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• Background and Aims: Functional–structural plant (FSP) models provide insights into the complex interactions 
between plant architecture and underlying developmental mechanisms. However, parameter estimation of FSP models 
remains challenging. We therefore used pattern-oriented modelling (POM) to test whether parameterization of FSP 
models can be made more efficient, systematic and powerful. With POM, a set of weak patterns is used to determine 
uncertain parameter values, instead of measuring them in experiments or observations, which often is infeasible.
• Methods: We used an existing FSP model of avocado (Persea americana ‘Hass’) and tested whether POM par-
ameterization would converge to an existing manual parameterization. The model was run for 10 000 parameter 
sets and model outputs were compared with verification patterns. Each verification pattern served as a filter for 
rejecting unrealistic parameter sets. The model was then validated by running it with the surviving parameter sets 
that passed all filters and then comparing their pooled model outputs with additional validation patterns that were 
not used for parameterization.
• Key Results: POM calibration led to 22 surviving parameter sets. Within these sets, most individual parameters 
varied over a large range. One of the resulting sets was similar to the manually parameterized set. Using the entire 
suite of surviving parameter sets, the model successfully predicted all validation patterns. However, two of the 
surviving parameter sets could not make the model predict all validation patterns.
• Conclusions: Our findings suggest strong interactions among model parameters and their corresponding 
processes, respectively. Using all surviving parameter sets takes these interactions into account fully, thereby 
improving model performance regarding validation and model output uncertainty. We conclude that POM cali-
bration allows FSP models to be developed in a timely manner without having to rely on field or laboratory ex-
periments, or on cumbersome manual parameterization. POM also increases the predictive power of FSP models.

Key words: Pattern-oriented modelling, model calibration, model parameterization, functional–structural plant 
modelling, simulation inference, parameter estimation, avocado, Persea americana, equifinality, parameter 
identifiability, agent-based modelling, individual-based modelling.

INTRODUCTION

Functional–structural plant (FSP) models have been used 
widely for over two decades to understand the complex inter-
actions between plant architecture and underlying processes 
driving plant growth (Kurth, 1994; Sievänen et  al., 1997; 
Godin and Sinoquet, 2005; Vos et  al., 2007, 2010; Fourcaud 
et al., 2008; DeJong et al., 2011; Evers, 2016). They are con-
structed to explicitly describe the growth of plant architecture 

over time based on internal physiological processes, which in 
turn are determined by external environmental processes. The 
development of such models has also provided insights into 
potential applications in agriculture and horticulture, such as 
for kiwifruit (Actinidia deliciosa) (Cieslak et al., 2011a, b), cu-
cumber (Cucumis sativus) (Kahlen and Stützel, 2011; Wiechers 
et  al., 2011; Chen et  al., 2018), macadamia (Macadamia 
integrifolia, M.  tetraphylla, and various hybrids) (White and 
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Hanan, 2016), apple (Malus domestica) (Saudreau et al., 2011; 
Pallas et al., 2016; Poirier-Pocovi et al., 2018), avocado (Persea 
americana ‘Hass’) (Wang et al., 2018), peach (Prunus persica) 
(Allen et al., 2005), tomato (Solanum lycopersicum) (Sarlikioti 
et al., 2011), grapevine (Vitis vinifera) (Pallas et al., 2010; Zhu 
et  al., 2018), legumes (Han et  al., 2010, 2011; Louarn and 
Faverjon, 2018) and root systems (Barczi et al., 2018; Schnepf 
et  al., 2018), as well as for insect–plant interactions (Hanan 
et al., 2002; de Vries et al., 2017, 2018, 2019).

Regardless, due to their inherent complexity, parameteriza-
tion of FSP models remains challenging. Here, the term ‘par-
ameterization’ refers to the involved process of estimation of 
parameters rather than of deciding which parameters to use. 
While field or laboratory experiments are the best method for 
determining parameter values, it can be difficult or impossible 
to collect all of the data that are needed to directly determine 
all parameters, and therefore some have to be determined indir-
ectly, via calibration. In recent years, efforts have been made to 
develop methods for parameter estimation of FSP models (Guo 
et al., 2006; Ma et al., 2007; Cournède et al., 2011; Trevezas 
and Cournède, 2013; Trevezas et al., 2014; Baey et al., 2016, 
2018; Mathieu et al., 2018). Most of these techniques are based 
on statistical inference, in particular on maximum-likelihood 
estimation that relies on detailed component-level experimental 
data for parameter fitting. The values of unknown parameters 
can be estimated via optimization where the best parameter 
value minimizes the difference between model outputs and em-
pirical observations.

Despite the successful application of such techniques to 
FSP modelling mostly for annual crops, they can be limited by 
the stochastic nature of biological systems (Toni et al., 2009; 
Hartig et al., 2011). This limitation is perhaps exacerbated for 
complex plants such as tree crops, due to them being long-lived 
with cumulative effects of growth and of development on tree 
structure. Such effects are caused by the environment (e.g. cli-
matic and soil conditions as well as pest infestation) and man-
agement (e.g. horticultural practices) over many years, as well 
as other complex cycles that have impacts from one year to 
the next (e.g. alternate/biennial bearing cycles). If FSP models 
are developed to simulate such complex plants, both biological 
and physical processes occurring in the models are generally 
implemented discretely and stochastically. In turn, model be-
haviours (emergent properties) are determined by interactions 
among these discrete and stochastic processes. Calibration of 
such models via optimization can thus be difficult, as the hier-
archy of the internal stochastic processes in the model often 
makes formulating likelihood functions cumbersome or even 
impossible (Hartig et al., 2011).

The complexity of interactions between biological and phys-
ical processes and the high variability of plant growth (Godin 
and Sinoquet, 2005; DeJong et al., 2011) implies that param-
eter uncertainty is inevitable. When the processes underlying 
unknown parameters interact with each other, it is unlikely to 
find a single, optimal value for each unknown parameter that 
leads to realistic simulations under all conditions. This phe-
nomenon can be explained by the concept of equifinality or 
parameter identifiability (Beven and Freer, 2001; Beven, 2006; 
Slezak et al., 2010). It refers to the situation where calibration 
results in multiple parameter sets (i.e. the different parameter 
value combinations) that make the model reproduce the obser-
vations equally well for specific objectives, due to the complex 

interactions among the components of a system. Optimization 
approaches might not capture these interactions, and favour 
specific parameter values or sets, which could limit the flexi-
bility of the model in terms of possible applications.

To overcome these limitations, simulation-based inference 
techniques for parameter estimation have been suggested 
(Hartig et  al., 2011). Simulation-based inference refers to a 
type of model calibration where the values of unknown param-
eters in high-dimensional parameter space are inversely deter-
mined via stochastic simulation; this usually results in multiple 
parameter sets that can make the model reproduce observed 
data equally well under certain criteria (Wiegand et al., 2003, 
2004; Hartig et al., 2011).

Here, we adopt the pattern-oriented modelling (POM) 
strategy (Grimm et  al., 1996, 2005; Wiegand et  al., 2003; 
Grimm and Railsback, 2012) to improve on parameterization 
for cases when measured data are scarce, by systematically ex-
ploiting the information included in an entire set of patterns that 
characterize the growth and structure of a plant.

In this pattern-oriented calibration approach, we use mul-
tiple observed patterns as filters for rejecting unrealistic par-
ameter combinations. A pattern is defined as any observation 
beyond random variation and therefore containing information 
related to underlying mechanisms (Grimm et al., 1996). There 
are strong patterns and weak patterns. A strong pattern, such 
as changes in the length of a shoot over time, often contains a 
lot of information and can reflect the underlying mechanisms 
strongly, whereas a weak pattern is usually descriptive and 
can be characterized by a few numbers or words, such as the 
number of shoots in a branching architecture. The distinction 
between strong patterns and weak patterns is qualitative, based 
on the power of a pattern to reject unsuitable sub-models and 
parameter combinations. Nevertheless, several weak patterns 
used together can be more powerful in rejecting unsuitable par-
ameter sets than a single strong pattern. This is a key advantage 
of POM calibration because often data supporting strong pat-
terns are not available (Wiegand et al., 2004).

In POM calibration, the model is run with a large number 
of possible sets of parameter values and multiple patterns are 
then used simultaneously as ‘filters’ to determine the entire sets 
of unknown parameters inversely. In contrast to the traditional 
automatic model calibration approach, this approach is based 
on categorical calibration, i.e. looking for parameter values 
that make model outputs lie within a category/range that we 
define as acceptably close to the observations (Railsback and 
Grimm, 2019, p. 267). The concept of using POM calibration 
is not to obtain an optimally fitted value for each unknown par-
ameter against a single pattern, but to obtain several param-
eter sets that can make the model reproduce an entire set of 
patterns sufficiently well, because of limited knowledge on the 
complex interactions among the components of a system. This 
approach, also known as inverse modelling or Monte Carlo fil-
tering, is a simulation-based inference technique and is similar 
to the simplest approach in Approximate Bayesian Computing 
(ABC), the so-called Rejection ABC (Beaumont, 2010; van der 
Vaart et al., 2015, 2016). ABC is a calibration approach based 
on Bayesian statistics. If a model simultaneously reproduces 
multiple patterns, observed at different levels of organization 
and different scales, it is more likely that it captures the internal 
organization of the modelled system sufficiently well for the 
intended purpose of the model.
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The aims of this study are to present an automated procedure, 
i.e. a simulation-based inference technique, for parameteriza-
tion of FSP models and to demonstrate how POM can make 
the parameterization of FSP models more systematic, efficient 
and powerful, in contrast to manual calibration, and how it can 
reduce uncertainty when direct parameterization with experi-
ments is not possible.

MATERIALS AND METHODS

As a case study of applying a simulation-based inference tech-
nique of parameter estimation for FSP models, POM was used 
to parameterize an existing stochastic FSP model of avocado 
branching architecture (Wang et al., 2018). Our model, which 
has six unknown parameters (Table 1), was previously success-
fully parameterized manually (Wang et al., 2018), thereby al-
lowing us to check whether POM calibration would converge 
to the same results. To test the predictive power of the model 
after POM calibration, we also checked how well the calibrated 
model matches an independent set of further patterns, here 
termed ‘validation patterns’.

Pattern-oriented calibration

The pattern-oriented calibration approach (Fig. 1) has been 
used widely in ecological modelling (e.g. Wiegand et al., 2004; 
Kriticos et al., 2009; Grimm and Railsback, 2012; De Villiers 
et al., 2016; Kriticos et al., 2016). To apply POM calibration, 
for each pattern to be reproduced by the model, quantitative 
criteria need to be specified to decide whether that pattern was 
reproduced, i.e. matched by the model output. These criteria 
should be neither too restrictive nor too broad. If they are too 
restrictive, we may reject too many parameter sets; by contrast, 
if they are too broad, this would make model outputs too uncer-
tain and less useful.

In our case, all patterns used are scalar metrics, i.e. specific 
numbers (Table 2). Hence, if the cited articles reported the ob-
served mean values with s.e. or s.d. as well as the number of rep-
lications, for pattern matching we required that there should be 
no statistically significant difference (P ≥ 0.05) between model 
outputs and verification patterns, and the absolute value of rela-
tive difference between model outputs and observations should 
be less than 20 %. Otherwise, when only the mean values were 
reported, we required that the absolute value of relative differ-
ence between model outputs and observations should be less 
than 20 %, or the t-distribution (95 % confidence interval) of 
model outputs should encompass the observed mean values. 
When statistical analysis was applicable, the unequal variance 
t-test also known as the Welch t-test was used in R (R Core 
Team, 2018) as suggested by Ruxton (2006).

For each unknown parameter, a range of plausible values was 
specified based on expert knowledge or reasonable biological 
arguments regarding the studied system (Table 1), and within 
these specified ranges, only integers were chosen, due to the 
biological properties of growth of avocado [e.g. the number of 
nodes (location of different shoot types on an axis) must be an 
integer]. Exploring all possible combinations of the six param-
eters would have been impossible, even though the model runs 
relatively quickly. For the parameter space explored here, there 
are ~2.65 × 109 combinations. Given that it takes a little over 2 s 
to run the model and even allowing for parallel runs using eight 
processes, it would take nearly 20 years to complete. Clearly, 
sub-sampling techniques must be used to scan parameter space 
in a systematic way, resulting in a much smaller number of par-
ameter sets (Thiele et al., 2014). We used such a technique, i.e. 
Latin Hypercube Sampling (LHS), to sample 10 000 parameter 
sets, effectively and systematically. The resulting 10 000 par-
ameter sets were generated using the lhs function within the 
package ‘tgp’ version 2.4-14 (Gramacy, 2007; Gramacy and 
Taddy, 2010) in R.

The model was then run 50 times using each of these 
10 000 parameter sets, and the model outputs were compared 

Table 1. Overview of six unknown parameters and their possible values

Parameter Description Possible 
values

Units References

SyllepticShootsLocation* Location of sylleptic shoots – the sylleptic 
shoots appear in an acropetal direction

2–11  Based on Thorp et al. (1994)

ProlepticShootsLocation Location of proleptic shoots – the proleptic 
shoots appear in a basipetal direction

1–10  Based on Thorp et al. (1994)

SYLLEPTIC_LIMB_PRO Probability of a sylleptic shoot developing from 
an axillary bud on the primary growth axis 
(PGA) in one of the positions noted above

0–100 % T. G. Thorp, Plant & Food Research 
Australia Pty Ltd, Australia, ‘pers. comm.’

SYLLEPTIC_
AXILLARY_PRO

Probability of a sylleptic shoot developing from 
an axillary bud on a second-order growth axis 
in one of the positions noted above

0–50 % T. G. Thorp, Plant & Food Research 
Australia Pty Ltd, Australia, ‘pers. comm.’

PROLEPTIC_LIMB_PRO Probability of a proleptic shoot developing from 
an axillary bud on the PGA in one of the 
positions noted above

0–100 % T. G. Thorp, Plant & Food Research 
Australia Pty Ltd, Australia, ‘pers. comm.’

PROLEPTIC_
AXILLARY_PRO

Probability of a proleptic shoot developing from 
an axillary bud on a second-order growth axis 
in one of the positions noted above

0–50 % T. G. Thorp, Plant & Food Research 
Australia Pty Ltd, Australia, ‘pers. comm.’

*The possible values of the parameter for the location of sylleptic shoots is actually from 1 to 10, but due to programming conventions in the model, the value 
of 2 is the first node in an axis where a sylleptic shoot may be developed from.



Wang et al. — Pattern-oriented calibration of functional–structural plant models562

to the seven observed verification patterns (Table  2), all of 
them scalar metrics. They characterize structural features of 
the avocado annual growth module (AGM) developed from 
an indeterminate compound inflorescence (thyrse) that does 
not set fruit over an annual growing period. It consisted of 
one mixed reproductive and vegetative (spring) and two 

vegetative (summer and autumn) growth flushes (Thorp and 
Sedgley, 1993a).

The model outputs were compared with the verification pat-
terns one at a time, under the specified criteria. Only parameter 
sets that made the model output fulfil these criteria for the first 
verification pattern were tested with the next pattern, and so 
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Fig. 1. The flowchart of POM calibration. During model verification, multiple observed patterns at different scales are used as filters to screen out unsuitable par-
ameter sets by comparison between simulations and observations under the specified criteria.

Table 2. Overview of seven patterns used for model verification (Thorp and Sedgley, 1993a). Note that here the patterns are scalar (i.e. 
numbers) whereas in general patterns for POM can be more complex, including spatial (geographical distributions), temporal (time 

series patterns) or structural patterns (e.g. size distributions)

Pattern Description Values

P1 The number of sylleptic shoots on the primary growth axis (PGA) 7.8 ± 3.0 (mean ± s.e.; n = 5)
P2 The number of proleptic shoots on the PGA 12.6 ± 1.5 (mean ± s.e.; n = 5)
P3 The number of growth units (GUs) 64 ± 18.9 (mean ± s.e.; n = 5)
P4 The number of terminal GUs 49 ± 12.3 (mean ± s.e.; n = 5)
P5 The number of GUs per axillary shoot 3.7 ± 0.5 (mean ± s.e.; n = 5)
P6 The number of flushes per year 3
P7 Flush growth timing *

*Flush growth occurs in three seasons: spring, summer and autumn.
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on. Each pattern thus served as a filter to reject unsuitable par-
ameter combinations. The resulting suite of parameter sets that 
passed or ‘survived’ from all filters was then used for model 
validation and/or application.

Because parameters may interact, i.e. different combinations 
may lead to the same model outputs, we checked correlations 
among the values of the unknown parameters that resulted from 
POM calibration by calculating a correlation matrix using R.

Model verification and validation

The term ‘verification’ is defined as the comparison of model 
outputs with patterns that guided model design and were used 
for calibration (Augusiak et  al., 2014). This process was de-
scribed in the POM calibration section above. It was used to 
determine whether a parameter set should be kept as a surviving 
one that passed all verification ‘filters’. To take stochasticity 
into account in the model’s dynamics, each parameter set was 
tested by running the model 50 times and comparing means 
and variations in the model outputs with those in the observed 
patterns.

For model validation, defined as the comparison of model 
predictions with independent patterns that were not used when 
the model was parameterized (Augusiak et al., 2014), we ran 
the model with all surviving parameter sets that resulted from 
the POM parameterization. Fifty replications were run for each 
surviving set and we then pooled their outputs (1100 replica-
tions in total). Model outputs were compared with six valid-
ation patterns (quantitative patterns specifying specific mean 
values and/or variances) (Table 3) that were not used for par-
ameterization, based on the specified criteria. These pooled 
outputs (1100 replications in total) were also compared with 
all verification patterns to confirm that the model was able to 
reproduce them sufficiently well, just like the outputs for verifi-
cation demonstrated in the POM calibration section above were 
generated by each 50 replications.

Note that in POM calibration, the filtering process is only 
applied for model verification (Fig. 1), where verification pat-
terns are used as filters to reject unrealistic model structures and 
parameter sets. The result of this filtering is a suite of parameter 

sets, which is then pooled for model applications, where the 
model is run for all these parameter sets. In the surviving par-
ameter sets, each individual parameter usually still varies over 
a wide range, which reflects interactions among model param-
eters and their corresponding processes respectively that cannot 
be resolved, given the initial parameter and process uncertainty. 
However, the variation in these pooled model outputs generated 
by running the model with the entire suite of surviving param-
eter sets is much smaller than that caused by the original uncer-
tainty in the initial 10 000 parameter sets. POM calibration thus 
takes equifinality of the given model structure into account by 
using the entire suite of surviving parameter sets resulting from 
the calibration for applications.

To improve the ‘structural realism’ of a model, i.e. the like-
lihood that a model reproduces empirical observations for the 
right reasons (Wiegand et al., 2003; Grimm et al., 2005; Grimm 
and Railsback, 2012), a second, independent set of patterns can 
then be used for model validation. This set of patterns is not 
used, and preferably not even known, when the model is con-
structed, parameterized and verified. Such validation patterns 
are used to test secondary or independent predictions (emergent 
properties at the system level) generated from the model, and 
to check whether these predictions are reliable. In ecological 
modelling, this is kind of validation is rarely done, i.e. testing 
a POM-calibrated model with further validation patterns, be-
cause of the lack of patterns and the usually high uncertainty 
in model structure (Railsback and Grimm, 2019). For FSP 
models, however, validation patterns are more likely to exist 
and can guide the refinement of models by indicating struc-
ture, processes and parameter values that should be explored 
in experiments to enable direct parameterization. In our study, 
the validation patterns are emergent properties observed at the 
system level as a result of carbon allocation and production of 
metamers by independent apical meristems.

If the pooled model outputs resulting from simulations run 
with all surviving parameter sets fail to fulfil model validation, 
or are overly sensitive to the quantitative criteria used to de-
cide whether a pattern was reproduced by the model, this indi-
cates that both model structure and the data used for calibration 
should be improved, and which kind of data are subsequently 
needed most. Therefore, the whole process of POM calibration 

Table 3. Overview of six quantitative patterns used for model validation

Pattern Description Values References 

P8 Mean length (mm) of spring growth flush on the primary 
growth axis (PGA) on  
non-fruit-bearing shoots in south-east Queensland, 
Australia

191.9 (mean) Wolstenholme et al. (1990, p. 318) 

P9 Mean length (mm) of summer growth flush on the PGA 
on non-fruit-bearing shoots in south-east Queensland, 
Australia

238.2 (mean) Whiley et al. (1991, p. 594) 

P10 Mean length (mm) of autumn growth flush on the PGA on 
non-fruiting shoots in a commercial orchard in South 
Australia, Australia

193 ± 66 (mean ± s.e.; n = 15) Thorp and Sedgley (1993b, p. 152) 

P11 Mean length (mm) of the PGA over a 1-year growing period 
on non-fruiting shoots on 2-year-old ‘Hass’ trees in south-
east Queensland, Australia

720 ± 131 (mean ± s.e.; n = 5) Thorp and Sedgley (1993a, p. 92)

P12 Mean leaf area (mm2) per shoot on non-fruit-bearing shoots in 
south-east Queensland, Australia

4060 (mean) Wolstenholme et al. (1990, p. 318) 

P13 Mean number of nodes (leaf nodes only) per growth unit on 
non-fruit-bearing shoots found on 4-year-old ‘Hass’ trees in 
a commercial orchard in central Queensland, Australia

6.5 ± 0.24 (mean ± s.e.; n = 16) The Queensland Department of 
Agriculture and Fisheries  
(unpubl. res.) 
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may need iterations until the pooled model outputs can agree 
with all validation patterns.

We also evaluated the performance of each individual sur-
viving parameter set, again with 50 replications, to further ex-
plore how POM calibration performed in contrast to possible 
manual calibration.

RESULTS

Pattern-oriented calibration

After pattern-oriented calibration, there were 22 parameter 
sets that passed all verification patterns (Table 4). One set (Set 
9207) was similar to the manually calibrated set shown in the 
last row of Table 4.

After POM calibration, the overall correlation was low 
among the 15 paired unknown parameters, but there were three 
pairs (SyllepticShootsLocation vs. SYLLEPTIC_LIMB_PRO; 
ProlepticShootsLocation vs. PROLEPTIC_LIMB_PRO; 
SYLLEPTIC_AXILLARY_PRO vs. PROLEPTIC_
AXILLARY_PRO) that were significantly negatively correl-
ated, within pairs (Fig. 2 and Table 5).

Model verification and validation using the entire parameter sets

The existing avocado branching architecture model, fitted 
with the 22 parameter sets that resulted from POM calibration, 
reproduced all seven verification patterns sufficiently well. 
There was no significant difference between model outputs and 
observations, as shown in Table 6, with the maximum absolute 
value of the relative difference between them being 14.16 %.

For the validation patterns, model predictions were similar 
to observations (Table 7), with the maximum absolute value of 
the relative difference between them being 31.49 % associated 
with P8. The cited article for P8 did not report whether the 
mean length of the spring flush included a reproductive zone. 
Hence, two simulation scenarios (P8E and P8I) were con-
ducted: the spring flush excluded and included a reproductive 
zone, respectively. Scenario P8I resulted in a relative differ-
ence of 31.49 % between the predicted and observed lengths 
(mean ± s.d.: 252.34 ± 54.42 mm; n = 1100, and 191.9 mm), 
while the predicted length (mean ± s.d.: 209.26 ± 54.42 mm; 
n  =  1100) generated from the scenario of the spring flush 
excluding a reproductive zone (P8E) was very similar to the 
observed value (191.9 mm), with the relative difference being 
9.04 %. In spite of the fact that the relative difference between 
the model prediction and observation was 31.49  % for scen-
ario P8I, the mean observed value (191.9 mm) was located in 
the t-distribution of the model prediction (252.34  ±  106.77; 
d.f. = 1099). Thus, the model is capable of predicting the ob-
served mean value.

The same situation occurred for P9. Although the absolute 
value of the relative difference between the predicted and ob-
served lengths (mean ± s.d.: 187.64 ± 64.83 mm; n = 1100, and 
238.2 mm) of summer growth flush (21.23 %) was slightly more 
than 20 %, the mean observed length (238.2 mm) was within 
the t-distribution of the model prediction (187.64  ±  127.20; 
d.f. = 1099). Therefore, the observation is similar to what the 
model would predict.

The results for P10 and P11 indicated statistical simi-
larity between model predictions and observations. For the 
mean length (mean ± s.e.) of autumn growth flush, the model 
gave 192.11  ±  1.95  mm (n  =  1100), which was similar to 

Table 4. The parameter sets that can pass all verification patterns with the possible values

Set number SyllepticShootsLocation ProlepticShootsLocation SYLLEPTIC_
LIMB_PRO

SYLLEPTIC_
AXILLARY_

PRO

PROLEPTIC_
LIMB_PRO

PROLEPTIC_
AXILLARY_

PRO

714 6 9 65 3 90 21
1557 4 7 71 39 96 4
1570 4 8 77 2 82 34
1893 4 10 70 36 82 4
2580 5 6 57 6 100 35
2702 4 10 73 5 76 35
3142 4 9 79 3 68 40
3440 5 8 77 4 92 19
4717 8 9 33 10 82 23
4778 6 10 50 1 83 23
4972 4 10 72 18 74 18
5084 6 10 52 26 78 10
5137 6 9 58 22 96 0
5317 4 8 97 7 94 22
6036 7 9 42 20 89 14
6198 4 9 96 3 80 21
6526 9 8 31 18 85 11
7755 9 9 34 9 82 15
7996 6 8 46 11 87 23
8313 4 8 93 9 76 16
9095 4 7 68 1 85 39
9207 4 7 74 21 99 22
Manually 

calibrated set 
4 7 70 20 90 20
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193  ±  66  mm (n  =  15) observed on non-fruit-bearing shoots 
(t = −0.01, d.f. = 14.02, P = 0.99). Over a 1-year growth period, 
the length (mean ± s.e.) of the primary growth axis (PGA) was 
632.09 ± 4.24 mm (n = 1100), which was similar to the field 
observation (720 ± 131 mm; n = 5) of non-fruit-bearing shoots 
(t = −0.67, d.f. = 4.01, P = 0.54).

For comparison of the mean leaf area per non-fruiting 
shoot (P12) between the model prediction and observation, 
leaf area predicted by the model was 4279.03 ± 200.35 mm2 
(mean  ±  s.d.; n  =  1100), which was similar to the value 
(4060 mm2) observed in the field, with the relative difference 
between them being 5.39 %.

For P13 – the number of nodes (leaf nodes only) per growth 
unit (GU) – the model prediction was 6.82 ± 0.07 (mean ± s.e.; 
n = 1100), matching the value (6.5 ± 0.24; n = 16) found on 
non-fruiting shoots in the field (t = 1.26, d.f. = 17.94, P = 0.23).

Model verification and validation using individual surviving 
parameter sets

For the 22 surviving sets, each can make the model repro-
duce all verification patterns, because they resulted from POM 
calibration. Additionally, most individual sets could also make 
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Fig. 2. Comparison of correlation among the 15 paired unknown parameters that resulted from POM calibration, including all 22 surviving parameter sets with 
their correlation coefficients.

Table 5. Comparison of correlation P-values among the 15 paired unknown parameters resulting from POM calibration, including all 
22 surviving parameter sets (not significantly correlated at P = 0.05)

SyllepticShoots 
Location

ProlepticShoots 
Location

SYLLEPTIC_ 
LIMB_PRO

SYLLEPTIC_ 
AXILLARY_PRO

PROLEPTIC_ 
LIMB_PRO

PROLEPTIC_ 
AXILLARY_ 
PRO

SyllepticShootsLocation NA 0.494 <0.001 0.912 0.801 0.166
ProlepticShootsLocation 0.494 NA 0.585 0.746 0.001 0.270
SYLLEPTIC_LIMB_PRO <0.001 0.585 NA 0.440 0.710 0.339
SYLLEPTIC_AXILLARY_ 

PRO
0.912 0.746 0.440 NA 0.319 <0.001

PROLEPTIC_LIMB_PRO 0.801 0.001 0.710 0.319 NA 0.267
PROLEPTIC_AXILLARY_ 

PRO
0.166 0.270 0.339 <0.001 0.267 NA

NA, not applicable.
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the model predict all observed patterns for validation, except 
for two sets: Sets 1557 and 5137. They failed to make the avo-
cado model predict P13: the number (mean  ±  s.e.) of nodes 
(leaf nodes only) per GU. There was a statistically significant 
difference between model outputs and observations indicated 
by the Welch t-test. For Set 1557, the model prediction was 
7.67 ± 0.44 (mean ± s.e.; n = 50) for P13, which was signifi-
cantly different from the observation (6.5 ± 0.24; n = 16) of non-
fruiting shoots in the orchard (t = 2.33, d.f. = 63.99, P = 0.02). 
Comparison of P13 between the model prediction (7.43 ± 0.37; 
mean ± s.e.; n = 50) and the observation (6.5 ± 0.24; n = 16) 
for Set 5137 also showed a significant difference (t  =  2.12, 
d.f. = 62.57, P = 0.04).

DISCUSSION

We present a simulation-based inference technique for par-
ameter estimation for FSP models. The calibration method 
presented here deals with a common situation in which direct 
estimation of parameters does not exist or is infeasible due 
to a lack of time or resources, so the values of unknown 

parameters have to be determined indirectly in a reliable and 
robust way. We used POM to calibrate an existing FSP model 
of an avocado branching architecture. POM calibration led 
to several parameter sets (22 in total), which indicates strong 
interactions among the processes underlying those unknown 
parameters. Interestingly, POM calibration also identified one 
set that was similar to the manually calibrated set shown in the 
previous study (Wang et al., 2018).

Importantly, when fitted with these multiple parameter 
sets, our model had the capacity to reproduce the verifica-
tion patterns, as well as to predict further independent valid-
ation patterns that were not used for model parameterization 
simultaneously. Despite not delivering one single, ‘optimal’ 
parameter set, using the pooled outcome of POM calibration, 
the model captured the development of an AGM sufficiently 
well. It was thus able to make reliable predictions of emergent 
system behaviours; that is,  architectural and growth patterns 
such as the number of nodes (leaf nodes only) per GU and the 
length of the growth flush emerged from the interactions among 
the physical and biological processes occurring in the model. It 
is thus likely that the model has a realistic structure to provide 

Table 6. Comparison (mean ± s.e.) of model outputs, generated by fitting the model with the 22 surviving parameter sets, and verifica-
tion patterns, including results of the t-test (not significantly different at P = 0.05), and absolute and relative differences between model 

outputs and observations

Pattern Model (n = 1100) Observation (n = 5) t d.f. P Difference Relative difference (%)*

P1 7.3 ± 0.06 7.8 ± 3.0 −0.17 4.00 0.88 −0.50 −6.36
P2 10.82 ± 0.09 12.6 ± 1.5 −1.19 4.03 0.30 −1.78 −14.16
P3 66.69 ± 0.51 64 ± 18.9 0.14 4.00 0.89 2.69 4.20
P4 47.17 ± 0.39 49 ± 12.3 −0.15 4.01 0.89 −1.83 −3.74
P5 3.7 ± 0.02 3.7 ± 0.5 0.005 4.02 0.996 0.00 0.00
P6 3 3 – – –  –
P7 † † – – –  –

*The relative difference is calculated from model minus observation (difference) then divided by observation.
†Flush growth occurs in three seasons: spring, summer and autumn.

Table 7. Comparison of model outputs, generated by fitting the model with the 22 surviving parameter sets, and validation patterns, 
including results of the t-test (not significantly different at P = 0.05), and absolute and relative differences between model outputs and 

observations

Model (n = 1100) Observation

Pattern Mean s.d. s.e. Mean s.e. n t d.f. P Difference Relative 
difference (%)*

t-distribution 
(d.f. = 1099)

P8E† 209.26 54.42  191.9‡      17.36 9.04  
P8I† 252.34 54.42  191.9‡      60.44 31.49 252.34 ± 106.77
P9 187.64 64.83  238.2‡      −50.56 −21.23 187.64 ± 127.20
P10 192.11  1.95 193 66 15 −0.01 14.02 0.99 −0.89 −0.46  
P11 632.09  4.24 720 131 5 −0.67 4.01 0.54 −87.91 −12.21  
P12 4279.03 200.35  4060‡      219.03 5.39  
P13 6.82  0.07 6.5 0.24 16 1.26 17.94 0.23 0.32 4.85  

*The relative difference is calculated from model minus observation (difference) then divided by observation.
†P8E refers to the mean length of spring growth flush excluding the reproductive zone, whereas P8I indicates the mean length of spring growth flush including 

the reproductive zone.
‡Statistical analysis methods were not applicable, because the cited articles did not report the s.d. or s.e. and n for the observed mean values.
Note: for P8 we did not know whether the length of the spring growth flush from the cited article included a reproductive zone. Therefore, we compared our 

model prediction with two scenarios, spring growth flush including a reproductive zone and spring growth flush excluding a reproductive zone, to see how they 
differed. The observed mean for P8I lies in the range 252.34 ± 106.77 (t-distribution; d.f. = 1099).
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realistic representations of processes. This interpretation is also 
supported by the low correlation among unknown parameter 
values resulting from calibration (Whittaker et al., 2010).

Ideally, parameters should have no strong correlations, but 
should have an unambiguous biological meaning in terms of 
representing the underlying processes for a given system mod-
elled. In our study, following calibration there were three out 
of the 15 paired unknown parameters that were negatively cor-
related. A reason for this could be incomplete information on 
the location and likelihood of development of sylleptic and pro-
leptic shoots within an AGM. Nevertheless, these correlated 
parameters appear to be meaningful in describing the biological 
processes underlying the growth of an AGM. For example, an 
increase in the number of locations (nodes) for sylleptic shoots 
(basal nodes) or proleptic shoots (nodes closest to the apex) 
on the PGA is associated with a decrease in the probability of 
a shoot for both types developing from an axillary bud on the 
PGA in one of those locations. Also, with the increase in the 
probability of a sylleptic shoot developing from an axillary bud 
on a second-order growth axis, the probability of a proleptic 
shoot developing from an axillary bud on the same order axis 
will decrease. The compensatory effect between the correlated 
parameters appears to represent plausible biological mechan-
isms that could explain the number/proportion of sylleptic or 
proleptic shoots existing within an AGM, which reflects the 
natural growth habits of avocado as observed by Thorp and 
Sedgley (1993a) and Mickelbart et al. (2012).

In the parameter sets passing all verification patterns used 
as filters, most individual parameters varied over a large range 
(Table 4) so that only the entire parameter sets (22 sets in our 
case) should be used for model applications. This is because 
the interactions between the values of unknown parameters can 
make the model produce equally acceptable model outputs. For 
example, both a low value of a parameter (α) and a high one for 
the second parameter (β), or vice versa, may lead to the same 
model output, depending on the value of another parameter (θ). 
Such interactions, which could also be termed compensation, 
are underlying the equifinality, i.e. the fact that different models 
can ‘explain’ the same set of observations (Beven and Freer, 
2001; Beven, 2006; Slezak et  al., 2010). To take these inter-
actions into account fully, the entire suite of surviving param-
eter sets that passed all the verification filters should therefore 
be used together for model validation and/or applications.

However, the occurrence of equifinality does not imply poor 
model performance. In fact, the multiple parameter sets can im-
prove model performance for validation and reduce parameter 
uncertainty (Her and Chaubey, 2015). This has been confirmed 
by our findings. Our study demonstrates that it would be risky 
to focus on just one single parameter set. The single set may 
make the model work perfectly under certain observed pat-
terns, but when new patterns are observed, it may not result in 
the model producing the reliable outputs that match with the 
new observations. In our case, as an essential modelling exer-
cise, we tested the surviving sets individually against all valid-
ation patterns. Two sets (Sets 1557 and 5137)  failed to make 
the avocado model predict P13, but they made the model work 
well for the remaining validation patterns. Also, other ‘suc-
cessful’ sets might fail for new observed patterns in the future, 
and thus keeping all of them has many advantages. The key 
point of POM calibration is to use the entire suite of surviving 

parameter sets, rather than using each individual parameter set 
or few parameter sets, to fully capture these interactions among 
the processes underlying the unknown parameters.

Comparing pooled model outputs with validation patterns 
is not an integral part of POM calibration, but is an option 
for guiding model improvement if validation patterns exist. 
Generally, it is not expected that all surviving parameter sets 
make the model match all validation patterns in POM cali-
bration. However, in our study there are only two such sets, 
perhaps due to the relatively well-known modular structure of 
plant architecture and growth rules that often are used as verifi-
cation patterns to guide the design of the conceptual framework 
of FSP models. This leads to considerably less uncertainty in 
model structure than that in most ecological models (Wiegand 
et al., 2004; Railsback and Grimm, 2019), thereby effectively 
constraining most unrealistic parameter values during the pro-
cess of calibration. As a consequence, 20 out of the 22 param-
eter sets resulting from POM calibration can individually make 
the model predict all validation patterns in the current study.

Nevertheless, there is always uncertainty, more or less, in 
model structure due to the limited knowledge about the mod-
elled system and assumptions made in designing the model. In 
our study, the occurrence of equifinality is the result of a limited 
number of verification patterns that were available and used for 
model design and parameterization. To the best of our know-
ledge, there were only seven verification patterns (Table 2) that 
we could use to guide model development, while the validation 
patterns were identified only after model development and cali-
bration were finished.

It is well known that the values of the single best param-
eter set fitting some experimental data optimally are not ne-
cessarily the best from a biological perspective (Slezak et al., 
2010). POM calibration can overcome this limitation by using 
multiple parameter sets together. For our avocado model, the 
use of multiple sets made the model produce those reliable pre-
dictions. This outcome is supported by the findings in many 
modelling studies from various scientific disciplines (Wiegand 
et al., 2004; Rossmanith et al., 2007; Colwell and Rangel, 2010; 
Whittaker et al., 2010; Grimm and Railsback, 2012; Her and 
Chaubey, 2015; Luo et al., 2015; May et al., 2016; Sukumaran 
et al., 2016; Boer et al., 2017; He et al., 2017; Teixeira et al., 
2018). Consequently, modellers should consider using multiple 
parameter sets instead of choosing the single best set of param-
eters for achieving better model performance, because of the 
inherent uncertainty related to each parameter set. Further ex-
perimental work can be conducted to quantify the proper values 
of unknown parameters under the guidance of the resultant par-
ameter sets from POM calibration, if possible. For example, 
experiments can be designed to target only a certain range of 
values for each unknown parameter based on the frequency dis-
tribution of these values, resulting from POM calibration. In 
such a way, time and resources can be better focused on ex-
periments showing the greatest likelihood of success. In turn, 
the model can be refined by fitting with new parameter values 
gathered from such experimental data-gathering, in terms of the 
model development cycle (Grimm and Railsback, 2005, p. 27), 
so that the structural realism of the model can be enhanced and 
increased, thereby reducing uncertainty in model structure. 
This would lead to a lower number of parameter sets surviving 
from the calibration process (i.e. a lower level of equifinality), 
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and the interactions among the processes underlying these un-
known parameters can thus be better understood.

Conventionally, most parameter estimation techniques ap-
plied to FSP models are based on statistical inference (e.g. 
maximum likelihood estimation), which rely largely on detailed 
component-level experimental data for parameter fitting. Such 
techniques have been successfully used to estimate parameters 
mostly for annual crops (Guo et  al., 2006; Ma et  al., 2007; 
Cournède et al., 2011; Trevezas and Cournède, 2013; Trevezas 
et  al., 2014; Baey et  al., 2016, 2018; Mathieu et  al., 2018). 
However, Toni et  al. (2009) and Hartig et  al. (2011) pointed 
out that the statistical inference approaches can be constrained 
by the stochastic nature of biological systems. Calibration of 
such FSP models could therefore be difficult using statistical 
inference approaches, because these non-linear interactions can 
make their analytical formulae (i.e. the likelihood functions) 
intractable.

In addition to traditional parameter estimation techniques, 
simulation inference approaches such as ABC and POM are 
valuable for parameterizing FSP models in the plant modelling 
community. For FSP models that are not analytically tractable, 
their unknown parameter values can be identified inversely via 
stochastic simulation. In principle, stochastic simulation fitted 
with different parameter sets can be used to generate the ap-
proximate distributions of observed data by multiple model 
runs. Summary statistics can then be used to quantify similarity 
between simulated data and observed data. Unsuitable param-
eter sets can be screened out using such a process (Hartig et al., 
2011). This is particularly useful to filter unsuitable parameter 
sets when using multiple observed patterns at different levels 
and scales (Wiegand et al., 2003; Grimm et al., 2005; Grimm 
and Railsback, 2012). The main advantage of using POM to 
parameterize FSP models is that it enables the use of multiple 
observed patterns at the system level to inversely determine 
the values of unknown parameters at the component level. 
Here, model parameterization avoids relying heavily on data-
gathering at the organ level, because emergent system proper-
ties at the macro-level are more easily observed than properties 
at the micro-level.

It is also noteworthy that sometimes POM even allows us 
to inversely infer information that was not reported in the 
original literature. For P8, it was not reported whether meas-
urements of the mean length of the spring flush included a re-
productive zone. We thus ran scenarios with and without the 
reproductive zone and found that it was more likely that the 
reproductive zone was not included. This indicates that POM is 
not only useful for inversely determining parameters, but also 
for identifying processes. Indeed, the rationale for selecting the 
most suitable representation of a certain process, for example 
habitat selection of fish (Railsback and Harvey, 2002), or infor-
mation transfer among birds (Cortés-Avizanda et al., 2014), is 
exactly the same as for parameterization: use multiple patterns 
to identify the most plausible representation of a process. This 
approach has been termed ‘pattern-oriented theory develop-
ment’ (Railsback and Grimm, 2019) and also has high potential 
to be useful for FSP modelling.

In summary, we demonstrate a simulation inference tech-
nique to parameterize FSP models. Such techniques are suit-
able for parameterizing FSP models that are analytically 
intractable or are constructed based on sparse and noisy data 

at the component level. The POM calibration approach allows 
FSP models to be developed in a timely manner without relying 
heavily on field or laboratory experiments, or on cumbersome 
manual calibration. More importantly, the accuracy of model 
performance (predictive power) for validation can be increased.
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