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Abstract

The evolution of the immune system, diet, and the microbiome are interconnected. Dietary 

metabolites modulate the cells of the immune system, both directly and indirectly, via shifts in the 

composition of the intestinal microbiota and its products. As a result, overconsumption and 

malnutrition can have substantial effects on immune responses and inflammation. In resource-rich 

nations, diets high in processed foods, fat and sugar can contribute to chronic inflammatory 

conditions, which are on the rise worldwide. Conversely, in resource poor countries, malnutrition 

associated with food security can lead to immunodeficiencies and shifts in the microbiome that 

drive intestinal inflammation. Developing a deeper understanding of the relationship between diet, 

microbiota, and the immune system is of huge importance given its impact on inflammatory 

diseases and potential as an easily modifiable mediator of immunomodulation.

Introduction:

330 million years ago our ancestors evolved the ability to sustain themselves on a variety of 

different plants, in part, via the acquisition of an intestinal microbiome (1). The 

microorganisms of the microbiota (bacteria, archaea, fungi, protists and viruses) allowed 

herbivores to digest complex carbohydrates and they soon dominated the Earth. The 

acquisition of a complex microbiome also required evolution of host cellular and 

biochemical processes, including the adaptive immune system (2, 3). Adaptive immunity can 

mediate responses to repeat microbial encounters in an efficient manner, both protecting 

against invasive organisms and also fostering symbiosis with beneficial members of the 

microbiota (3, 4). Since the evolution of the host/microbiome relationship was driven by 

nutrition and this was intertwined with the evolution of the immune system, it is not 

surprising that diet and nutrition affect the immune response. Here we will review how diet 

affects immunity both directly, by modifying immune cells, and also indirectly, via inducing 

changes to either the microbiota or non-immune tissues. In particular, we will focus on how 

nutrition contributes to immune-mediated disease. We will address both overnutrition in 

High-income nations and undernutrition and malnutrition of Low-to-Middle-income 

settings. For clarity, we will not discuss at length the separate process where the host 

sequesters key nutrients and minerals from pathogens, which has been reviewed elsewhere 
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(5, 6). Additionally, we have focused on how specific nutrients modulate immune responses, 

as these studies more often provide mechanistic insights into interactions with specific cells.

Overnutrition and immunity

Recent advances in food production and distribution have reduced food insecurity and 

famine for billions of people. However, increasing caloric intake has been associated with a 

global rise of non-communicable diseases, such as cardiovascular disease, diabetes and 

cancer, which are the leading causes of death in High-income countries (HICs) (7). The 

‘Western’ diet is characterized by increased consumption of total calories and a diet that is 

overly reliant on animal fat, refined grains and sugar and too little fruits and vegetables (8). 

Overnutrition has led to the staggering rise in global obesity rates, which have nearly tripled 

over the last 40 years (9, 10). The association of obesity and chronic inflammatory disease is 

well-established and extensively covered in previous reviews (11–15). Here, we will focus 

on how specific components of the Western Diet alter immune function acutely, contributing 

to inflammatory disease.

Dietary fat activates immunity and inflammation

Long-term high-fat diets (HFD) have been used in mice to induce obesity and the associated 

immune-metabolic shifts, such as low-grade adipose inflammation and insulin resistance 

(12). However, short-term consumption of high-fat diet in mice also results in altered 

immune function and inflammation, prior to the onset of obesity (16–18). The first site 

where the diet interacts with the host is the gastrointestinal epithelium and HFD has 

important effects on the constitution of this layer. The intestinal epithelium maintains a 

physical barrier between the microbiome and the host via tight junctions, which prevent 

intracellular entry of exogenous products (19). Feeding mice HFD for one week reduces the 

expression and alters the distribution of tight junction proteins, which is associated with 

increased intestinal permeability and bacterial product translocation (20, 21). This has been 

seen in humans as well, where high energy intake, in the form of excessive fat consumption, 

is correlated with higher levels of serum LPS levels, or endotoxemia (22). However, fatty 

acids can also support a healthy epithelium by driving increased ‘stemness’ and proliferative 

capacity in Lgr5+ crypt base columnar stem cells (23). Therefore, the negative effects of 

HFD on barrier function are likely the result of immune activation in the intestine, rather 

than direct effects on the epithelium itself. Indeed, mice fed HFD for 4 weeks had increased 

expression of chemokines (CCL1, CCL2) and chemokine receptors (CCR2), leading to the 

infiltration of proinflammatory monocytes and lymphocytes to intestinal tissues (24). In 

specific contexts, innate immune responses can be directly induced by free fatty acids, which 

are elevated in the blood after high fat meals and directly activate TLR4 on adipocytes and 

macrophages and TLR2 on monocytes to induce cytokine production (25, 26). Further, 

saturated fatty acids, such as palmitate, can directly activate the NLRP3-ASC inflammasome 

in myeloid cells to support IL-1β processing (27). Cytokines and inflammatory lipid 

molecules produced by innate immune cells, such as TNFα, IL-1β IFNγ, iNOS, COX-2 and 

IL-6, increase intestinal permeability (28–30). As evidence for the immune-mediated effects 

of HFD, HFD-fed IFNγ-deficient mice show reduced intestinal permeability compared to 

controls, (31, 32). Therefore, HFD-induced increases in circulating bacterial products also 
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likely leads to the potent induction of inflammatory cytokines (21, 33). In support of this 

notion, germ-free mice, which lack a microbiome, have reduced expression of TNFα when 

fed a HFD (28). Thus, the over consumption of fat affects the intestinal barrier by directly 

activating macrophages, monocytes and T cells, leading to increased intestinal permeability 

and endotoxemia and further contributing to a systemic proinflammatory response. Short-

term HFD feeding in mice also leads to a loss of hematopoietic stem cells in bone marrow 

and reduced hematopoietic reconstitution potential via disruption of TGFβ receptors in lipid 

rafts (34). Finally, dietary fat can have direct effects on adaptive immune cells where long-

chain fatty acids, such as lauric acid, support the differentiation of T helper 17 (Th17) T 

cells and contribute to pathology in animal models of neuroinflammation (35).

Dietary fat and the microbiome

In addition to direct effects on host immune cells, HFD can quickly and reversibly change 

the composition of the microbiome. In mice, diets high in fat and sugar lead to a transient 

dysbiosis of the microbiota, characterized by reduced diversity and an expansion of 

opportunistic pathogens (36). Human microbiome studies have also associated increased 

Proteobacteria and Firmicutes and decreased Bacteroidetes to dyslipidemia, insulin 

resistance, and inflammation (37, 38). The importance of these associations is indicated my 

experiments where transfer of the microbiota from obese mice and humans to germ-free 

mice results in obesity in the recipient mice, while antibiotic treatment of obese mice 

reduces adipose inflammation and adiposity (21, 39, 40). Accordingly germ-free mice fed a 

HFD are resistant to the development of obesity (28). Conversely, there are members of the 

microbiota that suppress HFD-induced inflammatory responses, such as Akkermansia 
muciniphilia, which is negatively correlated with metabolic syndrome and has been shown 

to reduce systemic LPS and inflammation (41, 42). It is important to note that HFD-induced 

changes to the microbiome may also be indirectly affected by immune-mediated 

inflammation which is associated with the ‘blooming’ of Enterobacteriaceae that thrive in 

this environment (43, 44). For example, rats that are genetically susceptible to diet-induced 

obesity have an increase in LPS-producing Enterobacteriaceae which may enhance TLR 

signaling and HFD-induced inflammation (45). HFD and associated inflammation may also 

foster pathogen colonization as seen in murine L. monocytogenes infections, where HFD-

induced microbiome changes are exacerbated and mice are more susceptible to infection due 

to a dysregulated immune response (46).

Food additives (sugar, salt and emulsifiers) increase inflammation

The Western diet is characterized by increased additives, such as emulsifiers, salt and sugar 

to make them more durable and hyper-palatable (8, 47). Sugar consumption has become 

dominant in the Western diet and it is estimated that an average person in the United States 

will consume over 70kg of sugar per year (48). High sugar consumption can have direct 

effects on host organs such as in models of Non-Alcoholic Fatty Liver Disease where excess 

dietary fructose leads to exacerbated hepatosteatosis (49). Sugar is also an important direct 

modifier of the immune response. For example, glucose is the preferred fuel source for Type 

1 immunity, because it is important in the differentiation, proliferation and function of Th1 

CD4+ T cells, neutrophils, pro-inflammatory macrophages and activated dendritic cells (50–
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53). Glucose is also the preferred substrate for proliferating CD8+ T lymphocytes that need 

to use glycolysis so that components of the tricarboxylic acid cycle can be used for 

translation (54). High glucose intake also increases Th17 differentiation and exacerbates 

mouse models of colitis and autoimmune encephalomyelitis (55). Conversely, while glucose 

can support the proliferation of regulatory T cells (Tregs), Glut1 expression and glycolysis in 

these cells is associated with less potent suppression of inflammation (56). Accordingly, 

limiting sugar in the diet has shown substantial efficacy in the treatment of pediatric 

Inflammatory Bowel Disease (57). Glucose is also necessary for the proliferation and 

function of B cells as blocking glucose utilization decreases B cell number and antibody 

production in mice (58). Indeed, glycolysis-inhibitors, such as dimethyl fumarate and 

pyruvate kinase, have been found to improve autoimmune disease in mice and humans by 

downregulating aerobic glycolysis in activated lymphoid and myeloid cells (59, 60).

An additional issue, that compounds the effects of sugar consumption, is that processed 

foods often contain “acellular” sugar that, unlike sugar in fruits and vegetables, does not 

need to be digested and are immediately available to the host and microbiota. Gordon and 

colleagues, using gnotobiotic mice with a defined microbiome, reported that high sucrose 

diets led to an enrichment for enzymes for processing simple sugars (40). Such enzymes are 

often found in families of facultative anaerobic bacteria such as Enterobacteriaceae that 

bloom and contribute to intestinal inflammation (61). Processed foods are often deficient in 

fiber, so a high sugar diet may select against the symbiotic bacteria that help our digestion 

and select for bacteria that can best use simple sugars to proliferate quickly (61).

Other additives such as emulsifiers and salt have also sharply increased in the Western Diet, 

due to their preservative properties. Emulsifiers are detergents in food products, that, when 

fed to mice at low doses, leads to microbial encroachment and transferrable dysbiosis, which 

increases myeloperoxidase activity in the gut and results in endotoxemia (62). Excessive salt 

consumption is thought to contribute to the rise in hypertension and cardiovascular disease 

seen in high-income nations (63). Increasing salt concentration also has a direct effect on 

immune cells due to a salt sensing kinase (SGK1) on CD4+ T cells that stabilizes IL-23R 

expression and enhances Th17 differentiation (64). These changes led to greater induction of 

Th17 cells in vivo with upregulation of pro-inflammatory cytokines GM-CSF, TNFα and 

IL-2 and worse autoimmunity in mice fed a high salt diet (65). SGK1 can also be activated 

downstream of the MTORC2 complex to increase Th2 differentiation and inhibit Th1 

differentiation (66). Accordingly, high salt diets also exacerbate colitis in mouse models 

(67). In the future it will be important to determine the role of these food additives on 

immune-mediated disease in humans.

Fiber and short chain fatty acids are microbiome dependent immune 

regulators

The typical diet of HICs both overfeeds and undernourishes, in that there are too many 

calories but not the correct nutrients, including too little fiber. The evolution of the 

microbiome was driven by the necessity to digest complex polysaccharides into usable 

metabolites so it is intuitive that a lack of fiber would have negative effects on the health of 
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both the microbiome and host (68, 69). Similar to HFD and diets high in sugar, low fiber 

diets are associated with a low diversity and pro-inflammatory microbiota (70). The loss of 

diversity from a low fiber diet is pernicious since the loss of the bacterial strains may lead to 

a reduction in microbiome functionality that can only be restored from external sources (71). 

How reduced microbial diversity induces inflammation is not entirely clear, but we are 

beginning to understand some potential mechanisms. Reduced intestinal diversity is 

associated with domination of the microbiome by Gram negative bacteria (Bacteroidetes, 

Proteobacteria, Verrucomicrobia) which could lead to increased activation of the host 

immune response through increased levels of lipopolysaccharide (72). Indeed, in gnotobiotic 

mice with a defined consortium of bacteria, a fiber-free diet induced Akkermansia 
muciniphilia (a Verrucomicrobia) to consume and deplete the mucus barrier of the colon, 

leaving the host more susceptible to colonization and infection with the Proteobacteria 
pathogen, Citrobacter rodentium (73).

Perhaps the best studied mechanism via which low fiber diet and reduced microbiome 

diversity can contribute to inflammation is via a reduction in short chain fatty acids 

(SCFAs). SCFAs, namely acetate, propionate and butyrate, are metabolites produced by 

microbial digestion of complex carbohydrates. SCFAs are a major carbon source for 

epithelial cells of the intestine and are critical to the proper anaerobic function of the gut (74, 

75). SCFAs also have important effects on immune cells, both by binding to G protein 

coupled receptors and Histone Deacetylases, which, in almost all cases, dampen 

inflammation (76). Thus, it has been posited that these metabolites act as a surrogate signal 

by which the immune system can measure microbiome health (4). Specifically, SCFAs 

dampen the inflammatory responses of myeloid cells both locally in the intestine and at 

peripheral sites such as the lung and bone marrow (77, 78). SCFAs have potent effects on 

adaptive immune cells as well. In particular, a lack of SCFA production, as is experienced by 

germ-free mice, leads to a substantial reduction in colonic Tregs (79–81). These SCFA-

supported colonic Tregs are likely important for preventing inflammatory immune responses 

against innocuous antigens, derived either from diet, host or microbiota (79–84). However, 

SCFAs do not dampen immune responses indiscriminately. CD8+ cytotoxic T cell responses 

are supported by SCFA signaling and a diet high in fiber was shown to reduce pathology and 

increase viral clearance in a mouse model of influenza infection (78, 85). SCFAs can also 

affect B cell responses. In support of the hypothesis that SCFAs drive host microbiota 

homeostasis, acetate production in the small intestine increases retinoic acid production by 

dendritic cells and thus can support class switch recombination to IgA (86). The direct 

effects of butyrate and propionate are more controversial, with different groups showing 

either augmentation or suppression of systemic antibody production which may be explained 

by differences in microbiome composition and experimental approach (87, 88).

In concert with the anti-inflammatory effects of fiber and SCFAs, both animal models and 

clinical studies generally support the notion that a diet high in fiber is protective against 

chronic inflammatory disease (76). For instance, a recent clinical study showed that a 

defined high fiber diet could improve outcomes of type 2 diabetic patients via shifts in the 

microbiota, as measured by hemoglobin A1C levels (89). Similar, though perhaps less 

significant effects have been seen in other studies (90, 91). The mechanism by which dietary 
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fiber is producing these positive effects is unknown and potentially quite complex given their 

pleiotropic effects on immune activation, metabolism and the microbiome.

Plant-based ligands for the Aryl Hydrocarbon Receptor (Ahr) activate IL-22 

production in the intestine

Ahr is a transcription factor expressed in a variety of immune cells and in particular in the 

lymphocytes found at barrier surfaces. Ahr was initially studied for its response to toxins 

such as dioxin (92), but it is also activated by indole compounds, derived from the digestion 

of vegetables from the Brassicaceae family (cauliflower, broccoli, cabbage etc.) (93). One of 

the potent effects of Ahr activation is the production of IL-22 from innate lymphocytes at the 

intestinal surface (94). Ahr activation is necessary for IL-22 production from Innate 

Lymphoid cell type 3 (ILC3s) and Intraepithelial γδ T cells at the intestinal barrier (93–95). 

IL-22 signaling is important for keeping bacteria out of the base of the intestinal crypt via 

the induction of anti-microbial peptides, thereby protecting the Lgr5+ CBC stem cells and 

maintaining the regenerative capacity of the intestine in the face of genotoxic/inflammatory 

stress (96–98).

Thus, via multiple mechanisms the immune system is regulated by the proper digestion of 

plant products in the diet by the microbiota. Conversely, it is clear that the Western diet, 

which is low in plant products and high in fat and sugar, is contributing to dysbiosis of the 

gut microbiome and increased intestinal and systemic inflammation, contributing to 

substantial increases in chronic inflammatory diseases (Figure 1).

Undernutrition, malnutrition and immunity

In contrast to the diseases of overnutrition of HICs, many people in low- and middle-income 

countries. (LMICs) are subject to malnutrition and undernutrition. Despite recent laudable 

reductions in incidence, undernutrition and malnutrition continue to be a significant global 

public health concern and contribute to ~45% of mortality in children under five years old 

living in LMICs (99). Though they often coincide and thus the terms are used 

interchangeably, for the purposes of this review we will define undernutrition as insufficient 

caloric intake and malnutrition as insufficient quantities of specific nutrients and vitamins. 

Here we will first address how specific deficiencies in micronutrients affect immunity 

followed by a discussion of how under and malnutrition shape the immune response more 

generally.

Micronutrient deficiencies subvert immunity

Micronutrient (vitamins and mineral) deficits, can lead to immune dysfunction. For instance, 

Vitamin A deficiency can lead to immune dysfunction and increased susceptibility to 

infection (100). Vitamin A is absorbed from fruits and vegetables in the diet by the intestine 

and then enzymatically converted to retinoic acid (RA), which is a critical signal for multiple 

immune processes. During embryogenesis, RA supports the development of lymphoid tissue 

(101). Critically RA supports the differentiation of ILC3s, of which a sub-type, lymphoid 

tissue inducer cells, are important for the production of lymph nodes (102, 103). RA 
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production is modulated by the microbiome, specifically Clostridia spp., which 

downregulates the expression of enzymes necessary for the production of RA, thereby 

curbing ILC3s and downstream anti-microbial peptide production (104). CD103+ intestinal 

dendritic cells also require RA and the transcription factor it activates, RARα, for their 

development from precursors (105). Beyond development, RA is also critical for the 

activation of mucosal adaptive immune responses. Conversion of RA by CD103+ DCs 

trafficking from the intestinal mucosa to the gut-draining lymph nodes induces homing 

markers, such as α4β7 and CCR9, for gut homing on activated T cells and B cells (106, 

107). RA also influences humoral immunity as RA produced by follicular dendritic cells in 

Peyer’s patches induce B cell proliferation and the generation of IgA+ B cells (108). The 

role of RA on CD4+ T cell differentiation is more complex. A complete lack of RA signals 

and RARα activation leads to a substantial failure of signal transduction downstream of the 

T cell receptor, leading to deficits in T cell responses to infection (109). However, as RA 

production from CD103+ DCs increases, it skews differentiation of CD4+ T cells towards 

Tregs, contributing to the immune tolerance to innocuous food and microbiota-derived 

antigens(110–113). Thus, vitamin A deficiency represents a critical issue for the mucosal 

immune response, as it cannot adequately respond to infection and also lacks the ability to 

regulate responses to the microbiota, perhaps explaining why vitamin A deficiency is 

associated with increased incidence and severity of infection.

Zinc is a trace element that is essential for immunity and lack of adequate dietary zinc is 

common in sub-Saharan Africa and South Asia where it is associated with increased 

mortality (114). Even mild zinc deficiency is sufficient to induce an imbalance between Th1 

cell and Th2 cell functions, as well as impair NK cell function (115). In contrast, zinc 

supplementation promotes survival and regulates inflammation. The zinc transporter, 

SLC39A8 (ZIP8), inhibits pro-inflammatory responses via zinc-mediated down-modulation 

of IKK activity (116), and reduces inflammation during sepsis (117).

Iron deficiency is the most common micronutrient deficiency in the world, affecting more 

than 25% people globally. Since iron is required for monocyte to macrophage differentiation 

and for macrophages to successfully ward off intracellular bacteria by the NADPH mediated 

oxidative burst, it is critical for innate immune responses to bacteria (118). Iron deficiency is 

also associated with lower CD4/CD8 T cell counts and defects in IgG mediated humoral 

immunity (119, 120). However, for both zinc and iron, the advantages imparted by oral 

supplementation are complex, as the microbiota, in particular the more pathogenic members, 

compete for and sequester iron (121). Additionally, high amounts of iron in the blood make 

the host prone to lethal bacteremia, which is in part, why iron is tightly regulated by the 

body (122). Therefore, attempts to restore levels of these metals must be undertaken 

carefully, particularly in LMICs where enteric bacterial infection is often endemic.

Undernutrition, the microbiome and childhood development

The intestinal microbiome has not only evolved with its host but also adapts in concert with 

the development of the host. Infants are first colonized with facultative anaerobes 

(Enterobacteriaceae), then Bifidobacteria and finally as children transition to solid food, 

Clostridia and Bacteroides, that assist in fiber digestion (123–125). During the first 1000 
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days of life these sequential changes in the composition of the juvenile gut microbiota are 

essential for healthy development and disturbances in the establishment of the microbiota 

may have deleterious effects (126). Undernourished children from LMICs exhibit a delayed 

maturation of the microbiome and maintain Enterobacteriaceae for longer periods of time 

(127). The effects of an ‘immature’ microbiome extend well beyond childhood as transfer of 

the microbiota from undernourished infants into germ-free mice leads to stunted growth, 

clearly indicating that the microbiome can contribute to development during early years of 

life (128).

The consequences of undernourishment are not limited to hunger, growth defects and 

delayed development of the microbiome. As discussed above, immune cells have specific 

requirements for food-derived metabolites and the development of the immune system is 

affected by metabolite deficiencies. Protein-energy malnutrition (PEM) affects the 

development of the immune system by decreasing hematopoiesis (129) and inducing thymic 

atrophy and thymocyte apoptosis, leading to an impairment in peripheral T cells (130). PEM 

can also affect T cell activation, as DCs from PEM mice are less competent for antigen 

presentation and eliciting T cell activation (131). Accordingly, children with undernutrition/

malnutrition are at an increased risk of death due to infectious diseases such as influenza, 

diarrhea, pneumonia and malaria (132, 133). The effects of undernourishment can extend 

long after caloric intake is restored as altered nutritional and environmental conditions 

during early life can program cells to behave differently to the same stimuli later (134). For 

example, undernutrition in during development predisposes individuals to immune-related 

chronic inflammatory disorders such as type 2 diabetes, obesity and cardiovascular disease 

(135). Even intermittent fasting can have substantial effects on the distribution and function 

of both memory T cells and circulating inflammatory monocytes (136, 137). However the 

effects of more prolonged caloric restriction on long-lived tissue resident immunity is less 

well understood and may be critical to explaining the long-term pro-inflammatory effects of 

undernutrition.

Undernutrition and Environmental Enteric Dysfunction

Undernourishment and malnutrition do not occur in a vacuum. In LMICs, scarcity of food is 

driven by poverty, which goes hand-in-hand with lack of access to clean water and adequate 

sanitation. Intestinal infections caused by environmental contamination with pathogens can 

exacerbate the effects of undernutrition/malnutrition as these two conditions can function in 

a positive feedback loop. As mentioned above, undernourished individuals have a greater 

susceptibility to enteric pathogens and, in turn chronic inflammation and subsequent 

metabolic energy loss (138). Perhaps the best example of how malnutrition is both a cause 

and consequence of enteric dysfunction is the gastrointestinal disease Environmental Enteric 

Dysfunction (EED) (139). EED is most impactful in children, where it contributes to 

permanent stunting of both stature and brain development (138, 140). EED is characterized 

by villous blunting, lymphocytic infiltration, reduced absorptive capacity, and reduced 

barrier function (141). EED-associated malabsorption significantly exacerbates malnutrition 

because when diet is restored, nutrient uptake is still impacted, complicating diet-based 

health initiatives (142). While the etiology of EED is not known, it is possible that 

malnutrition and chronic inflammation combine to impede effective mucosal immunity, 
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leading to elongated infectious courses and loss of absorptive capacity in the small intestine 

(Figure 2). Tragically, reduced mucosal immunity in areas where EED is endemic may also 

contribute to a reduced efficacy of oral vaccination, further complicating public health 

efforts to reduce infection and restore impaired pediatric development (143–146).

Conclusion

The diet that humans evolved to eat is hard to define. For humans, culture, customs and 

technology make observing our ‘natural’ diet very difficult, but nonetheless it is likely that 

few if any people eat the diet of our evolutionary ancestors (147). Additionally much of what 

we eat, is modified by the microbiota and our response to any given diet is shaped by our 

individualized and malleable microbiomes (148). While the immune system and microbiome 

are adaptable to the diet, there are limits, and unfortunately, the diet of HICs is testing the 

boundaries of both systems and contributing to chronic disease on a massive scale. For 

example, it seems that the immune system has mechanisms to detect whether the microbiota 

is properly digesting dietary plant products via the measurement of microbiome-derived 

SCFAs. One potentially unfortunate outcome from this mechanism is that a Westernized diet 

low in plant products may ‘fool’ the immune system into thinking that the microbiome is not 

functioning, leading to unnecessary inflammation. Alternatively, in LMICs the combined 

effects of malnutrition and undernutrition lead to inhibited development of protective 

mucosal immunity. As a result, chronic inflammation and malabsorption in LMICs can lead 

to developmental delays that are difficult to restore and have health effects that extend well 

past the pediatric developmental period. As we seek to increase wealth and food security in 

LMICs worldwide it will be important to not repeat our errors in shifting to a hyper-

processed, high sugar and low fiber diet which might exchange one set of problems for 

another.

Finally, though this review has focused on the negative effects of consuming diet that is ill-

suited for health, we should not lose sight of the tremendous opportunity we have to 

augment immunity with deeper knowledge of diet and metabolites. Indeed, there is evidence 

that anti-microbial immunity can be both aided and inhibited by nutrition levels and 

macronutrients (149, 150). A deeper understanding of the interacting network that connects 

diet, the microbiome and the immune system will be important so that we can design diets to 

better resolve disease.
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Figure 1. The Westernized diet drives mucosal inflammation
Diets high in fiber support microbiome diversity and the production of short-chain fatty 

acids (SCFAs) which act as an energy source for the intestinal epithelium, decrease oxygen 

in the intestinal lumen, increase colonic Tregs and suppress inflammatory immune cells. 

Conversely diets high in fat and sugar contribute to reduced microbiome diversity and 

activate inflammatory type 1 immune cells (Th1 T cells, monocytes, macrophages and 

neutrophils) to produce cytokines such as IL-1β and TNFβ. These immune cells increase 

inflammation in the intestine which allows for ‘blooms’ of Enterobacteriaceae and 

Enterococcaceae, a loss of microbiome diversity and increased permeability through the 

opening of tight junctions. Figure created using biorender.com.
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Figure 2. Proposed mechanism for the development of Environmental Enteric Dysfunction
Insufficient protein and fat in the diet can reduce the effectiveness of the immune response, 

leading to improper control of intestinal infection and a loss of a healthy diverse 

microbiome. Together malnutrition, chronic infection and microbiome dysbiosis lead to 

intestinal inflammation, reduced epithelial surface area and malabsorption exacerbating the 

effects of malnutrition. Figure created using biorender.com.
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