Skip to main content
. 2020 Sep 14;11:4610. doi: 10.1038/s41467-020-18417-5

Table 1.

Relative efficiencies for water oxidation by DSPEC photoanodesa.

Description of photoanode pH Maximum IPCE (%) Maximum stable photocurrent density (mA/cm2) Substrate Ref.
RuP2+-Zr4+-Ru-bda assembly 5.7 1–1.5 SnO2/TiO2 core-shell 43
RuP2+/Ru-bda co-loaded 5.7 0.97–1.45
RuP2+/Ru(bda)(LO-C10) co-loadedb 7 24.8 1.4 SnO2/TiO2 core-shell 16
4.7 15.3 0.8
RuP2+-Ru-bda assembly 5.7 0.85 SnO2/TiO2 core-shell 44
RuP2+-Ru-bda assembly 7 3.1 0.4 SnO2/TiO2 core-shell 45
RuP2+-ALD SnO2-Ru-bda assembly 4.7 17.1 0.85 SnO2/TiO2 core-shell 4
TPA/Ru-bda co-loaded 4.8 0.3 0.4 SnO2/TiO2|Al2O3 15
RuP2+/IrO2 co-loaded 5.7 0.03 TiO2 nanoparticle film 12
RuP2+/IrO2 co-loadedc 5.8 0.08 TiCl4 treated TiO2 13
Zn Porphyrin/IrCp* co-loadedd 7 0.03 TiO2 nanoparticle film 18
RuP2+/Ru-bda co-loaded 5.8 25 1.7 TiCl4 treated TiO2 This work

aUnless otherwise specified, simulated sunlight with a density of 100 mW cm−2 was used as the light source.

bLO-C10 is diethyl 3-(pyridin-4-yloxy)decyl-phosphonic acid.

cA 150-W Xe lamp was used as the light source with a 410 nm, long-pass filter and a water filter.

dAt 200 mW cm−2.