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Abstract
Background: Endocrine treatment is one of the most effec-
tive therapies for estrogen receptor-positive breast cancer. 
However, most tumors will develop resistance to endocrine 
therapy as the cancer progresses. This review focuses on the 
mechanisms and markers of endocrine-resistant breast can-
cer. In addition, current and future strategies to overcome 
endocrine resistance are discussed. Summary: Several mo-
lecular mechanisms of endocrine resistance have been iden-
tified, including alterations in the ESR1 gene or in the PIK-
3CA/mTOR pathway. Meanwhile, CDK4/6, mTOR, and PI3K 
inhibition have shown to improve the efficacy of endocrine 
treatment and new promising approaches are being devel-
oped. Key Message: Overcoming primary or acquired resis-
tance to endocrine treatment remains a major challenge. 
Since the molecular mechanisms of endocrine resistance are 
manifold, optimal combination and sequencing strategies 
will have to be developed in the future.

© 2020 S. Karger AG, Basel

Introduction

Breast cancer is the most common cancer disease 
among women. Approximately 70% of all tumors express 
the estrogen receptor (ER), a transcription factor that is 
activated by estrogen binding and that regulates the ex-

pression of various genes involved in tumor formation 
[1–3]. Two isoforms exist: ERα, which is predominantly 
expressed in breast cancer and the main target of endo-
crine therapies, and ERβ, which seems to have an oppo-
site effect to ERα and inhibits estrogen-dependent cell 
proliferation [3, 4]. Since the roles of ERα are well recog-
nized in breast cancer, in this review, it will be referred as 
ER.

Endocrine therapy is one of the most effective treat-
ment options for ER-positive breast cancer. In the meta-
static setting, it is the therapy of choice, except in cases of 
immediately life-threatening disease, i.e., a visceral crisis 
[5, 6]. Classical endocrine therapies modulate the estro-
gen effect by blocking the ER (selective ER modulators, 
SERMs) or aim to reduce estrogen levels (e.g., the aroma-
tase inhibitors [AIs] letrozole, anastrozole, and exemes-
tane) [7]. Whereas SERMs, like tamoxifen, are effective in 
both premenopausal and postmenopausal women, AIs 
should only be used in the postmenopausal situation. For 
the use of AIs in premenopausal women, ovarian sup-
pression must be performed, which today is usually in-
duced by the administration of GnRH analogues.

A major challenge in treating ER-positive breast can-
cer is to overcome endocrine resistance [8]. Primary en-
docrine resistance is defined as a relapse within 2 years of 
adjuvant endocrine treatment or disease progression dur-
ing the first 6 months of first-line endocrine therapy for 
advanced or metastatic breast cancer (MBC). Secondary 
resistance is defined in early breast cancer as a relapse that 
occurs after at least 2 years of endocrine therapy and dur-
ing or within the first year of completing adjuvant endo-
crine therapy. In advanced breast cancer or MBC, sec-
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ondary resistance is defined as disease progression after 
more than 6 months of endocrine therapy [6].

This review aims to focus on mechanisms of and mark-
ers for endocrine resistance. We will moreover discuss 
current and future strategies to overcome endocrine re-
sistance.

Mechanisms of Endocrine Resistance

Mechanisms of endocrine resistance include aberra-
tions in the ER/PgR pathway (deregulation of ER expres-
sion, co-activators and co-repressors), genomic and epi-
genetic alterations of ERS1, expression of truncated ER-
isoforms, post-translational modification, increased 
receptor tyrosine kinase signaling, and altered cell cycle 
regulation [9]. Moreover, genetic and/or epigenetic de-
regulations affect uptake, metabolism, and cellular re-
sponses of endocrine agents [10]. As efficacy of endocrine 
therapy relies on breast cancer cells that are dependent on 
ER activation for proliferation and differentiation, loss of 
the ER is one principal cause of de novo resistance to en-
docrine treatment [11, 12]. Several studies have shown 
that receptor expression may change during disease pro-
gression, and conversion from ER-positive to ER-nega-
tive breast cancer might occur in approximately 10–20% 
of the cases. This is why the ER status should be reevalu-
ated from metastatic tissue whenever possible [6].

ESR1 Mutations
Mutations of the ESR1 gene, encoding for ER, are rare 

in primary breast cancer but have high prevalence (20–

40%) in patients with MBC who have previously received 
endocrine treatment [13–16]. Most mutations (D538G, 
Y537S, Y537N, Y537C, and E380) occur at hot spots in 
the ligand-binding domain of ERα resulting in constitu-
tive ER activity [17, 18]. Analysis of circulating tumor 
DNA (ctDNA) from MBC patients of the BOLERO-2 tri-
al (exemestane versus exemestane plus everolimus) re-
vealed that the Y537S and D538G mutations are associ-
ated with a more aggressive disease biology [14]. More-
over, while the D538G mutation was associated with 
shorter progression-free survival (PFS) in patients treated 
with exemestane only, both the wild-type and mutant 
groups benefited from the addition of everolimus. Simi-
larly, ctDNA analysis of plasma samples from MBC pa-
tients of the SoFEA (fulvestrant plus anastrozole versus 
fulvestrant versus exemestane) trial have shown that the 
detection of ESR1 mutations predicts resistance to ex-
emestane while sensitivity to the selective estrogen recep-
tor degrader (SERD) fulvestrant is partially maintained 
[19]. It must, however, be noted that ESR1 mutations also 
inhibit fulvestrant binding and that patients with ESR1 
mutant cancers also had reduced PFS rates when treated 
with fulvestrant as compared to patients with wild-type 
tumors. Findings of these retrospective ctDNA investiga-
tions from prospective clinical trials indicate that ESR1 
mutations can be acquired during endocrine therapy and 
may be used to monitor endocrine-resistant tumor cell 
clones and to guide endocrine treatment decisions.

Receptor Tyrosine Kinases
Receptor tyrosine kinases (RTKs) are a family of cell 

membrane-bound receptors whose intracellular do-

Fig.  1. Simplified presentation of phos-
phoinositide 3-kinase (PI3K)/AKT/mTOR 
signaling in endocrine-resistant breast 
cancer. The PI3K/AKT pathway is activat-
ed by various receptor tyrosine kinases 
(RTKs). The mammalian target of rapamy-
cin complex (mTORC) is an important 
downstream effector of PIK3/AKT. Activa-
tion of the PI3K/AKT/mTOR pathway 
promotes cell growth and proliferation. 
The estrogen receptor (ER) is a transcrip-
tion factor that is activated by estrogen 
binding and that regulates various genes 
involved in tumor formation. Accumula-
tion and binding of cyclin D to the cyclin-
dependent kinases (CDK) 4 and 6 leads to 
cell cycle progression. Drugs to overcome 
endocrine resistance are displayed in red.
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main contains a tyrosine kinase that phosphorylates ty-
rosine residues of target proteins [20]. RTKs (e.g., epi-
dermal growth factor receptor [EGFR/ErbB family], 
insulin-like growth factor receptors [IGFR], vascular 
endothelial growth factor receptors [VEGFR], and fi-
broblast growth factor receptors [FGFR]) are activated 
upon ligand binding, which are mainly growth factors, 
cytokines, or hormones, and their activation/overex-
pression is associated with endocrine resistance [21–
24]. Upon binding, intracellular signal transduction 
pathways are initiated, which include the mitogen acti-
vated protein kinase (MAPK) and phosphoinositide 
3-kinase (PI3K)/AKT pathways (Fig. 1) [2]. These path-
ways can activate the transcriptional activity of ER in 
the absence of estrogen signaling [25]. Additionally, 
RTKs can reduce estrogen dependence by decreasing 
the expression of ER [26].

PI3K/AKT signaling plays an important role in many 
cellular processes that regulate growth, survival, motility, 
and metabolism [27]. PI3Ks are a family of kinases neces-
sary for normal cell growth and proliferation [28]. Mam-
malian class 1A PI3Ks are heterodimeric protein com-
plexes and consist of a regulatory subunit (p85α) and a 
catalytic subunit (p110) of which three isoforms exist: 
p110α (encoded by PIK3CA), p110β (encoded by PIK-
3CB) and p110δ (encoded by PIK3CD). [29]. Somatic 
mutations in genes encoding for components of the PI3K/
AKT occur in up to 70% of breast cancers and include 
mutations or amplification of the catalytic (p110) sub-
units of PI3K as well as mutations of PI3K modulators, 
such as the phosphatase and tensin homolog (PTEN), 
AKT, and mTOR [29, 30]. PIK3CA is mutated in up to 
40% of human breast cancers and most alterations occur 
within the kinase (H1047R) and helical domains (E542K 
and E545K) of p110α resulting in hyperactivation of PI3K 
[31, 32]. The prognostic impact of PI3CA mutations is 
still unclear: while in early ER-positive/HER2-negative 
breast cancer, an association with an increased disease-
free survival has been reported, they seem to decrease 
prognosis in the advanced setting [33–35]. Importantly, 
the rate of PIK3CA mutations is not increased in MBC as 
compared to primary breast cancer and the concordance 
between matched primary and metastatic tissue samples 
is high [36]. An important downstream effector of the 
PI3K/AKT pathway is the mammalian target of rapamy-
cin (mTOR) complex. [37]. The mTOR complex com-
prises two interdepended factors, mTORC1 and 
mTORC2, which are part of a positive feedback loop to 
the PIK3K/AKT pathway. PI3K with subsequent AKT ac-
tivation leads to increased mTORC1 kinase activity and 
promotes cell growth and proliferation. The tumor sup-
pressor PTEN is a negative regulator of the mTOR loop 
and germline mutations of PTEN cause the PTEN ham-
artoma tumor syndrome, including the Cowden syn-

drome, which is associated with an increased risk of breast 
cancer [2, 38].

Cell Cycle Regulators
The cyclin D/cyclin-dependent kinases (CDK) 4/6/

retinoblastoma (Rb) pathway controls cell cycle progres-
sion by regulating the G1-S checkpoint [39]. An impor-
tant reason for the non-response or decreasing efficacy of 
endocrine therapy is the sustained activation of CDK4/6 
[39]. The Rb is a tumor suppressor protein that prevents 
the cell from passing through the cell cycle from G1- to 
S-phase [40, 41]. Phosphorylation of Rb by the cyclin D1-
CDK4/6 complex leads to its inactivation and allows the 
cell to enter into the cell cycle. Cyclin D1 amplification 
has been linked to tamoxifen resistance and occurs in 
58% of luminal B cancers and 29% of luminal A breast 
cancers [13, 40, 42]. Additionally, in vitro data have 
shown activity of the CDK4/6 inhibitor palbociclib espe-
cially in ER-positive human breast cancer cell lines in-
cluding those with estrogen resistance [43].

Strategies to Overcome Endocrine Resistance

Selective Estrogen Receptor Degraders
Many breast cancers being resistant to AI or tamoxifen 

treatment still depend on ER signaling [44]. SERDs desta-
bilize the ER and, in contrast to SERMs, act as pure an-
tagonists without any tissue tropism. Fulvestrant binds to 
the ER to block its dimerisation and nuclear localization. 
Moreover, as the fulvestrant-ER complex is unstable, its 
degradation is accelerated [45, 46]. Fulvestrant can bind 
to the ER even in the context of ESR1 mutations; how-
ever, higher doses are required to maintain clinical effi-
cacy [19, 47].

In a preplanned combined analysis of two phase III tri-
als, fulvestrant 250 mg every 4 weeks was compared to 
anastrozole (1 mg/day) in postmenopausal women who 
experienced progression after prior endocrine therapy 
[48]. No differences with respect to the median time to 
progression were found, which was 5.5 months in the ful-
vestrant group and 4.1 months in the anastrozole group. 
The same dose of fulvestrant was used in the phase III 
SoFEA trial that compared fulvestrant + AI versus fulves-
trant versus AI. Again, no differences with respect to PFS, 
which was 4.4 months, 4.7 months, and 3.4 months, re-
spectively, were found [49]. Interestingly, a retrospective 
analysis of the ESR1 mutation status in archival plasma 
ctDNA revealed that PFS was improved in patients with 
ESR1 mutant tumors receiving fulvestrant as compared 
to AI [19].

The phase III CONFIRM trial compared an increased 
dose of 500 mg fulvestrant (every 4 weeks) to 250 mg in 
patients who had previously progressed after receiving 
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endocrine treatment. The higher dose was associated 
with an improved PFS (hazard ratio [HR]: 0.80; 95% con-
fidence interval [CI], 0.68–0.94; p = 0.006) and overall 
survival (OS) of 26.4 versus 22.3 months (HR: 0.81; 95% 
CI: 0.69–0.96; p = 0.02) [50, 51]. The phase II FIRST study 
confirmed these findings by comparing the higher 500 
mg dose of fulvestrant with anastrozole. In this trial, how-
ever, the study population comprised of patients that had 
not received any endocrine treatment for MBC [52]. Pa-
tients treated with fulvestrant, had a significantly pro-
longed PFS (23.4 months vs. 13.1 months; HR: 0.66; 95% 
CI: 0.47–0.92; p = 0.01) and also seemed to have an in-
creased OS. [53]. However, analysis of OS was not pre-
planned and not all patients participated in the addition-
al follow-up [54].

The phase III FALCON trial randomly assigned pa-
tients to receive either anastrozole or fulvestrant (500 mg) 
as first-line treatment for hormone receptor (HR)-posi-
tive/HER2-negative MBC. Fulvestrant significantly im-
proved PFS from 13.8 to 16.6 months (HR: 0.80; 95% CI: 
0.64–1.00; p = 0.486) [55]. Due to the encouraging OS 
results of the FIRST study, long-term results of FALCON 
are eagerly awaited [56].

Inhibitors of the PI3K/AKT/mTOR Pathway
Several clinical trials have evaluated the combination 

of endocrine therapies with inhibitors of the PIK3k/AKT/
mTOR pathway to overcome endocrine resistance. In a 
neoadjuvant trial, adding the mTOR inhibitor RAD001 
(everolimus) to letrozole resulted in reduced tumor cell 
proliferation and enhanced clinical efficacy to endocrine 
treatment [57]. The phase II TAMRAD trial investigated 
the efficacy of everolimus in combination with tamoxifen 
in patients with endocrine-resistant MBC. Everolimus in-
creased PFS from 4.5 to 8.6 months (HR: 0.54; 95% CI: 
0.36–0.81) and also prolonged OS (HR: 0.45; 95% CI: 
0.24–0.81); however, the trial was not powered for OS 
analysis. The efficacy of everolimus was especially pro-
nounced in patients with secondary as compared to pri-
mary endocrine resistance.

The phase III BOLERO-2 study compared everolimus 
and exemestane versus exemestane and placebo in pa-
tients with advanced HR-positive/HER2-negative breast 
cancer who suffered from disease recurrence or progres-
sion after/while receiving a nonsteroidal AI [58]. PFS was 
significantly longer with everolimus plus exemestane (7.8 
versus 3.2 months; HR: 0.45; 95% CI: 0.38–0.54; p < 0.001) 
[59]. There was no statistically significant improvement 
in OS; however, the trial was not powered for this end-
point [59, 60]. Analysis of archival tumor tissue revealed 
that the efficacy of everolimus was independent from the 
PI3K mutational status while a potential lack of benefit 
was shown in patients with a Y537S mutation in the ESR1 
gene as detected by ctDNA analysis [14, 61].

Buparlisib is a pan-PI3K inhibitor that targets each of 
the four catalytic isoforms of class I PI3Ks. The phase III 
BELLE-2 trial randomized HR-positive/HER2-negative 
MBC patients who had previously progressed under 
treatment with an AI to receive either fulvestrant alone 
or in combination with buparlisib. Buparlisib signifi-
cantly increased PFS in the overall population (5.0 versus 
6.9 months; HR: 0.78; 95% CI: 0.67–0.89; p < 0.001). In 
patients with PI3KCA mutations, as detected by ctDNA 
analysis, PFS was 3.2 versus 7.0 months (HR: 0.56; 95% 
CI: 0.39–0.80; p < 0.001). In the subsequent phase III 
BELLE-3 trial, which included HR-positive/HER2-nega-
tive MBC patients who had previously received endo-
crine therapy and an mTOR inhibitor, the addition of 
buparlisib to fulvestrant increased PFS from 1.8 to 3.9 
months (HR: 0.67; 95% CI: 0.53–0.84; p < 0.001). Again, 
the PIK3CA mutational status, as assessed by analysis ar-
chival tumor tissue or plasma ctDNA, was predictive of 
efficacy.

Due to inactivation of different PI3K isoforms, various 
side effects can occur (e.g., hyperglycemia, rash, elevated 
liver enzymes, and mood disorders), resulting in low tol-
erability of buparlisib. The more specific PIK3K inhibitor 
alpelisib, which selectively targets the p110α isoform (en-
coded by PIK3CA), was evaluated in the clinical phase III 
SOLAR-1 study. HR-positive/HER2-negative patients 
with MBC who had been pretreated with endocrine ther-
apy either received fulvestrant or a combination of fulves-
trant and alpelisib. Again, hyperglycemia and rash were 
the two main adverse events that led to treatment discon-
tinuation; however, safety profile was more favorable 
than with buparlisib. In patients with a PIK3CA mutated 
tumor, median PFS was 11.0 months in the alpelisib arm 
versus 5.7 months in the placebo group (HR: 0.65; 95% 
CI: 0.50–0.85; p < 0.001). In patients with wild-type PIK-
3CA tumors, alpelisib was not effective. Interestingly, pa-
tients with a PI3K mutation identified by ctDNA analysis 
seemed to have an even greater benefit of alpelisib as com-
pared to the analysis of tumor tissue, which is in line with 
the results of a combined analysis from the BELLE-2 and 
BELLE-3 trials. Other PI3K inhibitors are talesilib, which 
was evaluated in the SANDPIPER trial, and pictilisib, as-
sessed in the PEGGY and FERGY trials [62–64]. Because 
of modest PFS improvement at the cost of higher toxici-
ties as compared to alpelisib, these compounds as well as 
buparlisib are currently not further developed for meta-
static HR-positive/HER2-negative breast cancer.

CDK4/6 Inhibitors
Currently, three structurally similar selective CDK4/6 

inhibitors are clinically used for the treatment of ad-
vanced ER-positive breast cancer: palbociclib 
(PD0332991), ribociclib (LEE011), and abemaciclib 
(LY2835219) [65]. All of these drugs show a similar im-
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pressive activity in endocrine-naïve and endocrine-resis-
tant breast cancer and are well tolerated. The most com-
mon side effect is neutropenia; nevertheless, febrile neu-
tropenia is rare as compared to that induced by 
chemotherapy. As the risk of neutropenia is lower with 
abemaciclib, this is the only CDK4/6 inhibitor that is ad-
ministered continuously, while palbociclib and ribociclib 
are used 3 weeks on, 1 week off.

In the phase II trial PALOMA-1, addition of palboci-
clib to letrozole increased median PF of HR-positive/
HER2-negative MBC patients in the first-line setting 
from 10.2 to 20.2 months (HR: 0.49; 95% CI: 0.319–0.748; 
p < 0.001) [66]. These results were confirmed by the larg-
er phase III trial, PALOMA-2 that yielded a median PFS 
of 14.5 versus 27.6 months (HR: 0.56; 95% CI: 0.46–0.72; 
p < 0.001) [67, 68]. Similarly, the phase III trial MONA-
LEESA-2 revealed a median PFS of 16.0 months for letro-
zole alone as compared to 25.3 months for letrozole plus 
ribociclib (HR: 0.57; 95% CI 0.46–0.69; p < 0.001) [69, 70]. 
In MONALEESA-7, only premenopausal HR-positive/
HER2-negative patients with MBC were included. All pa-
tients received the GnRH antagonist goserelin to induce 
ovarian function suppression. As alternative to treatment 
with an AI (letrozole or anastrozole) tamoxifen could be 
used. The addition of ribociclib to endocrine therapy 
yielded an increased PFS (13.0 vs. 28.8 months; HR: 0.55; 
95% CI: 0.44–0.69; p < 0.001) and OS (HR: 0.71; 95% CI; 
0.54–0.95; p  =  0.010) [71, 72]. MONARCH-3 is a phase 
III trial that evaluated the combination of abemaciclib 
with anastrozole or letrozole in HR-positive/HER2-neg-
ative MBC patients who had no prior systemic therapy for 
MBC. Abemaciclib significantly enhanced median PFS 
from 14.8 to 28.18 months (HR: 0.54; 95% CI: 0.42–0.70; 
p < 0.001) [73, 74].

For the treatment of endocrine-resistant breast cancer, 
all three CDK4/6 inhibitors have been combined with ful-
vestrant (at the 500-mg dose). The addition of palbociclib 
to fulvestrant yielded a PFS benefit of 4.6 versus 9.5 
months (PALOMA-3 trial; HR: 0.46; 95% CI: 9.2–11.0; p 
< 0.001), the addition of ribociclib a PFS benefit of 12.8 
versus 20.5 months (MONALEESA-3 trial; HR: 0.59; 95% 
CI: 0.48–0,73; p < 0.001), and the addition of abemaciclib 
prolonged PFS from 9.3 to 16.4 months (MONARCH-2 
trial; HR: 0.55; 95% CI: 0.45–0.68; p < 0.001) [75–77]. Al-
though the HRs were similar, the absolute benefit differed 
in these trials, which is due to the different pretreatments 
of the study populations: whereas in MONALEESA-3, 
MBC patients were included in the first and second line, 
MONARCH-3 only included second-line patients, while 
in PALOMA, second- and higher-line patients could par-
ticipate. Importantly, an OS benefit was observed in MO-
NALEESA-3 (HR: 0.72; 95% CI: 0.57–0.92; p = 0.005) and 
MONARCH-2 (HR: 0.76; 95% CI: 0.61–0.95; p = 0.01) 
[78, 79].

Despite detailed knowledge about cell cycle regulation 
and the CDK4/6 pathway, no biomarker has yet been 
identified to predict efficacy of CDK4/6 inhibition. Al-
though loss of RB, amplification of CCND, or low expres-
sion of p16 should theoretically result in a reduced prob-
ability of responding to CDK4/6 inhibitor treatment, 
none of these markers is clearly associated with treatment 
response [80–82]. The reason for these findings remains 
elusive but might be due to inadequate assays to reflect 
protein function as well as to tumor heterogeneity and the 
fact that most analyses have been done with archival tis-
sue from primary tumors. Additionally, neither ESR1 
mutations nor PI3CA mutations were found to be associ-
ated with efficacy of CDK4/6 treatment [83–85].

Perspectives

Even in endocrine-resistant breast cancer, the ER re-
mains a promising target. This is why next-generation 
more selective SERDs with enhanced bioavailability are 
under investigation. AZD9496 is an orally available small 
molecule that downregulates ER with D538G, Y537S, 
Y537N, or Y537C alterations [86]. AZD9496 was found 
to block growth of ESR1-mutant breast tumors in pre-
clinical models and was well tolerated in phase I clinical 
trials [87, 88]. Other SERDs currently being assessed are 
elacestrant (RAD1901) and GDC-0927 [88, 89].

Next to PI3K inhibitors, other strategies are under in-
vestigation to target the PI3K/AKT pathway. The AKT 
inhibitor capivasertib (AZD5363) leads to an increased 
dependency of tumor cells on ligand-dependent ER acti-
vation. This is why there is a strong rationale to combine 
AKT inhibition with endocrine therapy. The phase II 
FAKTION trial found that the combination of capivaser-
tib with fulvestrant in ER-positive/Her2-negative MBC 
doubles PFS (4.8 vs. 10.3 months; HR: 0.58; 95% CI: 0.39–
0.84; p = 0.004). Promisingly, there was a strong trend 
towards improved OS [90].

Crosstalk between PIK3K/AKT/mTOR pathway pro-
vides a strong rationale to combine CDK4/6 with PI3K 
inhibitors. PI3K activation is a potential mechanism of 
resistance to CDK4/6 inhibitors [91]. Several trials that 
combine CDK4/6 inhibitors with various PI3K/AKT/
mTOR inhibitors are underway (NCT03128619, 
NCT03006172, NCT02684032, NCT02732119, 
NCT02871791, NCT02599714).

Conclusion

Endocrine therapy is the therapy of choice in ER-pos-
itive breast cancer. It is of high clinical relevance to main-
tain endocrine-based treatment as long as possible and to 
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overcome or delay endocrine resistance. CDK4/6, mTOR, 
and PI3K inhibition have shown to enhance efficacy of 
endocrine treatment, and novel promising drugs that tar-
get further components of key pathways like the PI3K/
AKT/mTOR pathway are currently being developed. As 
the molecular mechanism of endocrine resistance are 
manifold, optimal combination and sequencing strate-
gies need to be developed. For this purpose, (circulating) 
biomarkers are promising to guide individual therapy de-
cisions. Prospective cancer registries that prospectively 
collect various biomarkers at multiple timepoints during 
cancer progression and combine these with clinical data 
on prognosis, tolerability, and efficacy of different endo-
crine-based treatments are vital to face these challenges 
[92].
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