Skip to main content
. 2020 Aug 31;8(8):e19870. doi: 10.2196/19870

Table 2.

Performance of algorithms with missing data handled by mean imputation.

Algorithm Mean imputation
AUCa, mean (SD) P value APb, mean (SD) P value Sensitivity, mean (SD) P value Specificity, mean (SD) P value
LRc 0.82 (0.04) .02 0.87 (0.03) .047 0.50 (0.10) <.001 0.91 (0.03) >.99
LR+CSLd 0.82 (0.04) .02 0.87 (0.03) .03 0.67 (0.07) .002 0.82 (0.02) .98
DTe 0.65 (0.05) <.001 0.76 (0.03) <.001 0.43 (0.09) <.001 0.87 (0.03) >.99
DT+CSL 0.64 (0.02) <.001 0.75 (0.03) <.001 0.41 (0.05) <.001 0.87 (0.02) >.99
RFf 0.84 (0.05) .52 0.89 (0.03) .90 0.01 (0.01) <.001 1.00 (0.00) >.99
RF+CSL 0.84 (0.05) .67 0.89 (0.03) .93 0.64 (0.09) .001 0.84 (0.03) >.99
SVMg (RBFh) 0.78 (0.06) <.001 0.85 (0.03) <.001 0.12 (0.04) <.001 0.99 (0.01) >.99
SVM (RBF)+CSL 0.81 (0.05) <.001 0.86 (0.03) <.001 0.76 (0.08) .98 0.73 (0.03) <.001
SVM (polyi) 0.74 (0.06) <.001 0.83 (0.03) <.001 0.50 (0.07) <.001 0.84 (0.03) >.99
SVM (poly)+CSL 0.81 (0.05) <.001 0.87 (0.03) <.001 0.77 (0.08) .99 0.73 (0.03) <.001
SVM (linear) 0.79 (0.04) <.001 0.85 (0.03) <.001 0.48 (0.07) <.001 0.89 (0.02) >.99
SVM (linear)+CSL 0.80 (0.04) .004 0.86 (0.03) .005 0.65 (0.07) <.001 0.81 (0.02) .94
SNNj 0.81 (0.05) <.001 0.87 (0.03) .003 0.32 (0.09) <.001 0.95 (0.01) >.99
SNN+CSL 0.81 (0.05) <.001 0.87 (0.03) <.001 0.65 (0.11) .002 0.83 (0.02) >.99
DNNk 0.83 (0.05) .045 0.88 (0.03) .13 0.33 (0.09) <.001 0.96 (0.02) >.99
DNN+CSL 0.84 (0.04) N/Al 0.88 (0.03) N/A 0.73 (0.09) N/A 0.80 (0.03) N/A

aAUC: area under the receiver operating characteristic curve.

bAP: average precision.

cLR: logistic regression.

dCSL: cost-sensitive learning.

eDT: decision tree.

fRF: random forest.

gSVM: support vector machine.

hRBF: radial basis function kernel.

ipoly: polynomial kernel.

jSNN: single neural network.

kDNN: dual neural network.

lN/A: not applicable.