Table 3.
Performance of algorithms with missing data handled by k-nearest neighbor imputation.
| Algorithm | KNNa imputation | |||||||
|
|
AUCb, mean (SD) | P value | APc, mean (SD) | P value | Sensitivity, mean (SD) | P value | Specificity, mean (SD) | P value |
| LRd | 0.81 (0.04) | .02 | 0.87 (0.03) | .10 | 0.46 (0.10) | <.001 | 0.91 (0.02) | >.99 |
| LR+CSLe | 0.81 (0.04) | .005 | 0.87 (0.02) | .03 | 0.65 (0.09) | .001 | 0.81 (0.03) | .90 |
| DTf | 0.67 (0.05) | <.001 | 0.77 (0.04) | <.001 | 0.48 (0.09) | <.001 | 0.86 (0.03) | >.99 |
| DT+CSL | 0.66 (0.07) | <.001 | 0.76 (0.05) | <.001 | 0.45 (0.13) | <.001 | 0.86 (0.02) | >.99 |
| RFg | 0.81 (0.04) | .004 | 0.87 (0.03) | .13 | 0.03 (0.04) | <.001 | 1.00 (0.00) | >.99 |
| RF+CSL | 0.81 (0.04) | .004 | 0.87 (0.03) | .02 | 0.68 (0.08) | .04 | 0.78 (0.02) | .10 |
| SVMh (RBFi) | 0.77 (0.06) | <.001 | 0.84 (0.03) | <.001 | 0.08 (0.04) | <.001 | 0.99 (0.01) | >.99 |
| SVM (RBF)+CSL | 0.80 (0.05) | <.001 | 0.86 (0.03) | <.001 | 0.75 (0.09) | .90 | 0.73 (0.02) | <.001 |
| SVM (polyj) | 0.75 (0.04) | <.001 | 0.83 (0.03) | <.001 | 0.50 (0.10) | <.001 | 0.86 (0.02) | >.99 |
| SVM (poly)+CSL | 0.81 (0.05) | <.001 | 0.86 (0.03) | <.001 | 0.74 (0.09) | .83 | 0.73 (0.02) | <.001 |
| SVM (linear) | 0.80 (0.04) | .001 | 0.86 (0.03) | .005 | 0.48 (0.11) | <.001 | 0.89 (0.02) | >.99 |
| SVM (linear)+CSL | 0.77 (0.04) | <.001 | 0.85 (0.02) | <.001 | 0.58 (0.11) | <.001 | 0.80 (0.02) | .75 |
| SNNk | 0.81 (0.06) | <.001 | 0.87 (0.04) | .006 | 0.33 (0.10) | <.001 | 0.95 (0.01) | >.99 |
| SNN+CSL | 0.80 (0.06) | <.001 | 0.86 (0.03) | <.001 | 0.65 (0.11) | .01 | 0.81 (0.03) | .90 |
| DNNl | 0.83 (0.05) | .04 | 0.88 (0.03) | .08 | 0.35 (0.09) | <.001 | 0.96 (0.01) | >.99 |
| DNN+CSL | 0.84 (0.04) | N/Am | 0.88 (0.03) | N/A | 0.72 (0.10) | N/A | 0.79 (0.04) | N/A |
aKNN: k-nearest neighbor.
bAUC: area under the receiver operating characteristic curve.
cAP: average precision.
dLR: logistic regression.
eCSL: cost-sensitive learning.
fDT: decision tree.
gRF: random forest.
hSVM: support vector machine.
iRBF: radial basis function kernel.
jpoly: polynomial kernel.
kSNN: single neural network.
lDNN: dual neural network.
mN/A: not applicable.