Skip to main content
. 2020 Aug 31;8(8):e19870. doi: 10.2196/19870

Table 3.

Performance of algorithms with missing data handled by k-nearest neighbor imputation.

Algorithm KNNa imputation

AUCb, mean (SD) P value APc, mean (SD) P value Sensitivity, mean (SD) P value Specificity, mean (SD) P value
LRd 0.81 (0.04) .02 0.87 (0.03) .10 0.46 (0.10) <.001 0.91 (0.02) >.99
LR+CSLe 0.81 (0.04) .005 0.87 (0.02) .03 0.65 (0.09) .001 0.81 (0.03) .90
DTf 0.67 (0.05) <.001 0.77 (0.04) <.001 0.48 (0.09) <.001 0.86 (0.03) >.99
DT+CSL 0.66 (0.07) <.001 0.76 (0.05) <.001 0.45 (0.13) <.001 0.86 (0.02) >.99
RFg 0.81 (0.04) .004 0.87 (0.03) .13 0.03 (0.04) <.001 1.00 (0.00) >.99
RF+CSL 0.81 (0.04) .004 0.87 (0.03) .02 0.68 (0.08) .04 0.78 (0.02) .10
SVMh (RBFi) 0.77 (0.06) <.001 0.84 (0.03) <.001 0.08 (0.04) <.001 0.99 (0.01) >.99
SVM (RBF)+CSL 0.80 (0.05) <.001 0.86 (0.03) <.001 0.75 (0.09) .90 0.73 (0.02) <.001
SVM (polyj) 0.75 (0.04) <.001 0.83 (0.03) <.001 0.50 (0.10) <.001 0.86 (0.02) >.99
SVM (poly)+CSL 0.81 (0.05) <.001 0.86 (0.03) <.001 0.74 (0.09) .83 0.73 (0.02) <.001
SVM (linear) 0.80 (0.04) .001 0.86 (0.03) .005 0.48 (0.11) <.001 0.89 (0.02) >.99
SVM (linear)+CSL 0.77 (0.04) <.001 0.85 (0.02) <.001 0.58 (0.11) <.001 0.80 (0.02) .75
SNNk 0.81 (0.06) <.001 0.87 (0.04) .006 0.33 (0.10) <.001 0.95 (0.01) >.99
SNN+CSL 0.80 (0.06) <.001 0.86 (0.03) <.001 0.65 (0.11) .01 0.81 (0.03) .90
DNNl 0.83 (0.05) .04 0.88 (0.03) .08 0.35 (0.09) <.001 0.96 (0.01) >.99
DNN+CSL 0.84 (0.04) N/Am 0.88 (0.03) N/A 0.72 (0.10) N/A 0.79 (0.04) N/A

aKNN: k-nearest neighbor.

bAUC: area under the receiver operating characteristic curve.

cAP: average precision.

dLR: logistic regression.

eCSL: cost-sensitive learning.

fDT: decision tree.

gRF: random forest.

hSVM: support vector machine.

iRBF: radial basis function kernel.

jpoly: polynomial kernel.

kSNN: single neural network.

lDNN: dual neural network.

mN/A: not applicable.