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Abstract

The developmental timing of exposures to toxic chemicals or combinations of chemicals may 

be as important as the dosage itself. This concept is called “critical windows of exposure.” The 

time boundaries of such windows can be detected if exposure data are collected repeatedly in 

short time intervals. The development of tooth-matrix biomarkers which provide prenatal and 

postnatal exposure measures in repeated intervals can provide such data. Using teeth, we use 

reverse distributed lagged models (DLMs) to incorporate weekly prenatal and postnatal measures 

of exposures to estimate time-varying associations with developmental effects. The analysis of 

such data using lagged weighted quantile sum (WQS) regression as an extension to reverse DLMs 

for complex mixtures was first proposed by Bello et al. This prior algorithm was not operationally 

generalizable to large numbers of components (say, more than five or six). We propose a revised 

algorithm that may be useful for larger mixtures by combining time-specific WQS(t) indices 

in a reverse DLM. We demonstrate the new algorithm using tooth data in association with a 

neurodevelopmental score and in simulated data from 3 cases wherein different components of a 

mixture have time varying associations and in the case where none have associations. The new 

algorithm correctly detects the simulated associations when the number of samples within the 

time-specific analyses is moderate to large.
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1. Introduction

The concept of early life environmental exposures during critical periods in development 

manifesting as disease or dysfunction in later life is often referred to as “developmental 

origins of health and disease” or DOHaD. While originating in the nutrition field, the 

concept has moved into environmental health as data demonstrate that similar principles 

apply to environmental toxicants. In parallel, environmental health has moved towards the 

study of mixtures – i.e., higher order combinations of chemicals that act in concert to 

produce health effects as humans are exposed to many chemicals – not one at a time. 

Such effects are contextual and require specialized statistical methods. The most prominent 

challenges faced in developing these solutions are in devising methods appropriate for 

the complex and inevitably collinear data involved in high-dimensional mixtures, and in 

resolving time-specific or temporally-lagged effects.

Complex correlation patterns typical of environmental mixtures challenge standard 

multiple regression methods which suffer from multi-collinearity effects where regression 

coefficients have inflated variances (Neter et al., 1996), and the reversal paradox (Tu et 

al., 2008) where regression coefficients have opposite signs due to correlation between 

components. The objective is often to identify “bad actors” in exposure concentrations - 

not necessarily for building a parsimonious model. Thus, one analysis strategy is weighted 

quantile sum (WQS) regression, which creates an empirically weighted index as a measure 

of a mixture effect (i.e., chemicals at low concentrations that individually may have no 

observable effect but acting together produce a joint effect (Orton et al., 2014). The WQS 

index identifies bad actors based on non-negligible weights. WQS regression yields easy-to­

understand graphical displays of the association between the exposure index and an outcome 

through a lower dimensional plot (Carrico et al., 2015; Czarnota et al., 2015).

WQS regression consists of two steps: (i) estimating a weighted index of standardized 

concentrations (e.g., scored into quantiles) in a nonlinear model across bootstrap samples 

from a randomly selected training dataset (e.g., 40% of the full dataset); and (ii) testing 

for significance of the estimated weighted index in a generalized linear model using a 

holdout validation dataset (i.e., the remaining 60% of the full dataset). A test for the 

significance of the regression coefficient associated with the weighted index (where the 

weights are constrained to sum to 1) is a test for a mixture effect in the direction associated 

with the parameter estimate. These constraints (single direction and weights that sum to 

1), implemented in conjunction with the ensemble procedure, reduce ill-conditioning due 

to complex correlations among components and provide more powerful single degree-of­

freedom tests in the direction of the association. Analyses are conducted to evaluate positive 

and negative associations separately through the discrete aggregation of ensemble models, 

with models identifying positive associations used in the aggregation of a positive-associated 

mixture, and negatively-associated models used in the aggregation of a negative mixture. 

Facilitating this, a constraint can be imposed during weight estimation to constrain the 

direction of association. The combination of the ensemble step and the application of 

constraints in parameter estimation yield a strategy that is relatively robust to correlation 

patterns in terms of sensitivity and specificity for identifying bad actors. Another ensemble 

step that may be utilized in WQS regression (instead of a bootstrap step) is to estimate 
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weights on multiple random subsets of components (e.g., from 1000 components, randomly 

select, say, 30 components) and then average across all random subsets to determine a final 

WQS index (Curtin et al., 2019).

2. Identifying critical windows of exposure using the tooth biomarker

The underlying concept of critical windows derives from biological observations that traits 

develop unevenly in childhood, with particular life stages being the “window” during 

which development occurs. Critical exposure windows refer to environmental factors that 

can disrupt the acquisition of a trait. The exposure may coincide with the developmental 

window, or it may precede it. For example, a chemical exposure such as methylmercury that 

occurs in pregnancy may interfere with hearing development subclincally and interfere with 

subsequent language development. In this example the exposure window for methylmercury 

and the developmental window for language do not overlap in time but they are 

connected biologically. Recently, statistical methods to uncover exposure windows have 

been developed using distributed lag regression modeling (DLMs) with air pollution data 

using different health endpoints. Because air pollution can be estimated in short time 

intervals it is ideally suited for use in DLMs and critical exposure windows.

Recent advances in exposure biomarkers, including the tooth matrix, allow for temporally 

dense data on internal biomarker concentrations to be estimated (Arora and Austin, 

2013; Arora et al., 2014). The sequential pattern of tooth development is analogous to 

the development of growth rings in a tree in providing a time-resolved biomarker. This 

technique leverages this growth pattern by zeroing in on specific rings that correspond to 

specific life stages, such as prenatal life (even specific trimesters of pregnancy) or specific 

years of early childhood. Using laser-based analysis, metals and other chemicals in tooth 

layers are measured that correspond to these life periods. In essence, past exposure to metals 

is reconstructed with a level of precision that was previously impossible.

Based on daily growth layers in teeth, the technique measures concentrations of multiple 

elements on a transverse axis along the length of the tooth. The neonatal line, a 

histologically distinct layer formed on the day of birth, orients the analysis with respect 

to subject age and the calendar date of exposure. The growth trajectory is then divided into 

roughly a hundred time points and thus yields a temporal map of prenatal and postnatal 

metal exposure (Fig. 1). Concentrations of each element are normalized to the concurrent 

value of calcium, constructing a semi-quantitative unitless value of relative concentration at 

each time point.

Data from children’s environmental health cohort studies offer the opportunity to evaluate 

critical windows of exposure. Distributed lagged regression models yield an estimate of 

the effect of exposure incurred at a specific time window while adjusting for exposures at 

earlier times, under the assumption that the effect of exposure varies smoothly over time. 

Our group was the first to propose using DLMs to uncover critical exposure windows for 

human health first by using air pollution data (Hsu et al., 2015; Wilson et al., 2017). Because 

the tooth biomarker has a similar temporally dense data structure to air pollution, we adapted 

this method to the tooth biomarker (Modabbernia et al., 2016). A limiting feature of DLMs 
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is the requirement that all observations have complete data within the same time window. 

Exposure sampling times often vary across subjects and may be wide enough to mask 

important critical windows (e.g., trimesters of pregnancy). Thus, following previous work 

(Coull et al., 2014; Chen et al., 2015), we interchange roles of outcomes and exposures and 

use a functional spline model with time varying coefficients to evaluate associations between 

exposures and outcome:

X(t) = β0(t) + β1(t)Y + γz + u + ε, (1)

where X(t) are standardized exposure concentrations over time, and Y is the standardized 

outcome variable, adjusted for covariates. The focus of the inference is the time-varying 

correlation between X and Y, depicted by β1(t), with both Y and X centered and scaled. 

The random effect term, u, permits the assumption of a compound symmetry correlation 

pattern for intra-subject observations. Values of β1(t) > 0 indicate higher concentrations are 

associated with higher mean outcome variable values, and vice versa. Time frames where 

Holms-Bonferroni-adjusted 95% confidence intervals on β1(t) exclude 0 indicate critical 

windows of development.

Because of the growing interest in chemical mixtures research, Bello et al. (Bello et al., 

2017) proposed a lagged version of WQS that uses an algorithm to extend the reverse DLM 

for analysis of mixtures. The rationale is based on the logic of WQS regression, where 

an empirically weighted index of standardized concentrations is constructed in multiple 

steps. The algorithm begins with equivalent weights for the initial WQS(t); estimates a 

reverse DLM on WQS(t); then, conditional on parameter estimates, improves the weights 

on WQS(t) from analysis of the residuals; then re-estimates the reverse DLM using the 

updated WQS weights. Confidence intervals are constructed on the time-varying association 

parameters. When the estimate of β1(t) associated with WQS (t) is positive and significant, 

the mixture is positively correlated with the outcome; when the estimate is negative and 

significant, the mixture is negatively correlated and time-varying weights are graphically 

displayed.

An important feature in this algorithm is that it uses a reverse DLM which permits subjects 

to have measurements at different time points. For example, in Fig. 1, child A has Pb and 

Mn concentrations measured between 110 days before birth to roughly 300 days after birth. 

Child B has concentrations measured between 150 days before birth to almost 400 days 

after birth. The algorithm proposed by Bello et al. results in a temporal domain that includes 

the union of the time measurements across all subjects. A limitation of the algorithm, 

however, is the middle step where time varying weights are updated by simultaneously 

estimating a spline function per component in the mixture. When the number of components 

is small (say, 3 to 4) with a moderate to large sample size, the algorithm performs well in 

simulation studies. But, environmental exposure data often consists of more components; 

e.g., tooth data may have 15 metals and elements. Our objective herein is to extend lagged 

WQS regression to include temporally varying higherdimensional measures of exposure. 

We describe the revised approach in section 3 with an illustration in section 4. We conduct 

a sensitivity analysis on the algorithm through simulated data in section 5 with a final 

discussion in section 6.
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3. Lagged WQS regression for mixtures with large numbers of 

components

WQS regression may be conducted using one of two ensemble steps where the final set 

of weights are averaged over the ensemble samples: i.e., (1) a bootstrap step whereby 

the ensemble step includes B (say, B = 100) bootstrap samples of subjects selected with 

replacement; or (2) a random subset step whereby subsets of components are selected 

randomly for analysis and averaged across all subsets (e.g., for analysis of 100 components, 

take 1000 random subsets of size 10). In the bootstrap ensemble step, the complex 

correlation pattern is at least roughly similar across all bootstrap samples; in the random 

subset version, the correlation pattern is broken apart for each subset thereby permitting a 

“de-correlation” of complex patterns in some of the analyses. We include these capabilities 

in a lagged version of WQS regression using the following steps for longitudinal exposures 

for multiple components that are each quantile scored (e.g., in deciles) across the temporal 

record.

Step 1:

Select a temporal domain and time unit (e.g., a week) for analysis. It is generally advisable, 

and for the bootstrap ensemble method essential, that the minimum number of subjects 

within any time unit in the domain exceeds the number of components in an ensemble step 

analysis plus the number of covariates. If a random subset ensemble procedure were used, 

it would be possible to construct a mixture wherein the number of mixture-components 

exceeds the number of subjects.

Step 2:

Conduct the first step of WQS regression (i.e., estimate the average weights from the 

ensemble step) within each time unit and output the estimated weights per time unit and the 

calculated weighted index per subject; i.e., WQSi(t).

Step 3:

Estimate the time varying association across these indices using a reverse DLM model:

W QS(t) = β0(t) + β1(t)Y + γz + u + ε (2)

Step 4:

Plot the time varying association β1(t) with corresponding confidence intervals. Plot 

smoothed functions of the estimated weights per component.

Since the focus of Step 2 is the estimation of the weights, and not hypothesis testing of 

the weighted index, there is no reason to split the data. Variations of the algorithm include 

estimating the mixture effect of the components by identifying the majority direction of 

the association across the bootstrap samples. Alternatively, the algorithm can be run by 

constraining the direction of the WQS regressions in a single direction, one at a time.
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4. Illustration

Tooth biomarker concentrations were measured on 162 children from a pregnancy cohort. 

Fifteen elements (Ba, Bi, Cd, Co, Cr, Cu, Li, Mg, Mn, Mo, Ni, Pb, Sn, Sr, and Zn) were 

measured in both pre-natal and postnatal timepoints. Characteristics of the study participants 

included a population-centered neurological assessment scale, a sex indicator, maternal IQ, 

and a binary measure of socio-economic status (Table 1). Further details of the study data 

are not provided as the focus herein is on the biostatistical method and not on the particular 

neurological scale, resulting critical exposure windows, or the potential association with the 

measured elements.

The complex bi-variate correlation pattern among the metals across time includes both 

negative and positive Spearman correlation estimates with the strongest correlation estimates 

of 0.65 between Ba and Sr and 0.58 between Sr and Li (Fig. 2A). Interestingly, five of the 

elements (Bi, Cd, Co, Mo, and Ni) were measured near the limit of detection (LOD), and are 

included in the analyses as potential negative controls since their exposure concentrations 

may be somewhat random.

Single element analyses were conducted for each of the 15 elements adjusted for covariates 

in Table 1 (Fig. 3). Positive associations were identified by a positive lower 95% Holms­

Bonferroni confidence limit; negative associations would be identified by a negative upper 

95% confidence limit. Here, concentrations of Ba are positively associated with Y, the 

neurological assessment score, postnatally; Sr is positively associated with Y at 2 months of 

age; and Zn is positively associated with Y in a prenatal time window. Significant windows 

of association were not identified for the other 12 elements.

For analysis of the mixture of 15 elements, the lagged WQS regression was conducted over 

time in the following four steps.

STEP 1:

Concentrations for each of the elements measured over time were ranked into deciles. The 

unit for ‘time since birth’ (TSB) in the dataset is in months; i.e., TSB was calculated by 

dividing days by 30 with measurements taken roughly every 3rd or 4th day.

STEP 2:

Separate WQS regression analyses were conducted within quarter-month time units (i.e., 

rounding TSB into 0.25 intervals; Fig. 2B) between −4 months and 4 months where 0 is 

birth with a bootstrap ensemble step at each quarter-month. Final weights for the elements in 

each of the 32 analyses was the average over the time-specific 100 bootstrap samples (Fig. 

4a.A with color legend in Fig. 4a.C). The number of bootstrap betas in the majority direction 

(Fig. 4a.B) indicate the strength of the signal in the majority direction. For example, the 

signal was almost always in the positive direction between 4 months before birth (i.e., 

TSB = −4) to birth; the signal is generally in the positive direction but with a decreased 

signal postnatally. The time-varying WQS(t) index was calculated for each subject using the 

estimated weights.
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STEP 3:

A reverse DLM analysis was conducted on the association between Y and the estimated 

WQS(t) indices, adjusted for covariates in Table 1.

STEP 4:

The resulting association parameter with corresponding 95% confidence intervals were 

plotted (Fig. 4a.C). The weighted association (i.e., the estimated weights multiplied by the 

association parameter at each time point) for each of the 15 elements indicated a positive 

association both prenatally and postnatally. Ba and Sr were most highly weighted 4 months 

before birth with Pb, Mg and Zn more highly weighted within 2 months before birth. 

However, Ba, Zn and Pb dominated postnatally (Fig. 4D).

An alternative analysis strategy is to constrain the WQS indices over time to a single 

direction. This may be particularly helpful when the overall mixture includes both toxins 

and nutrients, for example, and it becomes essential to dissect discrete sub-mixtures. Here, 

the signal was primarily in the positive direction, so the resulting analysis with the beta 

constrained to be positive was essentially the same as the unconstrained analysis (Fig. 4b 

compared to Fig. 4a). In contrast, when the beta coefficient was constrained to be negative, 

there was no signal detected in the perinatal period (Fig. 4c).

5. Simulated data based on observed teeth data

The correlation pattern from the tooth data from a subset of seven element concentrations 

and covariates were used as the basis of the simulation study. Time (t) varying beta 

coefficients were assumed for each element in three different cases: Case 1: only X4 has 

a time-varying association; Case 2: X4, X5 and X7 have differing time-varying associations; 

Case 3: none of the variables are associated with the mean of Y. Specifically, as depicted in 

Fig. 5,

Cases 1,2:

β4 = (t − 4){−0.2(t + 4) + 0.025(t + 4)2}
+ (t ≥ 4){0.2(t − 4) − 0.02(t − 4)2}

Case 2:

β5 = (t > 5){0.15(t − 5) − 0.01(t − 5)2}
β7 = = (t < 4){−0.1(t + 4) + 0.0135(t + 4)2}

In Case 3, all beta coefficients were set to 0. The simulated Y values were assumed to be 

normally distributed, with mean mu which is linear in the Xs with time-varying regression 

coefficients; i.e., μ = Σj = 1
7 βjXj It is important to consider the change in sample sizes over 

time where the 3 months prior to birth have roughly 240 measurements; the first 4 months 

after birth has roughly 130 measurements; and 4–10 months of age has only about 50 

measurements per time interval (Fig. 2B).
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The new version of lagged WQS was conducted in the following steps. All concentrations 

were ranked into deciles for each element. WQS regression was conducted in quarter month 

intervals with the weights and WQS(t) combined across analyses. The reverse DLM model 

of WQS(t), as given in equation (2), was estimated adjusted for the covariates. Estimates of 

the correlation between WQS and Y were plotted with 95% family-wise Holm-Bonferroni 

confidence intervals for all three cases (Fig. 6).

In Case 1, a peri-natal negative association was detected between 2 months before birth 

and 1 month after birth. Only X4 was associated with the association as evident in Fig. 6, 

Case 1B,C). The weights from the WQS regressions as depicted by the dots in Figure C 

demonstrate the association with the largest sample size provide the strongest signal; the 

smaller sample size after about 4 months was not large enough to estimate the postnatal 

positive association. Further, the decrease in sample size was also evident in the increase in 

variability of adjacent WQS weights as depicted, for example, for X4 in Fig. 6C Case 1.

In Case 2, the strongest peri-natal significant association was with X4 but a negative 

association was also detected for X7. Again, the sample size was too small to detect the 

association after about 4 months for X5 and X4. And, again, the variability of adjacent WQS 

weights increased in this later time frame, for example, for X4 in Fig. 6C Case 2. Finally, 

there was no evidence of an association with any of the components in Case 3, which was as 

designed.

6. Discussion

We have presented a revised version of lagged WQS regression that may be operationally 

generalizable to combinations of many chemicals. The original algorithm proposed in Bello 

et al. (Bello et al., 2017) fit separate splines to estimated weights of components over time, 

which worked well for 3 or 4 components but was untenable for dozens of components 

due to the number of required parameters. Herein, we propose to compromise the flexibility 

of the full time-domain in the design across subjects by selecting a somewhat narrower 

time domain and conduct WQS regression in time-specific analyses. We demonstrate the 

approach using quarter-month analyses between 4 months before birth to 4 months after 

birth. The advantage is that the time-specific analyses may utilize both the bootstrap 

(Carrico et al., 2015) and the random subset (Curtin et al., 2019) versions of the ensemble 

step in WQS regression.

The time-specific WQS regression analyses result in local estimates of weights that are 

more precise for larger sample sizes. In the simulation study conducted herein, the specified 

associations were detected in time intervals with sample sizes that exceeded about 100 

measurements. For smaller sample sizes, the weights were associated with more variability 

and the simulated signals were not detected.

The proposed revised lagged WQS regression model allows the inference to be focused 

in both directions throughout the observed time frame by constraining in each direction 

one at a time – as demonstrated in Fig. 4b and c. This may be particularly useful as the 

number of components increases and the mixtures include both toxins and nutrients – or 
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more generally, where components are positively or negatively associated with the outcome. 

Such a case was observed in an analysis of the association between PCB exposures and 

time-to-pregnancy (Gennings et al., 2013); the WQS indices were significantly associated 

with the time to pregnancy in both directions. The components with non-negligible weights 

in the positive direction were distinct from the components with weights in the negative 

direction. The proposed lagged WQS regression model allows for such associations to 

change over time.

We have used a truncated power function spline in our analyses for both β0(t) and 

β1(t) using PROC NLMIXED in SAS. (The SAS code is available in the supplementary 

material.) For general model selection criteria that may include different spline functions 

and covariates, there is a literature that considers temporal dependencies with flexible spline 

functions and selection criteria on the basis of profile likelihood (Hauptmann et al., 2001), 

AIC (Hauptmann et al., 2000; Hauptmann et al., 2002; Berhane et al., 2008), and BIC 

(Sylvestre and Abrahamowicz, 2009).

Finally, there are some limitations in using DLMs and tooth biomarkers that should be 

acknowledged. We suggest using the square root of the number of components in the 

random-subset ensemble step, but we have not fully characterized the sensitivity of the 

results to this choice. Perhaps model selection criteria (e.g., AIC, BIC) may be useful in 

further characterizing the size of the subsets. There are well known seasonal aspects to 

environmental exposures (e.g., lead tends to increase in summer months perhaps due to 

seasonal differences in Vitamin D metabolism (Kemp et al., 2007)). However, analysis of 

the tooth in TSB units, instead of calendar units, homogenizes these seasonal effects. As 

previously noted, some elements are nutritional (zinc, manganese, copper among others) 

even though they may be toxic at high exposure levels, while other elements are only 

toxins (lead, tin) but may have critical exposure windows. Reverse DLMs are models of 

time-varying association for either single chemicals or mixtures that are either positive 

or negative at a given point in time. This allows for the detection of differential effects, 

essentially comprising sub-mixtures of components within the overall mixture, which 

associate either positively or negatively with health endpoints. There are also differences 

in detection limits and precision for chemicals measured concurrently in teeth. It is possible 

that not all chemicals deposit in teeth or that they deposit in a way that doesn’t reflect body 

burden. Either way, we use quantile scores for measurements over time for each component. 

Nonetheless the ability to measure environmental exposures in short time intervals has great 

promise in improving our understanding of environmental influences on human health and 

the role of exposure timing in determining toxicant effects.

Understanding the role of exposure timing in driving human health effects is an important 

area of study that can address issues such as the optimal timing for prevention interventions. 

If an environmental factor predicts a health outcome only during a critical exposure window, 

public health efforts to reduce the prevalence of disease can focus on this window with 

maximal benefit and potentially reduced costs. For example, if a chemical predicts later 

onset of autism when exposure occurs in the 3rd trimester but not post-natally, then public 

health interventions can be directed at the 3rd trimester. A converging issue in public health 

research is how to study the joint impact of multiple exposure - both positive such as good 
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nutrition and toxic, such as environmental neurotoxins. In this paper we merge these two 

issues and illustrate methodologies that can jointly address both. A key advantage in this 

approach is that the weights estimated in the lagged WQS can also allow public health 

clinicians and policy makers to prioritize both the timing of intervention and identify the 

mixture components that are most important to address. While further work is needed to 

replicate results, and to refine these methods and expand the chemical measures available 

from exposure biomarkers such as the tooth, there is great promise in our ability to address 

all of these issues in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Prenatal and postnatal concentrations of Pb (red) and Mn (green) measured from two 

children’s teeth. (For interpretation of the references to color in this figure legend, the reader 

is referred to the Web version of this article.)
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Fig. 2. 
(A) Heat Map for Spearman correlation coefficients for all data (N = 162); and (B) 

histogram for the number of time points over time-since-birth (months).
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Fig. 3. 
Single element reverse DLM analyses adjusted by covariates in Table 1 (n = 162 with an 

average of 136 time points per subject) with 95% Holm-Bonferroni simultaneous confidence 

intervals.
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Fig. 4. 
a Results from lagged WQS regression analysis of the mixture of 15 metals and a neuro 

scale unconstrained, adjusted by covariates in Table 1 (n = 162 with an average of 136 

time points per subject). (A) WQS regression was conducted in quarter-month intervals 

with estimated weights and LOESS plot over analyses, and (B) the number of betas in the 

majority direction from the 100 bootstrap samples. (C) The resulting WQS(t) calculated in 

each quarter month analysis were used in a reverse DLM analysis with (D) related weighted 

association across the 15 metals plotted. b: Results from lagged WQS regression analysis of 

the mixture of 15 metals and a neuro scale constrained in the positive direction, adjusted 

by covariates in Table 1 (n = 162 with an average of 136 time points per subject). (A) WQS 

regression was conducted in quarter-month intervals with estimated weights and LOESS plot 

over analyses. (B) The resulting WQS(t) calculated in each quarter month analysis were 

used in a reverse DLM analysis with (C) related weighted association across the 15 metals 

plotted, c: Results from lagged WQS regression analysis of the mixture of 15 metals and a 

neuro scale constrained in the negative direction, adjusted by covariates in Table 1 (n = 

162 with an average of 136 time points per subject). (A) WQS regression was conducted 

in quarter-month intervals with estimated weights and LOESS plot over analyses. (B) The 
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resulting WQS (t) calculated in each quarter month analysis were used in a reverse DLM 

analysis with (C) related weighted association across the 15 metals plotted.
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Fig. 5. 
Assumed time varying association between Y and X4 (purple: Cases 1,2), X5 (orange: Case 

2), and X7 (cyan: Case 2) in simulated data. (For interpretation of the references to color in 

this figure legend, the reader is referred to the Web version of this article.)

Gennings et al. Page 19

Environ Res. Author manuscript; available in PMC 2020 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Analysis of simulated data from three cases using observed teeth data (N = 138) with 

hypothetical associations with an outcome variable Y.
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Table 1

Summary statistics for covariates with tooth biomarker data (N = 162).

Variable Mean

% female 52%

Maternal IQ 86.3 (SD = 12.6)

% low SES 49%
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