Table 1.
Representative examples of chemicals synthesis via anodic electro-fermentations (AEF) and microbial electrosynthesis (MES).
| Process | Microbial organism | Substrate | Product | Mechanisms of EET | Genetic modification of host | Title/Yield/Productivity | Reference |
|---|---|---|---|---|---|---|---|
| AEF | |||||||
| Shewanella oneidensis | Glycerol | Ethanol; Acetate |
Direct electron transfer | Introduction of glycerol utilization module from Escherichia coli and ethanol production module from Zymomonas mobilis | Ethanol titer of 1.28 ± 0.02 g L-1, yield of (52 ± 4) %; Acetate titer of 0.29 ± 0.08 g L-1, yield of (13 ± 6) % |
[36] | |
| Shewanella oneidensis | Glucose | Acetate | Direct electron transfer | Introduction of galactose permease (galP) and glucose kinase (glk) genes from Escherichia coli | No | [33] | |
| Shewanella oneidensis | Lactate | Acetoin | Direct electron transfer | Deletion of prophages in genome; Introduction of acetolactate synthase and acetolactate decarboxylase from Bacillus subtilis; Knockout of the acetate kinase (ackA) and phosphotransacetylase (pta) genes |
Acetoin production rate of 0.91 mgh−1, yield of 52%, titer of 0.24 g L-1 | [29] | |
| Pseudomonas putida | Glucose | 2-ketogluconic acid | Direct electron transfer | Overexpression of periplasmic glucose dehydrogenase GCD | 2-ketogluconic acid production rate of 0.25 ± 0.02 mmol gCDW−1 h−1 | [34] | |
| Klebsiella pneumoniae | Glycerol | Acetate; 3-HP; 1,3-PDO |
Direct electron transfer | No | Acetate titer of 21.7 mM; 3-HP titer of 7.6 mM; 1,3-PDO titer of 45.5 mM |
[35] | |
| Escherichia coli | Lactate | Acetate; Ethanol |
Direct electron transfer | Introduction of the Mtr pathway of Shewanella oneidensis MR-1 | Acetate production rate of 0.038 mM day−1; Ethanol titer of 40 ± 3 μM | [39] | |
|
Clostridium cellobioparum; Geobacter sulfurreducens |
Glycerol | Ethanol | Direct electron transfer | Adaptive evolution of Clostridium cellobioparum | Ethanol titer of 10 g L-1 | [40] | |
|
Cellulomonas uda; Geobacter sulfurreducens |
Cellobiose | Ethanol | Direct electron transfer | Adaptive evolution and deleted hydrogenase gene of Geobacter sulfurreducens | No | [41] | |
| Ralstonia eutropha | Fructose | PHB | PMF-mediated electron transfer | No | No | [42] | |
| Klebsiella pneumoniae | Glycerol | 3-HP | 2-hydroxy-1,4-naphthoquinone (HNQ)-mediated electron transfer | Overexpression of aldehyde dehydrogenase (AldH) | 3-HP titer of 21.5 ± 2.2 mM | [43] | |
| Escherichia coli | Glucose | Acetoin | Methylene blue-mediated electron transfer | Deletion of the genes that encoding for enzymes of central reactions (ΔfrdA-D ΔadhE ΔldhA Δpta–ack); Introduction of the genes for the acetolactate synthase (alsS) and the acetolactate decarboxylase (alsD) and c-type cytochromes from Shewanella oneidensis | Production of 0.79 mol acetoin per mol glucose | [31] | |
|
Escherichia coli; Methanobacterium formicicum |
Glycerol | Ethanol; Acetate |
Methylene blue-mediated electron transfer | Introduction of c-type cytochromes CymA, MtrA and STC from Shewanella oneidensis | Ethanol production rate of 12.12 ± 1.70 mgh−1, yield of (35 ± 5) %, titer of 55.25 ± 7.76 g L-1; Acetate production rate of 8.94 ± 0.52 mgh−1, yield of (20 ± 1) %, titer of 40.75 ± 2.37 g L-1 | [45] | |
| Pseudomonas putida F1 | Glucose | 2-Keto-gluconate | Seven different mediators-based mediated electron transfer | No | 2-Keto-gluconate production rate of 1.75 ± 0.33 mgh−1, yield of (90 ± 2) %, titer of 1.47 ± 0.27 g L-1 | [44] | |
|
Corynebacterium glutamicum Zymomonas mobilis |
Glucose Glucose |
l-lysine; Ethanol |
Ferricyanide-mediated electron transfer; Methylene blue, neutral red, methyl naphthoquinone, 1,4- riboflavin, tempol, humic acid, and butanedisulfonate-mediated electron transfer |
Feedback-deregulated mutant Overexpression of redox-related genes ZMO0899, ZMO1116, and ZMO1885 |
l-lysine titer of 2.9 Mm, production rate of 0.2 mmol L−1h−1 Bioelectricity generation 2.0 mWm−2; Ethanol titer ~42.5 g L-1 |
[30] |
|
| MES |
|||||||
| Geobacter sulfurreducens | CO2; Succinate | Glycerol | Direct electron transfer | No | Glycerol titer of 8.7 ± 0.3 mM | [47] | |
| Sporomusa ovate | CO2 | Acetate | Direct electron transfer | No | No | [48] | |
| Clostridium pasteurianum DSM 525 | Glucose; Glycerol | Butanol; 1,3-propandiol | Direct electron transfer | No | Butanol titer of 1.00 ± 0.20 g L-1 from glucose; 1,3-propandiol titer of 4.74 g L-1 from glycerol |
[49] | |
| Shewanella oneidensis MR-1 | Acetoin | 2,3-butanediol | Direct electron transfer | Heterologous expression of a light-driven proton pump (PR) and butanediol dehydrogenase (Bdh); Knockout of hydrogenase gene ΔhyaBΔhydA |
2,3-butanediol titer of 0.03 mM | [52] | |
| Shewanella oneidensis MR-1 | CO2; Fumarate; Pyruvate | H2; Lactate; Formate; Succinate |
Methyl viologen-mediated electron transfer | No | Accumulated 242 ± 24 nmol of H2; ~9100 nmol lactate (93% yield); ~1600 nmol of formate (16% yield); ~8300 nmol succinate (70% yield) |
[53] | |
| Clostridium pasteurianum | Glycerol | 1,3‐propanediol; n‐butanol | Neutral red and brilliant blue-mediated electron transfer | No | BuOH yields of 0.35 mol mol-1 glycerol in NR-mediated BES; 1,3‐PDO yields of 0.41 mol mol-1 glycerol in BB-mediated BES |
[54] | |
| Escherichia coli | Acetophenone | (R)-1-phenylethanol | Methyl viologen-mediated electron transfer | Genetically introduction of cytochromes MtrA, CymA, and STC and heme exporter proteins ccmA-H from Shewanella oneidensis; Heterogenous expression of alcohol dehydrogenase from Lactobacillus brevis |
(R)-1-phenylethanol yield of (39.4 ± 5.7) % | [55] | |
| Escherichia coli | Glucose | Succinate | Neutral red-mediated electron transfer | Heterogenous expression of mtrABC, fccA and cymA from Shewanella oneidensis MR-1 | Succinate yield of 1.10 mol mol-1 glucose | [57] | |
| Saccharomyces cerevisiae | Dhea | 7α–OH–DHEA | Neutral red and 7α-hydroxylase-mediated electron transfer | Heterogenous expression of 7α-hydroxylase | 7α–OH–DHEA titer of 288.6 ± 7.8 mg L−1 | [56] | |
| Ralstonia eutropha | CO2 | Isopropanol | H2-mediated electron transfer | No | Isopropanol titer of 216 mgL−1 | [59] | |
| Ralstonia eutropha | CO2 | PHB; Isopropanol; C4 and C5 alcohols |
H2-mediated electron transfer | No | PHB titer of ~700 mgL−1; Isopropanol titer of ~600 mgL−1; C4+C5alcohols titer of ~220 mgL−1 |
[60] | |
| Xanthobacter autotrophicus | N2 and H2O | NH3 | H2-mediated electron transfer | No | NH3 concentration of ~0.8 mM | [61] | |
|
Sporomusa ovate; Methanococcus maripaludis |
CO2 | Acetate; CH4 |
H2-mediated electron transfer | No | Acetate titer of 0.2–0.3 mM; CH4 titer of 0.2–0.3 mM; |
[62] | |
| Sporomusa ovate | CO2 | Acetate | H2-mediated electron transfer | No | Acetate titer of 6.4 ± 1.1 g L−1 | [64] | |
| Ralstonia eutropha | CO2 | 3-methyl-1-butanol (3 MB); Isobutanol | Formate-mediated electron transfer | Introduction of genes alsS, ilvC, ilvD, kivd, and yqhD; Knockout of PHB synthesis gene cluster (phaC1, phaA and phaB1) |
3 MB and isobutanol titer of 140 mgL−1 | [25] | |
| Ralstonia eutropha | CO2 | PHB | Formate and neutral red-mediated electron transfer | Heterologous expression of the ribulose-1,5-bisphosphate carboxylase (Rubisco) from Synechococcus elongatus PCC7942 | PHB titer of 485 ± 13 mgL−1 | [65] | |