Table 2.
Performance of algorithms with missing data handled by mean imputation.
| Algorithm | Mean imputation | |||||||
| AUCa, mean (SD) | P value | APb, mean (SD) | P value | Sensitivity, mean (SD) | P value | Specificity, mean (SD) | P value | |
| LRc | 0.82 (0.04) | .02 | 0.87 (0.03) | .047 | 0.50 (0.10) | <.001 | 0.91 (0.03) | >.99 |
| LR+CSLd | 0.82 (0.04) | .02 | 0.87 (0.03) | .03 | 0.67 (0.07) | .002 | 0.82 (0.02) | .98 |
| DTe | 0.65 (0.05) | <.001 | 0.76 (0.03) | <.001 | 0.43 (0.09) | <.001 | 0.87 (0.03) | >.99 |
| DT+CSL | 0.64 (0.02) | <.001 | 0.75 (0.03) | <.001 | 0.41 (0.05) | <.001 | 0.87 (0.02) | >.99 |
| RFf | 0.84 (0.05) | .52 | 0.89 (0.03) | .90 | 0.01 (0.01) | <.001 | 1.00 (0.00) | >.99 |
| RF+CSL | 0.84 (0.05) | .67 | 0.89 (0.03) | .93 | 0.64 (0.09) | .001 | 0.84 (0.03) | >.99 |
| SVMg (RBFh) | 0.78 (0.06) | <.001 | 0.85 (0.03) | <.001 | 0.12 (0.04) | <.001 | 0.99 (0.01) | >.99 |
| SVM (RBF)+CSL | 0.81 (0.05) | <.001 | 0.86 (0.03) | <.001 | 0.76 (0.08) | .98 | 0.73 (0.03) | <.001 |
| SVM (polyi) | 0.74 (0.06) | <.001 | 0.83 (0.03) | <.001 | 0.50 (0.07) | <.001 | 0.84 (0.03) | >.99 |
| SVM (poly)+CSL | 0.81 (0.05) | <.001 | 0.87 (0.03) | <.001 | 0.77 (0.08) | .99 | 0.73 (0.03) | <.001 |
| SVM (linear) | 0.79 (0.04) | <.001 | 0.85 (0.03) | <.001 | 0.48 (0.07) | <.001 | 0.89 (0.02) | >.99 |
| SVM (linear)+CSL | 0.80 (0.04) | .004 | 0.86 (0.03) | .005 | 0.65 (0.07) | <.001 | 0.81 (0.02) | .94 |
| SNNj | 0.81 (0.05) | <.001 | 0.87 (0.03) | .003 | 0.32 (0.09) | <.001 | 0.95 (0.01) | >.99 |
| SNN+CSL | 0.81 (0.05) | <.001 | 0.87 (0.03) | <.001 | 0.65 (0.11) | .002 | 0.83 (0.02) | >.99 |
| DNNk | 0.83 (0.05) | .045 | 0.88 (0.03) | .13 | 0.33 (0.09) | <.001 | 0.96 (0.02) | >.99 |
| DNN+CSL | 0.84 (0.04) | N/Al | 0.88 (0.03) | N/A | 0.73 (0.09) | N/A | 0.80 (0.03) | N/A |
aAUC: area under the receiver operating characteristic curve.
bAP: average precision.
cLR: logistic regression.
dCSL: cost-sensitive learning.
eDT: decision tree.
fRF: random forest.
gSVM: support vector machine.
hRBF: radial basis function kernel.
ipoly: polynomial kernel.
jSNN: single neural network.
kDNN: dual neural network.
lN/A: not applicable.