed: picc line care.” Additionally, abbre-

viations, such as “PRA positive” (panel reactive antibody positive),

“NSTEMI” (non–ST-segment elevation myocardial infarction), and

“DVT” (deep vein thrombosis) were also causes of errors.

Reasons and ADEs were often confused with each other due to

their similarity as a type. An understanding of how the concept

relates to the drug was often required to distinguish between the 2

(eg, “take before Morphine as needed for itching,” “he became

mildly hypotensive . . . so his metoprolol and diltiazem were reduc-

ed,” and “Heparin induced thrombocytopenia”).

ADE errors commonly required inference. This could be across

sentences (eg, “Unfortunately side effects necessitated further anti-

biotic adjustment. CBC with noted leukopenia on [**8-5**] with

progression to neutropenia [**8-8**].”), it must be inferred that

leukopenia and neutropenia are side effects, or across paragraphs

(eg, here an allergic reaction is described: “Patient developed fever/

tachycardia/hypotension on hospital day#2; initial suspicion for

sepsis syndrome, however blood cultures remain.”), and the last

sentence of the paragraph states that “patient experiences

anaphylactic-type reaction to Bactrim, which has since been listed

as a serious allergy.” Unlabeled ADEs also often required a deeper

understanding of a symptom (eg, “The patient’s platelets declined

to 90 while in the MICU and he was found to be HIT antibody pos-

itive. Heparin products were held and the patient’s platelet count

stabilized.”) requires understanding that HIT is a complication of

heparin therapy which affects platelet counts. Other causes of

errors included generic terms (eg, “contact allergy,” “change in

mental status,” “made the patient feel strage[sic],” and abbrevia-

tions such as “C diff” (Clostridium difficile colitis) or “AIN”

(acute interstitial nephritis).

Relation classification error analysis
For the relation classification task, gold standard concepts were

used, and systems found relations by linking concepts to drugs.

Errors therefore resulted from prediction of false relations, or miss-

ing true relations. There were 141 true relations that were missed by

all of the all top 10 performing teams. Among these, the majority

(94) were Reason-Drug relations, and among the remaining 47 there

were 18 ADE-Drug, 9 Route-Drug, 6 Frequency-Drug, 5 Dosage-

Drug, 4 Form-Drug, 3 Strength-Drug, and 2 Duration-Drug rela-

tions. For most of the errors, outside knowledge of a drug’s effects,

or greater knowledge of the larger context must be known to cor-

rectly identify the relations. Broadly, these errors were caused when

a drug-concept mention were far apart, but more specifically in

cases, such as:

• Multiple entities discussed as part of a larger paragraph: For ex-

ample, this text, in which the Dilantin-oral sores and -rash rela-

tions were found, but not Dilantin-fevers, -weakness, or -

diarrhea relations. “Dilantin postoperatively for seizure prophy-

laxis and was subsequently developed eye discharge and was

seen by an optometrist who treated it with sulfate ophthalmic

drops. The patient then developed oral sores and rash in the chest

the night before admission which rapidly spread to the face,

trunk, and upper extremities within the last 24 hours. The pa-

tient was unable to eat secondary to mouth pain. She had fevers,

weakness, and diarrhea.”
• Reiteration or further instruction: Where the first mention of bio-

prosthetic valve-aspirin and -Plavix relations were found, but

not the second mention. “You had a percutaneous replacement

of your aortic valve with a CoreValve bioprosthetic valve. You

will need to take aspirin and Plavix for 3 months to prevent

blood clots around the valve. Do not stop taking aspirin and Pla-

vix unless. . .”
• Use in a list with abbreviated form: Where the first relation be-

tween Chronic Systolic Dysfunction-ACEi is identified, but not

the second, and the Chronic Systolic Dysfunction-Lasix relation

is not identified. “#4 Chronic Systolic Dysfunction: EF 35%.

Appeared euvolemic at discharge. Had not been on ACEi [**1-

24**] AS and [**Last Name (un) **]. Would consider starting

low dose ACEi as outpatient. Started Lasix 20 mg PO for inc TR

gradient.”
• When describing a sequence of events: Where the relation be-

tween hypertension medication (“HTN meds”) and hypotension

is not found. “Was being worked up on [**Wardname 836**]

for renal failure and balancing HTN meds, when found by NSG

staff to be “unresponsive” with no breathing or radial pulse for

20 seconds. Code blue called, initial blood pressure 80/50 with

improvement in mentation to baseline. Two hours after event,

noted to have decreasing BPs to 60s with concurrent mental sta-

tus changes. Repeat BPs in trendelenburg resolved to 110 with

return of mentation. She was transferred to the MICU on

[**2186-10-15**] for NSG concern of hypotension.”

These errors were also caused by ambiguous wording, in which

the vancomycin-IV relation was missed (the other relations were

found) due to ambiguity in punctuation. “Patient was administed

[sic] vancomycin, ceftriaxone and metronidazole IV.”

CONCLUSION

Through the creation of the benchmark dataset presented in this

article, the system submissions of track participants, and an analysis

of their results, we identified state of the art performance, and areas

in need of improvement for the 3 tasks (concept extraction, relation

classification, and end-to-end) supporting the goal of ADE and med-

ication extraction in EHRs.

For concept extraction, the best-performing team achieved a le-

nient micro-averaged F1 score of 0.9418. State-of-the-art systems

use deep learning methods (particularly BiLSTM-CRFs) that incor-

porate additional features. Other systems combine multiple classi-

fiers via 2-stage and ensemble methods. Performance was high for

most concept types, but was lower for Duration, and much lower

for Reasons and ADEs. Most errors occurred due to concepts being

not extracted rather than being mislabeled as other concepts. Confu-

sion between concept types was low, the highest confusion was be-

tween Reasons and ADEs. Errors were most often caused by the

need for inference, or usage of ambiguous language, but it varied by

concept type. Improvement can likely be made by incorporating out-

side knowledge to gain a deeper understanding of the reasons to

take a drug, its effects, and its characteristics (eg, its default form,
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administration method, how strength, dosage, duration, frequency

would usually be discussed).

For relation classification, the best-performing team achieved a

micro-averaged F1 score of 0.9630. State-of-the-art systems and fea-

tures varied more for relation classification than concept extraction,

but deep learning and feature-based machine learning methods were

common, as were methods to combine multiple classifiers such as

ensemble or 2-stage methods. Most errors for relation classification

were caused when drug-concept pairs were mentioned far apart. As

the number of false positive drug-concept pairs grows quickly as the

distance between drug and concept increases, these cases were par-

ticularly challenging. For relations missed by all top 10 systems,

Reason-Drug relations were missed more than all other relation

types combined. Incorporating outside knowledge of a drug’s effects

and intended treatment, and incorporating the larger context can

likely improve performance.

The end-to-end task represents performance of a system in a

real-world scenario. Most end-to-end systems were direct pipelines

of the team’s concept extraction and relation classification systems.

The highest lenient micro-averaged F1 score was 0.8905. For most

relation types the results were high, with a highest F1 greater than

0.94 for all relation types except Dosage-Drug, Reason-Drug, and

ADE-Drug. ADE-Drug and Reason-Drug performance were partic-

ularly low, and show a strong need for improvement in these areas.

The best performing systems achieved F1 scores of 0.5961 and

0.4755 for Reason-Drug, and ADE-Drug, respectively. This was

caused by low performance for Reasons and ADEs in both concept

extraction and linking them to a Drug in relation classification. Fu-

ture work should focus on improving performance for these relation

types, and developing methods that incorporate outside knowledge

and more context could be a good starting point.
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