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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained discovery of cellular subtypes and
specific cell states. Analysis of scRNA-seq data routinely involves machine learning methods, such as feature learning, clus-
tering, and classification, to assist in uncovering novel information from scRNA-seq data. However, current methods are
not well suited to deal with the substantial amount of noise that is created by the experiments or the variation that occurs
due to differences in the cells of the same type. To address this, we developed a new hybrid approach, deep unsupervised
single-cell clustering (DUSC), which integrates feature generation based on a deep learning architecture by using a new
technique to estimate the number of latent features, with a model-based clustering algorithm, to find a compact and in-
formative representation of the single-cell transcriptomic data generating robust clusters. We also include a technique to
estimate an efficient number of latent features in the deep learning model. Our method outperforms both classical and
state-of-the-art feature learning and clustering methods, approaching the accuracy of supervised learning. We applied
DUSC to a single-cell transcriptomics data set obtained from a triple-negative breast cancer tumor to identify potential
cancer subclones accentuated by copy-number variation and investigate the role of clonal heterogeneity. Our method
is freely available to the community and will hopefully facilitate our understanding of the cellular atlas of living organisms
as well as provide the means to improve patient diagnostics and treatment.
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INTRODUCTION

Despite the centuries of research, our knowledge of the
cellular architecture of human tissues and organs is still
very limited. Microscopy has been conventionally used
as a fundamental method to discover novel cell types,
study cell function and cell differentiation states through
staining and image analysis (Carpenter et al. 2006).
However, this approach is not able to identify heteroge-
neous subpopulations of cells, which might look similar,
but perform different functions. Recent developments in
single-cell RNA sequencing (scRNA-seq) have enabled
harvesting the gene expression data from a wide range
of tissue types, cell types, and cell development stages, al-
lowing for a fine-grained discovery of cellular subtypes and
specific cell states (Tanay and Regev 2017). Single-cell
RNA sequencing data have played a critical role in the re-

cent discoveries of new cell types in the human brain
(Darmanis et al. 2015), gut (Grün et al. 2015), lungs
(Treutlein et al. 2014), and immune system (Villani et al.
2017), as well as in determining cellular heterogeneity in
cancerous tumors, which could help improve prognosis
and therapy (Patel et al. 2014; Tirosh et al. 2016). Single-
cell experiments produce data sets that have three main
characteristics of big data: volume (number of samples
and number of transcripts per each sample), variety (types
of tissues and cells), and veracity (missing data, noise, and
dropout events) (Brennecke et al. 2013). Recently emerg-
ing large initiatives, such as the Human Cell Atlas (Regev
et al. 2017), rely on single-cell sequencing technologies
at an unprecedented scale, and have generated data
sets obtained from hundreds of thousands and even
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millions of cells. The high numbers of cells, in turn, allow to
account for data variability due to cellular heterogeneity
and different cell cycle stages. As a result, there is a critical
need to automate the processing and analysis of scRNA-
seq data. For instance, for the analysis of large transcrip-
tomics data sets, computational methods are frequently
employed that find patterns associated with the cellular
heterogeneity or cellular development, and group cells ac-
cording to these patterns.

If one assumes that all cellular types or stages extract-
able from a single-cell transcriptomics experiment have
been previously identified, it is possible to apply a super-
vised learning classifier. The supervised learning methods
are trained on the data extracted from the individual cells
whose types are known. The previously developed ap-
proaches for supervised cell type classification have lever-
aged data from image-based screens (Jones et al. 2008)
and flow cytometry experiments (Chen et al. 2016).
There has also been a recent development of supervised
classifiers for single-cell transcriptomic data (Demšar
et al. 2013), including methods that implement neural net-
works trained on a combination of transcriptomic data and
protein interaction data (Lin et al. 2017). While a super-
vised learning approach is expected to be more accurate
in identifying the previously observed cellular types, its
main disadvantage is the limited capacity in discovering
new cell types or identifying the previously known cell
types whose RNA-seq profiles differ from the ones ob-
served in the training set.

Another popular technique for scRNA-seq data analysis
is unsupervised learning, or clustering. In this approach, no
training data are provided. Instead, the algorithm looks to
uncover intrinsic similarities shared between cells of the
same type and not shared between cells of different types
(Menon 2018). Often, clustering analysis is coupled with a
feature learning method to filter out thousands of unim-
portant features extracted from the scRNA-seq data. In a
recent study, the principal component analysis (PCA) ap-
proach was used on gene expression data from scRNA-
seq experiments profiling neuronal cells (Usoskin et al.
2015). With the goal of identifying useful gene markers
that underlie specific cell types in the dorsal root ganglion
ofmice, 11 distinct cellular clusters were discovered.Other
approaches have also adopted this strategy of combining
a simple, but efficient feature learning method with a clus-
tering algorithm, to detect groups of cells that could be of
different subtypes or at different stages in cellular develop-
ment (Huang et al. 2008;Wang et al. 2017). One challenge
faced by such an approach is due to scRNA-seq data ex-
hibiting complex high-dimensional structure, and such
complexity cannot be accurately captured by fewer dimen-
sions when using simple linear feature learning methods.

A nonlinear method frequently used in scRNA-seq data
analysis for clustering and visualization is t-distributed sto-
chastic neighbor embedding (t-SNE) (Maaten and Hinton

2008).While t-SNE can preserve the local clusters, preserv-
ing the global hierarchical structure of clusters is often
problematic (Wattenberg et al. 2016). Furthermore, the
conventional feature learning methods may not be well
suited for scRNA-seq experiments that have considerable
amount of both experimental and biological noise or the
occurrence of dropout events (Kolodziejczyk et al. 2015;
Stegle et al. 2015). To address this problem, two recent
methods have been introduced, pcaReduce (Yau 2016)
and SIMLR (Wang et al. 2017). pcaReduce integrates an
agglomerative hierarchical clustering with PCA to gener-
ate a hierarchy where the cluster similarity is measured in
subspaces of gradually decreasing dimensionalities. The
other approach, SIMLR, learns different cell-to-cell distanc-
es through by analyzing the gene expressionmatrix; it then
performs feature learning, clustering, and visualization.
The computational complexity of the denoising technique
in SIMLR prevents its application on the large data sets.
Therefore, a different pipeline is used to handle large
data, where the computed similarity measure is approxi-
mated, while the diffusion approach to reduce the effects
of noise is not used. In addition to the dimension reduction
methods, K-means is a popular clustering method used in
single-cell transcriptomics analysis. While being arguably
the most popular divisive clustering algorithm it has sever-
al limitations (Jain 2010; Celebi et al. 2013).

In this work, we looked at the possibility to leverage an
unsupervised deep learning approach (Baldi 2012) to han-
dle the complexities of scRNA-seq data and overcome
the above limitations of the current feature learning meth-
ods. It has been theoretically shown that the multilayer
feed-forward artificial neural networks, with an arbitrary
squashing function and sufficient number of hidden units
(latent features) are universal approximators (Hornik et al.
1989) capable of performing dimensionality reduction
(Cybenko 1989). A recently published method, scVI, im-
plemented unsupervised neural networks to overcome
specific problems of the library size and batch effects dur-
ing single-cell sequencing (Lopez et al. 2018). However,
scVI underfits the data when the number of sequenced
genes exceeds the number of sampled cells. Therefore
such phenomenon is likely to be observed in experiments
that sample a few thousand cells while quantifying tens of
thousands of genes. Here, we propose the use of denois-
ing autoencoder (DAE) (Vincent et al. 2008), an unsuper-
vised deep learning architecture that has previously
proven successful for several image classification (Vincent
et al. 2010) and speech recognition (Lu et al. 2013) tasks,
by reducing noise. DAEs are different from other deep
learning architectures in their ability to handle noisy data
and construct robust features. We add a novel extension
to the DAE called denoising autoencoder with neuronal
approximator (DAWN), which decides the number of latent
features that are required to represent efficiently any given
data set. To overcome the limitations of K-means
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clustering, we integrate our DAWN approach with the ex-
pectation-maximization (EM) clustering algorithm (Do and
Batzoglou 2008). We use the features generated by
DAWN as an input to the EM clustering algorithm and
show that our hybrid approach has higher accuracy when
compared to the traditional feature learning and clustering
algorithms discussed above. In particular, we can recover
clusters from the original study without using any knowl-
edge about the tissue-specific or cell type specific markers.
As a result, our hybrid approach, deep unsupervised sin-
gle-cell clustering (DUSC), helps to overcome the noise in
the data, captures features that are representative of the
true patterns, and improves the clustering accuracy. In an
application to triple-negative breast cancer, DUSC cluster-
ing results were integrated with copy-number variation
data to understand the role of clonal evolution, and specif-
ically clonal heterogeneity, in triple-negativebreast cancer.

RESULTS

Data sets

For the assessment of our approach, we chose five single-
cell RNA-seq data sets (Fig. 1): embryonic data set-1 (E1),
embryonic data set-2 (E2), sensory neurons (SN), mouse
cortex (MC), and malignant melanoma (MM) (Biase et al.
2014; Usoskin et al. 2015; Zeisel et al. 2015; Goolam
et al. 2016; Tirosh et al. 2016). These data sets were select-
ed to represent areas where scRNA-seq technology had a
significant impact (Shapiro et al. 2013). The areas included
embryonic development, cellular heterogeneity in the ner-
vous system and cellular heterogeneity in a disease (can-
cer). The data sets originated from a model organism
(mouse) and human. In total, 8055 single-cell samples
were analyzed (Fig. 1A). All data sets were downloaded
in a quantified format from publicly available sources listed
in the studies (Langmead et al. 2009; Li and Dewey 2011;
Trapnell et al. 2012; Anders et al. 2015). To test the scal-
ability and robustness of the proposed method, the data
sets were chosen such that they exhibited variability across
multiple parameters: (a) number of sequenced cells (from
56 cells to 4139 cells), (b) number of genes quantified
(from ∼19,000 to ∼41,000 genes), (c) different sequencing
and quantification pipelines, (d) cellular heterogeneity dur-
ing development or disease, and (e) varying cellular hierar-
chy and number of cell types (with one to three levels of
hierarchy and five to 12 cell types/subtypes). Many of the
cellular types include subpopulations corresponding to
the cellular subtypes (Fig. 1B). Specifically, the cellular sub-
types in SN andMM data sets are hierarchically organized;
SN has a three-level hierarchy, while MM has two levels.
The distributions of number of genes quantified per cell
varied significantly: for E1 and E2, the distribution was cen-
tered around ∼13,000 genes, and for SN, MC andMM the
distributions were centered around ∼4000 genes (Supple-

mental Fig. 1). Using the normalized Shannon entropy,
HNORM, we found that the distribution balance of samples
across cell types also varied, with the first level of SN being
the most balanced and the second level of MM being the
most unbalanced sets, correspondingly (see also Effects of
data balance on accuracy subsection).

Comparison with clustering and classification
algorithms

We first evaluated the overall performance of our cluster-
ing approach, DUSC, and its most critical part, a new fea-
ture learning method DAWN. To test if DUSC could
improve the discovery of cell type clusters in scRNA-seq
data, we compared the clustering of our hybrid approach
with (i) clustering that had no feature selection, and (ii)
the same clustering methods that now employed the clas-
sical and state-of-the-art unsupervised feature learning
methods. We expected that clustering with no feature se-
lection would perform the worst, thus establishing a base-
line for comparative analysis. We also assessed the
classification accuracy of Random Forest (RF), a state-of-
the-art supervised learning algorithm. The latter approach
represents the best-case scenario when all cell types are
known.
For the E1 data set, all methods except KM recovered

the clusters with similarly high accuracies. As expected,
the small sample size and a few cell types to consider
made the clustering a simpler task (Fig. 2A; Supplemental
Table 2). When processing E2, DUSC had the highest ac-
curacy among all methods, and while there was only a
small accuracy drop for RF, both KM and EM experienced
significant losses in accuracy. The drop in performance on
the E2 data set, which had the same number of cell types
as E1, could be explained by the fact that both the sample
size and feature size approximately doubled, therefore
quadrupling the problem size and making it a harder com-
putational challenge. For the main hierarchy level in SN
(SN-i), the sample size was 731, making it a larger search
space, but with only five major cell types. Here, DUSC per-
formed well (Acc=0.9) and was closely followed by RF,
while KM and EM performed poorly (accuracies were
0.88, 0.53, and 0.62 correspondingly). For the second level
of SN subtypes (SN-ii), the sample size was still 731, but the
number of cell subtypes increased to nine, thus resulting in
a smaller sample size for each cell subtype (Fig. 1B) and
smaller feature differences between the subtypes. As a re-
sult, it was not surprising that all methods experienced a
drop in their performance, with RF performing best
(Acc =0.74) and DUSC being the first among the unsuper-
vised methods, closely behind RF (Acc=0.69). When con-
sidering the lowest level of SN, SN-iii, with the number of
subtypes being 12 and cell cluster sizes ranging from 12 to
233, we noticed that RF and DUSC both have similar accu-
racy (Acc=0.71), while KM and EM still performed poorly

Deep clustering of single-cell RNA-seq data
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(Acc=0.46 and 0.40, correspondingly). We note that for all
evaluations based on the subtypes of either SN-i (i.e., SN-ii
and SN-iii levels) or MM-i (i.e., MM-ii level), we did not filter
out the major cell clusters from the higher levels to recur-

sively process subclusters of the lower levels. This is
because, the cellular hierarchy was not known a priori
when analyzing a novel data set and its structure
could only be discovered after the recursive analysis of

BA

FIGURE 1. Overview of DUSC approach. (A) Basic stages of the deep clusteringmethod and overviewof the five data sets towhich it was applied.
Each of the five data sets was processed using a different RNA-seq quantification tool, with the data quantified in different expression units.
During the evaluation, our approach was compared against the standard clustering methods as well as their enhanced versions using four feature
learning approaches. (B) The detailed description of the five data sets: embryonic data set-1 (E1), embryonic data set-2 (E2), sensory neurons (SN),
mouse cortex (MC), and malignant melanoma (MM), their multilevel hierarchical organizations, and subpopulation distribution. The total number
of cell samples is depicted in the center of each sunburst chart.
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subclusters that, in turn, required multiple iterations. Here,
we generated clusters only through a single pass of our
processing pipeline.

The size of the next data set, MC,
was several folds greater than of the
previous two, and in this case, RF
had the best accuracy (Acc=0.92)
and our unsupervised method DUSC
had a significantly higher accuracy
(Acc=0.81) than KM and EM (Acc=
0.54 and 0.57, correspondingly).
Lastly, in the final data set, MM, we ini-
tially tried to find only two clusters of
cancerous and noncancerous cells,
and this binary problem with two
very different cell types and approxi-
mately the same cluster sizes was un-
surprisingly an easy challenge. Thus,
all methods perform very well with
the accuracies above 0.95, but DUSC
still lead the unsupervised algorithms
with the same accuracy as RF (Acc=
0.99). When the subtypes of noncan-
cerous cells had to be considered as
separate groups along with cancerous
cells (MM-ii), the complexity of the
problem increased, and all unsuper-
vised algorithms experienced a sig-
nificant drop in performance when
compared to RF (Acc=0.93), with
DUSC still achieving the best result
(Acc=0.64).

In summary, the assessment on all
four data sets demonstrated that
DUSC performed better than the KM
and EM clustering algorithms and
in many instances by large margins.
Even more importantly, DUSC had
comparable performance with Ran-
dom Forest supervised approach in
many cases, and in some cases even
outperformed it.

Effects of data balance
on accuracy

The data balancemetric introduced in
this work allowed us to find how the
data complexity and imbalance af-
fected the performance of DUSC
(Fig. 2B). Indeed, for all unsupervised
methods, including DUSC, the clus-
tering accuracy was impacted by the
data complexity (Supplemental Fig.
3; Supplemental Table 3). This was es-

pecially evident in the cases of SN-ii and MM-ii data sets,
where the number of cell types increased compared to
the original data sets, SN-i and MM-i, respectively. The

E F

BA C

D

G H

FIGURE 2. Comparative assessment of DUSC. The methods considered in this figure include:
K-means (KM), expectation-maximization (EM), random forest (RF), principle component anal-
ysis (PCA), independent component analysis (ICA), t-distributed stochastic neighbor embed-
ding (t-SNE), single-cell interpretation via multikernel learning (SIMLR), and deep
unsupervised single-cell clustering (DUSC). The data sets used in the figure include embryonic
data set-1 (E1), embryonic data set-2 (E2), sensory neurons (SN-i, SN-ii, and SN-iii correspond
to the subpopulations at the first, second, and third levels of hierarchy, respectively), mouse
cortex (MC), and malignant melanoma (MM-i and MM-ii correspond to the subpopulations
at the first and second levels of hierarchy, respectively). (A) Overall performance of DUSC in
comparison with two clustering approaches, KM and EM, and a state-of-the-art supervised
learning approach, RF. DUSC outperforms both clustering methods, and its accuracy is com-
parablewith that of the supervised classifier. (B) The performance accuracy byDUSC is affected
by the distribution balance of the subpopulations forming the data set: applying DUSC to the
more unbalanced data set results in lower accuracy and vice versa. (C ) Feature space com-
pressed (FSC) calculated for all five data sets. (D) The performance of EM clustering combined
with DAWN and other feature learning methods ([∗] use of the large scale implementation of
SIMLR for MC and MM data sets). (E) The performance of K-means clustering combined with
DAWN and other feature learningmethods; DAWN shows a significantly greater improvement
in both B andD. (F ) The clustering performance of DUSC using DAWN, versus using two man-
ual configurations of the standard DAE (50 and 100 neurons). DAWN performs significantly
better than the manual configurations and with fewer hidden neurons. (G) The execution
time for all themethods during feature learning (FL), considering that DAWN is a deep learning
method; it has communication cost and I/O cost from CPU to GPU. (H) Memory used during
feature learning by all methods, DAWN uses the least amount of memory (^ total of System
and GPU memories used by DAWN).
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higher number of clusters, in turn, leads to a greater varia-
tion in cluster sizes, and in the same time, a lower number
of differentiating features. Here, we observed that both
data balance and clustering accuracy decreased when
moving down the cell type hierarchy in SN and MM data
sets.

Feature compression

To study the information content of the initially sparse fea-
ture space, another metric, feature space compressed
(FSC), was used for DUSC (Fig. 2C). With the combination
of the preprocessing stage and the neuronal approxima-
tion, DAWN compressed at least 0.994 (99.4%) of the orig-
inal feature space reaching 0.998 (99.8%) for four out of
five data sets (Supplemental Table 7). The maximum com-
pression occurred for E2, where 41,388 of the original fea-
tures were cleaned and compressed to just three latent
features resulting in FSC of 99.99%. The data compression
capacity of DAWN could also be a useful tool for storing
cell type critical information in large scRNA-seq studies.
For instance, the size of an average data set obtained
from a single study could be reduced from 1 gigabyte to
only 5 megabytes using DAWN. We note that the highly
efficient compression occurred simultaneously when im-
proving the clustering performance.

Assessment of unsupervised feature learning
algorithms and their impact on clustering

Next, we compared the performance of DUSC against the
four feature learning methods, SIMLR, PCA, ICA, and t-
SNE. Since DUSC is a hybrid approach that combined a
new feature learning method (DAWN) and a clustering al-
gorithm (EM), for a fair comparison, we also paired the oth-
er four feature learning methods with the EM clustering
method (Fig. 2D; Supplemental Table 4). The results
showed that the previously observed effects of sample
size, number of cell clusters, and number of important fea-
tures on DAWN’s performance also affected the other four
methods. For the easier data sets w.r.t. the above criteria,
such as E1 and MM-i, all the algorithms had an accuracy
greater than 0.7, with DUSC reaching significantly higher
accuracies of 0.95 and 0.99, respectively. Interestingly,
when more complex problems were considered, that is,
E2 and MC, we noticed a significant performance drop
for all algorithms; however, when compared to SIMLR,
the best performing method of the four currently existing
ones, DUSC still clustered E2 more accurately (Acc=
0.96) and also had a 14% higher accuracy (Acc=0.81) on
the MC data set. We also recall that SIMLR was used in a
less challenging setup when the true number of clusters
was provided as an input. Overall, DUSC had the better
accuracy across all data sets, compared to all other un-
supervised feature learning algorithms. The results also

suggest that any scRNA-seq analysis tools that utilize
PCA or ICA, such as Seurat and Monocle, respectively,
might not be capturing the single-cell information optimal-
ly. Furthermore, the features extracted from PCA or ICA al-
gorithms when used for K-means clustering to obtain the
final cell clusters might not be accurate; the same features
when used for cell cluster visualization through t-SNE suf-
fer from similar problems.

Assessment of the contributing factors in the hybrid
approach

We then hypothesized that between the feature learning
(DAWN) and clustering (EM) components of our approach,
DAWN was contributing more to the clustering accuracy.
To determine the impact of DAWN, we paired it as
well as the four other feature learning methods with K-
Means clustering. We found that DAWN either exceeded
the clustering accuracy of SIMLR, (for E2, SN-i, MC and
MM-i) or closely matched it in the other cases (Fig. 2E;
Supplemental Table 5). The other methods, PCA, ICA
and t-SNE, had significantly lower accuracies for the major-
ity of the tasks. The findings suggested that DAWNprovid-
ed the key contribution toward improving the clustering
accuracy. A consistent trend that was observed across all
methods (Fig. 2D,E) was that for SN and MM data sets,
the accuracy decreased as the feature learning and cluster-
ing methods traversed the cell type hierarchies. The small-
er differences in the numbers of uniquely expressed genes
together with a larger set of common genes across the cel-
lular subtypes, compared to the main cellular types, made
it a more challenging problem for feature learning and
clustering.

Assessment of neuronal approximation

To further assess the benefits of our novel neuronal ap-
proximation in DAWN, we compared it with the standard
DAE. We created two configurations of the standard
DAE, by choosing the number for the hidden units to be
50 and 100, respectively. All other aspects of theDUSC ap-
proach were kept intact, and the end-to-end analysis was
repeated for DAE-50 and DAE-100. The clustering results
showed that DAWN outperformed the standard DAE con-
figurations in six cases and had extremely similar perfor-
mance in the remaining two cases (Fig. 2F; Supplemental
Table 8). This analysis showed that the automated tech-
nique to set the number of hidden units was superior to
the manual value selection for this important parameter.
The structural patterns discovered in the DAWN features
are compared against PCA (Supplemental Fig. 5); the op-
timization of the latent features that are dependent on the
number of training epochs is also analyzed (Supplemental
Fig. 6). The results showed the capacity of DUSC to be a
fully automated clustering approach, which can be applied
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to small data sets (E1, 56 cells) as well as large data sets
(MM, 4139 cells).

Computational performance

The execution time for each of the five feature learning
methods was profiled across all five data sets. After loading
the data from storage, all methods utilized CPU, except for
DAWN, which used GPU for the actual feature learning.
DAWN worked in a master/slave configuration, where
the data load and preprocessing steps were performed
on the CPU (master) and the CPU instructed the GPU
(slave) to carry out the feature learning and send back
the results. Due to this configuration, DAWN incurred ad-
ditional time costs to move the data between the system
memory and GPU memory and for the constant interpro-
cess communication between the CPU and GPU. This
trend in the execution time for DAWN (Fig. 2G) started
higher than the other methods but remained almost flat
for data sets E1 (157 s), E2 (166 s) and SN (183 s), and de-
spite this additional cost, DAWN performed significantly
faster than t-SNE for the largest data set. The execution
time of PCA and ICA scaled well with the increasing data
set size: they were the fastest methods. We then used
the default implementation of SIMLR for data sets E1,
E2, and SN data sets. For SN it took 176 sec, the highest
among all other methods. Furthermore, when using the
same implementation for MC, the execution time in-
creased drastically to 4450 sec, which was attributed to re-
ducing the noise and dropout effects in the data. Thus, as
suggested by the authors of SIMLR, we used its large-scale
implementation mode for MC and MM. The large-scale
implementation employed different steps to process the
data with a speed similar to PCA, but possibly sacrificing
the quality of feature learning.
Additionally, we profiled memory usage during feature

learning for all methods. The total used memory (System
and GPU) was reported for DAWN, and we observed
that DAWN had the lowest memory usage of all methods
due to the added optimizations (Fig. 2H; Supplemental
Table 9). PCA, ICA, and t-SNE all had similar memory pro-
files. SIMLR had the highest memory usage of all methods,
considering the large-scale implementation for data sets
MC and MM. However, when the default implementation
of SIMLR was used, the memory footprint for the MC data
set increased sharply to 8270 megabytes.

Cluster embedding and visualization

To illustrate the capacity of our approach to preserve the
local structure of the data, we generated two-dimensional
embeddings for the two largest data sets, MC and MM.
Specifically, we applied the t-Distributed stochastic neigh-
bor embedding (t-SNE) method to the latent features gen-
erated by DAWN and compared it to the four other feature

learning methods. We considered the MC data set first
because it was a complex data set with 3005 cells and sev-
en cell types (Fig. 3A). When comparing the embeddings
obtained from the original data and after applying the five
feature learning methods, the embedding produced from
the DAWN-generated latent features showed cell clusters
that were themost clearly separated and had smooth ellip-
tical boundaries.
To determine if the biological relationship between the

clusters of related cell types could be reflected through the
spatial relationship in the 2D embedding, we next created
a hierarchical network overlay on the DAWN embedding
using the cell type dendrogram obtained from the original
study (Fig. 3B). The network topology revealed immediate
connections between the clusters corresponding to the
more similar cellular types. The more dissimilar clusters
were not immediately connected; instead they were con-
nected through the hierarchical nodes and edges in the
network, as expected. The obtained network overlay indi-
cated that DAWNpreserved the relationships between the
cell types during the learning process. The 20 latent fea-
tures learned by DAWN on the MC data set were then an-
alyzed using a heatmap representation (Fig. 3C), where the
rows represent individual cells, and columns represent the
latent features. The heatmap, where the cells were
grouped by their types revealed the “block” structural pat-
terns formed by the groups of features, showing that the
latent features learned by ourmethod could recover the in-
trinsic structure of the original data. The heatmap also
shows the orchestrated work of hidden neurons to learn
complementary patterns.
Finally, we obtained the two-dimensional embeddings

for the MM data set (Fig. 3D), another complex data set
with a high variation in the cluster size (52–2068 cells).
We found that DAWN was the only feature learning meth-
od capable of producing compact and well-separated
clusters, where the two major cell types, that is, cancerous
and noncancerous cells, were separated with no overlap.
The subtypes of noncancerous cells were also well-sepa-
rated, with the only exception being natural killer (NK) cells
(52 cells), which partially overlapped with the largest cell
cluster of T cells (2068 cells). This overlap could be ex-
plained by the disproportionately small size of the NK
cluster and the substantial similarity between NK cells
and T cells (Narni-Mancinelli et al. 2011).

Integrating scRNA-seq clustering with CNV
data suggests the role of clonal heterogeneity
in triple-negative breast cancer

In the triple-negative breast cancer data set, we specifically
selected the data of a patient (patient-39) who had a large
tumor (9.5 cm), which using the original study manually in-
ferred the presence of subclones, but did not identify the
clones by a clustering approach (Karaayvaz et al. 2018).
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FIGURE 3. Analysis of clustering performances using visualization approaches. (A) Two-dimensional embedding of the mouse cortex (MC) data
set in the original feature space compared with the embeddings of the same data set in the feature space generated by DAWN and four other
feature learningmethods, principle component analysis (PCA), independent component analysis (ICA), t-distributed stochastic neighbor embed-
ding (t-SNE), and single-cell interpretation via multikernel learning (SIMLR). (B) Hierarchical clustering overlay (top) constructed from the two-di-
mensional embeddingof theDAWN feature space. The hierarchy is created based on the proximities ofmass centers of the obtained clusters. The
obtained hierarchy is compared to that of biological cell types (bottom) extracted from the original study (Zeisel et al. 2015). The leaf nodes cor-
respond to the original cell types, while the root and internal nodes correspond to the three other levels obtained through the agglomerative
hierarchy. The two-dimensional embedding of the DAWN feature space can recover all but one of the defined relationships between the related
cell types extracted from the literature. (C ) The heatmap of the 20 latent features generated by DAWN on the MC data set, showing the block
structure of the expression profiles of the individual cells groupedby the cell types (bottom). The values of the latent features corresponding to the
weights in the hidden layer are distributed in [−3, 3] range (top). (D) Two-dimensional embedding of themalignantmelanoma (MM) data set in the
original feature space compared with the embeddings of the same data set in the feature spaces generated by DAWN and four other feature
learning methods: PCA, ICA, t-SNE, and SIMLR.
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Thus, to identify clones in an unbiased unsupervised man-
ner, we first applied DUSC and identified three clusters.
Generating a 2D embedding showed the structure and
similarity of the three clusters (Fig. 4A). Specifically, it
was observed that Clusters 1 and 2 were significantly dif-
ferent from each other, while Cluster 3 was more similar
to Cluster 1 than to Cluster 2. Based on previous work
(Tirosh et al. 2016), we annotated the embedding with
G1/S and G2/M cycling status, revealing the cycling cells
that were suspected to be malignant and that Cluster 1
contained a substantial proportion of such cells. We then
dissected each cluster into the main four molecular sub-
types of TNBC using Lehmann’s classification (Fig. 4B),
finding that all clusters had a high proportion of Basal
Like-1/2 cells that were associated with cancer aggressive-
ness and poor prognosis, as well asMesenchymal cells that
were associated with relative chemoresistance (Park et al.
2018). To validate the DUSC clusters for clonal heteroge-
neity, the tumor data and cluster labels were used with
the inferCNV tool along with the normal cells used as a ref-
erence. In Clusters 1 and 3, we found many genomic re-
gions (Fig. 4C; Supplemental Fig. 4) which carried
significant amplifications (e.g., chromosomes 1 and 2)
and deletions (e.g., chromosomes 5 and 15). The signifi-
cant CNV aberrations indicated the likely clonal heteroge-
neity. Next, for a more fine-grained analysis we perform
differential gene expression analysis, identifying the
top 100 genes for each cluster. When querying the top
100 genes against Disgenet (Piñero et al. 2016), we found
23 unique genes associated with breast cancer that were
shared across all three clusters (Fig. 4D). The association
of these genes to breast cancer was one of three types:
biomarker, casual mutation, or genetic variation. We fur-
ther looked at the expression pattern of these 23 genes
across the clusters to find high gene activity. To do so,
we log2-normalize the quantified expression to observe
the log-fold change, finding that some genes are ex-
pressed five to 10 times greater than normal in Clusters 1
and 3 (Fig. 4E). Specifically, genes ARF1, ALDOA, VIM,
RPS6, PABPC1, and LDHB were overexpressed and clus-
tered together. These genes play roles in many critical bi-
ological processes (Svensson et al. 2018).
High expression of ARF1 (ADP-ribosylation factor 1) had

been demonstrated to be associated with an increased
likelihood of metastatic breast cancer and was found to
be a characteristic feature of triple-negative breast cancer
(Schlienger et al. 2016). ALDOA (Aldolase, Fructose-
Bisphosphate A) and LDHB (Lactate Dehydrogenase B)
were genes that partook in the glycolytic process and
were known to coexpress (Choobdar et al. 2019). LDHB
was identified as an essential gene for tumor growth; it
was up-regulated in TNBC and was identified as a poten-
tial target for personalized treatment (McCleland et al.
2012). In a recent study, ADLOAwas identified to be over-
expressed inmelanoma and lung cancer, and such increas-

es in the glycolysis pathway of the tumor were associated
with immune therapy resistance (Cascone et al. 2018).
VIM (Vimentin) was also a knownmarker for epithelial-mes-
enchymal transition and breast cancer stem cells suggest-
ed to be responsible for the metaplastic process (Jang
et al. 2015). In summary, single-cell clustering coupled
with CNV analysis and differential gene expression analysis
was able to identify the clonal heterogeneity present in a
patient, with the mutated and overexpressed genes of
high relevance to TNBC.

DISCUSSION

In this work, we have presented DUSC, a new hybrid ap-
proach for accurate clustering of single-cell transcriptomics
data. Rapid progress in the development of scRNA-seq
technologies urges the advancement of accurate methods
for analyzing single-cell transcriptomics data (Svensson
et al. 2018). One of the first tasks for such analysis is ex-
tracting the common patterns shared between cell popu-
lations by clustering the cells together based on their
expression profiles. The process of clustering, ideally,
can help in answering two questions: (i) what is the biolog-
ical reason for cells to be grouped (e.g., a shared cellular
type), and (ii) what are the biological constituents found
in the scRNA-seq data that determine the similarity be-
tween the cells from the same cluster (e.g., expression val-
ues for a set of the overexpressed genes). An important
advantage of the clustering methods is their power to ex-
tract novel, previously unseen similarity patterns, which
leads to the discovery of new cell types (Papalexi and
Satija 2018), spatial cellular compartmentalization in dis-
ease and healthy tissues (Medaglia et al. 2017), subpopu-
lations of cells from different developmental stages (Gong
et al. 2018), and other cellular states. However, the cluster-
ing accuracy, despite being continuously tackled by the re-
cent methods, has remained substantially lower when
compared to the supervised learning, or classification,
methods. Classification methods, in turn, are designed to
handle data from the cellular subpopulations whose repre-
sentatives have been used during the training stage, and
therefore cannot identify novel subpopulations. Another
question that has not been fully addressed is the robust-
ness of the class definition based on the scRNA-seq
data: Does a class defined by a certain supervised classifier
depend on other parameters, such as type of experimental
protocol, time of the day, developmental stage, or cell lo-
cation in the tissue?
DUSC improves the clustering accuracy by (i) leveraging

a new deep learning architecture, DAWN, which is resilient
to the inherent noise in the single-cell data and generates
the data representation with automated feature learning,
thus efficiently capturing structural patterns of the data,
and (ii) pairing this reduced representation with the mod-
el-based EM clustering. In particular, DUSC generates
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more accurate clusters compared to the clustering algo-
rithms alone and is better than four classical and state-of-
the-art feature learning methods integrated with the clus-

tering algorithms. Furthermore, our method achieves a
comparableperformancewith a state-of-the-art supervised
learning approach. The novel neuronal approximation

E

BA

C

D

FIGURE 4. DUSC analysis of scRNA-seq triple-negative breast cancer (TNBC) data. (A) DUSC embedding of tumor cells from a TNBC patient
(Karaayvaz et al. 2018) showing three identified clusters and the cycling status of each cell. Cells in Clusters 1 and 2 are expected to be substan-
tially different based on their transcriptional profiles, while Cluster 3 has similarities to the other two clusters. (B) Breakup of cells in each cluster
according to their TNBCtype-4 subtypes. (C ) Inferred copy-number variations in the cells of each cluster; deletions are shown in blue and ampli-
fication in red. Cluster 1 (C1) and 3 (C3) cells have similar CNV patterns in many genomic regions, with significant number of both amplifications
and deletions. The presence of both types of CNV events are indicative of clonal heterogeneity in C1 and C3. (D) Breast cancer associated genes
and different evidence of disease associations found in the top 100 differentially expressed genes in each cluster; C1 and C3 have many breast
cancer associated (BCA) genes. (E) Expression pattern of the 23 BCA genes where the genes are grouped according to expression similarity of
their transcriptional profiles. The expression is represented as log-fold change, showing significantly high expression in clusters C1 and C3. Six
genes are highly expressed and form a single cluster: ARF1, ALDOA, VIM, RPS6, PABPC1, and LDHB. These genes were found to have implica-
tions for TNBC.
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implemented in the denoising autoencoder simplifies the
optimization process for the most important hyper-param-
eter in the deep architecture, that is, the number of hidden
neurons. The simplicity of using DAWN is thus comparable
to PCA, and the utility of the newly learned features is illus-
trated by the better visualization of large scRNA-seq data
sets when using a two-dimensional embedding. Our multi-
tiered assessment reveals the dependence of clustering
performance on the data set complexity, as defined by an
information-theoretic metric, which is due to the size bal-
ance of the subpopulations in the data set. Finally, the ap-
plication of DUSC to a cancer data set shows the ability to
reveal clonal heterogeneity in an unsupervised manner
and sheds light on the expression patterns of cancer asso-
ciated genes, and opens the possibility of finding new dis-
ease associated genes (Cui et al. 2019).
Considering the current developments in high-perfor-

mance computing, that is, a drastic increase in the number
of CPU cores, the execution time for parallelizable tasks is
no longer amajor concern. Furthermore, we expect the ex-
ecution time for DAWN to decrease proportionally if the
training epochs are reduced. Contrary to the increase in
CPU cores, primary memory density has not seen the
same level of improvements and is more valuable than
CPU time (Casas and Bronevetsky 2015), moreover, GPU
memory is significantly smaller than primary memory.
With these considerations for available computing re-
sources, DAWN is a better-suited method, as it is opti-
mized for efficient System memory and GPU memory
usage and the execution time scales better for large data
sets.
Our next step is to improve the execution time of DUSC

for very large data sets containing 100,000+ cells, which
are highly heterogeneous and may include a certain cell
type hierarchy (Tabula Muris Consortium 2018). We also
plan to evaluate if a deeper architecture can improve the
feature learning on the massive data sets. An even more
challenging task is to improve feature learning for the high-
ly imbalanced data, for example, to be able to detect cell
subpopulations of disproportionally small sizes, which
would either be absorbed by a larger cluster or identified
as noise and removed from the analysis by the traditional
methods. We have seen this scenario in the MM data
set, the noncancerous subtypes vary in sample size from
52 cells to 2068 cells, which affects the performance of
all considered methods. Another interesting application
of DUSC is to analyze time-sensitive scRNA-seq data of
cell differentiation (Hochgerner et al. 2018). In summary,
we believe that DUSCwill provide life scientists and clinical
researchers a more accurate tool for single-cell data analy-
sis, ultimately leading to deeper insights in our under-
standing of the cellular atlas of living organisms, as well
as improved patient diagnostics treatment. DUSC is imple-
mented as an open-source tool available to researchers
through GitHub: https://github.com/KorkinLab/DUSC.

MATERIALS AND METHODS

Overview of the approach

The goal of this work is to design a method capable of identifying
cellular types from single-cell transcriptomics data of a heteroge-
neous population without knowing a priori the number of cell
types, subpopulation sizes, or gene markers of the population.
Our hybrid approach, DUSC, combines deep feature learning
and expectation-maximization clustering. The feature learning le-
verages the denoising autoencoder (DAE) and includes a new
technique to estimate the number of required latent features.
To assess the accuracy of our approach, we test it on a series of
scRNA-seq data sets that are increasingly complex with respect
to the biological and technical variability. The performance of
our method is then compared with performances of classical
and state-of-the-art unsupervised and supervised learning
methods.
The DUSC computational pipeline consists of four main stages

(Fig. 1). Following a basic data quality check, we first preprocess
the data for training DAE. Second, we perform feature learning
using DAWN, which includes training DAE and hyper-parameter
optimization.We note that the data labels are not required during
the training part of the pipeline; instead, the labels are used solely
to test the accuracy of DUSC across the data sets and to compare
it against the other methods. Third, we use the previously pub-
lished four feature learning methods, principal component analy-
sis (PCA) (Abdi and Williams 2010), independent component
analysis (ICA) (Comon 1994), t-SNE (Maaten and Hinton 2008),
and SIMLR (Wang et al. 2017), to generate the compressed di-
mensions for the same scRNA-seq data set that was used as an in-
put to DAWN. This allows us to assess how well the autoencoder
learns the latent features compared to the other methods. Finally,
we use the reduced feature representations from each of the
above five methods and pass them as an input to the two cluster-
ing algorithms, K-means (KM) and expectation maximization
(EM), to assess the clustering accuracy.

Denoising autoencoder model design

During the data preprocessing stage, a data set is defined as a
matrix where the rows correspond to the cell samples, and the
columns correspond to the feature vectors containing the gene
expression values. To reduce the computational complexity, we
remove the matrix columns where all values are zeros, which is
the only type of gene filtering used in this method (number of
genes removed in each data set are detailed in Supplemental
Table 1). This minimal filtering procedure is significantly different
from a typical gene filtering protocol, whose goal is to restrict the
set of genes to a few hundred or a few thousand genes (Usoskin
et al. 2015; Zeisel et al. 2015; Lopez et al. 2018). Here, we aim
to provide as much data as possible for our deep learning algo-
rithm to capture the true data structure. The columns are then nor-
malized by scaling the gene expression values to [0,1] interval:

Norm(xi) = xi − xmin

xmax − xmin
,

where xmax and xmin are themaximum andminimum values across
all feature values in vector x, respectively, and xi is a feature value in
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x. The normalized matrix is converted from a 64-bit floating-point
representation to a 32-bit representation for nativeGPU computa-
tion and then to a binary file format, to reduce the input–output
costs and GPU memory usage during the computation.

An autoencoder (Baldi 2012) is a type of artificial neural network
that is used in unsupervised learning to automatically learn fea-
tures from the unlabeled data. A standard neural network is typi-
cally designed for a supervised learning task and includes several
layers where each layer consists of an array of basic computational
units called neurons, and the output of one neuron serves as an
input to another. The first, input, layer takes as an input a multidi-
mensional vector x(i) representing an unlabeled example. The in-
termediate, hidden, layers are designed to propagate the signal
from the input layer. The last, output, layer calculates the final vec-
tor of values z(i) corresponding to the class labels in a supervised
learning setting. In the autoencoder, the output values are set to
be equal to the input values, x(i) = z(i), and the algorithm is divided
into two parts, the encoder and the decoder. In the encoder part,
the algorithm maps the input to the hidden layer’s latent
representation y= s(Wx+b), where s(x) is a sigmoid function:
s(x) = 1/(1+ e−x). In the decoder part, the latent representation y
is mapped to the output layer: z= s ′(W ′y+b′). As a result, z is
seen as a prediction of x, given y. The weight matrix, W ′, of the
reversemapping is constrained to be the transpose of the forward
mapping, which is referred to as tied weights given by W ′ =WT.
The autoencoder is trained to minimize an error metric defined as
the cross-entropy of reconstruction, LH(x, z), of the latent features:

LH(x, z) = −
∑d

k=1

[xk log zk + (1− xk ) log (1− zk )],

where d is the length of the feature vector.
To prevent the hidden layer from simply learning the identity

function and forcing it to discover more robust features, a DAE
is introduced. A DAE is trained to recover the original input
from its corrupted version (Vincent et al. 2008). The corrupted ver-
sion is obtained by randomly selecting nd features of each input
vector x(i) and assigning them zero values. This stochastic process
is set up by x̃ � qD(x̃|x), where x̃ is the corrupted input. Even
when the corrupted vectors are provided to the neural network,
the reconstruction error is still computed on the original, uncor-
rupted, input. The optimal number of hidden units for the DAE
in this approach is explored as a part of model optimization.
The DAE is implemented using the Theano Python library
(Bergstra et al. 2010), which supports NVidia CUDA. This imple-
mentation allows for fast training of the neural network layers
with large numbers of nodes using NVidia GPUs.

Model optimization

The overall architecture of the DAE implemented in our approach
consists of an input layer, an output layer, and one hidden layer.
There are multiple parameters in this DAE architecture that can
be optimized. The task of hyperparameter optimization is fairly
unambiguous for supervised learning problems (Chapelle et al.
2002), where the data are labeled, and a neural network can be
tuned to set its many parameters such that it achieves an optimal
classification performance (e.g., measured by accuracy, f-mea-
sure, or other measures). However, in the case of unsupervised
clustering where no labeled data are provided and the neural net-

work parameters are optimized to minimize the reconstruction er-
ror, the impact of this error metric on clustering is not known a
priori. To make this optimization a computationally feasible
task, we focus on tuning the number of hidden units, which is ex-
pected to have the most significant impact on the model perfor-
mance (Coates et al. 2011), given its single hidden-layer
architecture. The tuning is performed by adopting the ideas
from principal component analysis (PCA).

PCAworks by converting the initial set of features, which poten-
tially correlate with each other, into linearly uncorrelated features
(principal components), through an orthogonal transformation of
the feature space. It has been shown that PCA is a special case of
the autoencoder where a single hidden layer is used, the transfor-
mation function in the hidden units is linear, and a squared error
loss is used (Vincent et al. 2010). PCA offers an automated tech-
nique to select the first n principal components required to cap-
ture a specified amount of variance in a data set (Zwick and
Velicer 1986), that is, in a linear autoencoder the principal compo-
nents are simply the nodes in the hidden layer. The similarity be-
tween the two approaches leads us to test, if one can use PCA to
approximate the number of hidden units required in an autoen-
coder to capture most of the data complexity in each data set.
As a result, we apply PCA immediately preceding DAE, using
the original data set as an input to PCA and producing, as an out-
put, the number n of principal components required to capture
95% of the data set variance (PCA for all data sets is shown in
Supplemental Fig. 2). The same data are then processed by
DAE with the number of hidden units set to n. We then assess if
this additional optimization stage to DAE improves the perfor-
mance of our approach and call this new extension as denoising
autoencoder with neuronal approximation (DAWN).

Since we focus only on the impact of the number of hidden
units on the learning efficiency, the settings for all other parame-
ters of the DAE are selected based on a recent work that used
DAEs to learn important features in a breast cancer gene expres-
sion data set (Tan et al. 2014). Specifically, we set: (i) the learning
rate to 0.05; (ii) training time to 250 epochs, which has been re-
ported to be sufficient for the reconstruction error to converge;
(iii) batch size to 20, to limit the number of batches for the larger
data sets; and (iv) corruption level to 0.1, which specifies that 10%
of the input vector features are randomly set to zeroes. The num-
ber of hidden neurons estimated for each data set are provided in
Supplemental Table 7.

To generate cell clusters from the learned features of DAWN,
we use the expectation-maximization (EM) clustering algorithm
(Do and Batzoglou 2008). We choose this clustering method
because it overcomes some of the main limitations of K-means,
such as sensitivity to initial clustering, instance order, noise and
the presence of outliers (Celebi et al. 2013). Additionally, EM is
a statistical-based clustering algorithm that canwork with the clus-
ters of arbitrary shapes and is expected to provide clustering re-
sults that are different from those of K-means, which is a
distance-based algorithm and works best on the compact clus-
ters. Finally, EM clustering can estimate the number of clusters
in the data set, while K-means requires the number of clusters
to be specified as an input. These attributes make the EM algo-
rithm a good candidate, because we expect the latent features
of DAWN to have specific distributions corresponding to different
groups of cells, and we can also approximate the number of
clusters.
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Comparative assessment of DAWN against existing
feature learning approaches

The assessment of the overall performance of our DUSC pipeline
includes evaluating the performances of both, the DAWN meth-
od and EM clustering algorithm. To evaluate the accuracy of fea-
ture learning by DAWN, we compare it against the four other
feature learning methods: a stand-alone PCA, ICA, t-SNE, and
SIMLR.

PCA is widely used across many computational areas, including
scRNA-seq analysis, to reduce the data complexity and to make
the downstream analysis computationally more feasible. The
method is used for dimensionality reduction in popular scRNA-
seq analysis tools, such as Seurat (Villani et al. 2017) and
pcaReduce (Yau 2016) along with many others. However, PCA is
not an optimal method for dimensionality reduction in our case
because of the inherent noise and complexity in the scRNA-seq
data. As a result, we expect that PCA cannot optimally capture
the true signals in the data and will lead to loss in information.
During the assessment stage, we set the PCA algorithm to select
the minimal number of principal components required to learn
95% of variance in the data.

Independent component analysis (ICA) is another statistical
method designed to separate a multivariate signal into additive
subcomponents, which has been applied to a wide range of im-
age analysis and signal processing tasks (Bartlett et al. 2002;
Delorme and Makeig 2004). Assuming that the scRNA-seq data
can be represented as a mixture of non-Gaussian distributions,
ICA can potentially determine the individual independent com-
ponents that best capture the cell type information in its transcrip-
tomics profile. ICA was used to develop another popular scRNA-
seq analysis tool, Monocle, for determining changes in the tran-
scriptome with temporal resolution during cell differentiation
(Trapnell et al. 2014). However, similar to PCA, we expect that
ICA will also not be optimal to capture the information from com-
plex scRNA-seq data. Additionally, both PCA and ICA make cer-
tain assumptions on the data structure: in addition to being linear
methods, they are not designed to handle the considerable
amount of noise present in the scRNA-seq data. Unlike PCA,
the ICA algorithm cannot automatically choose the number of
components required to learn a given amount of data variance.
Hence, we manually set the number of components to the
same number derived by the PCA method when it is required
to learn 95% of the data variance.

t-Distributed stochastic neighbor embedding (t-SNE) is a non-
linear feature learning technique specifically designed to map
and visualize high-dimensional data into two-dimensional (2D)
or three-dimensional (3D) spaces (Maaten and Hinton 2008). t-
SNE is often used in scRNA-seq studies to visualize cell subpop-
ulations in a heterogeneous population (Klein et al. 2015). The
technique is very efficient in capturing critical parts of the local
structure of the high-dimensional data, while facing difficulties
in preserving the global hierarchical structure of clusters
(Wattenberg et al. 2016). Another potential drawback of t-SNE
is the time and space complexities that are both quadratic in
the number of samples. Thus, this method is typically applied to
a smaller subset of highly variable gene features. When evaluat-
ing it against DAWN, we use t-SNE only for feature learning. t-
SNE is dependent on an important parameter, perplexity, which
estimates the effective number of neighbors for each data point.

Here, instead of setting it arbitrarily in the range of [5,50], we cal-
culate it precisely for each data set based on Shannon entropy
(discussed below).
Single-cell interpretation via multikernel learning (SIMLR) is a

recent state-of-the-art computational approach that performs
the feature learning, clustering, and visualization of scRNA-seq
data by learning a distance metric that best estimates the struc-
ture of the data (Wang et al. 2017). The general form of the dis-
tance between cells i and j is expressed as a weighted
combination of multiple kernels:

D(i, j) = 2− 2
∑

l

wlKl(i, j),

where, wl is the linear weight value, which represents the impor-
tance of each kernel Kl(i, j), and each kernel is a function of the ex-
pression values for cells i and j. The similarity matrix Sij is therefore
a N×N matrix where N is the number of samples, capturing the
pairwise expression-based similarities of cells:

Sij =
∑

l

wlKl(i, j).

In SIMLR, to reduce the effects of noise and dropouts in the
data, a diffusion-based technique (Yang and Leskovec 2010) is
employed. However, this technique is computationally expensive
and therefore can be only applied to small or medium-size data
sets (e.g., in the published work, any data set with a sample size
greater than 3000 did not use this technique [Wang et al. 2017]).
Hence, the noise and dropouts effects remain present in the large
data sets. Furthermore, the SIMLR framework uses K-means as its
clustering algorithm and is affected by the previously discussed
limitations.While SIMLR has the capability to estimate the number
of clusters, to compareDAWNwith the best possible performance
of SIMLR, we set the true number of clusters for each data set as an
input to SIMLR. Note that this information about the number of
clusters is not provided to any other method. The PCA, ICA, and
t-SNE algorithms were evaluated using the implementations in
the Python scikit-learn library (Pedregosa et al. 2011), while
SIMLR was evaluated using its implementation as an R package.

Evaluation protocol

All five feature learning methods are evaluated by integrating
each of them with one of the two clustering algorithms used in
this work, K-means or EM. To do so, we use the latent features un-
covered by each of the five methods as inputs to the two cluster-
ing algorithms. This setup also allows us to comparatively assess
the individual contributions toward the prediction accuracy by
each of DUSC’s two components, DAWN and EM clustering.
Indeed, one can first assess how much the addition of DAWN
to K-means or EM can affect the clustering accuracy by comparing
the performance with K-means and EM when using the default
features. Second, one can determine if the EM-based hybrid clus-
tering approach is more accurate than K-means based approach
for each of the five feature learning methods (including DAWN).
In total, we evaluate all 5 × 2=10 combinations of hybrid cluster-
ing approaches.
Alternatively, to determine if the neuronal approximation im-

plemented in DAWN improves a standard DAE, we compared
the performance of the DUSC pipeline with DAWN and with
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two DAE configurations. Although the number of hidden units of
a DAE can be set to any arbitrary value, wemanually set it to 50 in
the first configuration and 100 in the second one, making these
configurations computationally feasible (Tan et al. 2014) (which
we name as DAE-50 and DAE-100 for convenience).

Finding the optimal number of clusters in a data set is often
considered an independent computational problem. Therefore,
for the assessment of clustering accuracy, we set the expected
number of clusters to be the number of cell types originally dis-
covered in each study. To establish the baseline, we applied
KM and EM clustering on the original data sets with zero-value
features filtered out, and the data being log10 transformed. The
KM and EMmethods are implemented using the WEKA package
(Hall et al. 2009).

After evaluating the performance of DUSC against other unsu-
pervised methods, we next compare it against a state-of-the-art
supervised learning approach. While a supervised learning meth-
od is unable to discover new cell types, it is expected to be more
accurate in identifying the previously learned types that the algo-
rithm has been trained on. We use the log-transformed data as an
input and apply the multiclass random forest (RF) algorithm
(Breiman 2001) implemented in WEKA, with a 10-fold cross-vali-
dation protocol (Kohavi 1995) that selects the best model with
the highest accuracy.

For each of the above evaluations, it is desirable to have a com-
mon evaluation metric that can handle multiclass data sets. Here,
we use a simple accuracy measure (ACC), which can be calculated
by comparing the predicted cell clusters with the known cell labels:

Acc = TP + TN
TP + TN+ FP + FN

,

where TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number
of false negatives.

In addition to the standard evaluation of the performance accu-
racy, the following three characteristics of the method’s perfor-
mance are explored. First, we study the performance of the
methods as a function of data complexity. Each of the five data
sets considered in this work varies with respect to the sample
size distributions across different cell types, numbers of cell types,
and cell type hierarchy. These three properties are expected to af-
fect the complexity of cluster separation, prompting one to study
the correlation between these properties and the clustering accu-
racy. To measure the distribution balance of samples across all
cell types for each data set we use normalized Shannon Entropy
(Shannon 2001):

HNORM = − 1
log2k

∑k

i=1

ci
n
log2

ci
n
,

where n is the total number of samples, k is the number of cell
types, and ci is the number of samples in cell type i. Thus,
HNORM approaches 0 if the data set is unbalanced and 1 if it is
balanced.

Second, since the learned latent features are designed to cap-
ture the complexity of each data set and create its reduced repre-
sentation, one can assess the data compression performance of
DAWN. The data compression ratio (CR) is defined as a ratio be-
tween the sizes of the original uncompressed and compressed
data sets. A normalized value that allows interpreting the com-

pression performance more intuitively in terms of feature space
compressed (FSC), is defined as

FSC = 1− 1
CR

.

FSC value approaching 1 implies that the original data set has
been compressed to a very small feature set size.

We also profile the execution time and memory usage of all
methods during the feature learning stage to determine the com-
putational requirements. Since KM and EM clustering are applied
at the end of each feature learning method, they are treated as a
constant with negligible computational impact.Wewant to deter-
mine how DAWN scales with increasing data size and complexity.
Since DAWN is a deep learning method, it relies on CPU execu-
tion to initialize and then deep learning is carried out using
GPU, whereas the other methods rely solely on CPU execution.
Thus, for DAWN we profile both the system memory use and
GPU memory use.

Finally, to determine if DUSC can improve the cell type cluster
visualization, we generate two-dimensional embeddings by ap-
plying t-SNE to the features of the four previously considered fea-
ture learning methods as well as features generated by DAWN. In
our qualitative assessment of the visualizations, we expect to see
the clusters that are well-separated and compact (i.e., the intra-
cluster distances are much smaller than intercluster distances),
and the instances of incorrect clustering are rare.

Integration of scRNA-seq clustering
and copy-number variation analysis to study
clonal evolution

Next, we apply DUSC to provide insights into clonal evolution in a
recently published study on clonal heterogeneity in triple-nega-
tive breast cancer (Karaayvaz et al. 2018). Triple-negative breast
cancer (TNBC) is characterized by lacking progesterone and es-
trogen receptors and human epidermal growth factor. It is known
for high levels of inter- and intratumor heterogeneity, which is
suggested to cause treatment resistance andmetastasis develop-
ment (Koren and Bentires-Alj 2015). Cancer clonal evolution with-
in a primary tumor is reported to be one of the possible reasons
for metastasis occurrence (Hoadley et al. 2016). In this case, by
applying DUSC we expect to uncover clusters that have cancer-
relevant characteristics and are possibly associated with clonal
heterogeneity. We evaluate the discovered clusters in several
ways. First, we annotate the cycling status of the cells to find
suspected malignant cells and subtypes of TNBC (TNBCtype-4
signatures). Second, we infer the copy-number variation (CNV)
for each cell across the clusters to find somatic CNVs that are in-
dicative of clonal heterogeneity. Finally, we perform differential
gene expression analysis and query the top 100 differentially ex-
pressed genes of each cluster for their association with breast can-
cer. For CNV analysis, we use the inferCNV tool (https://github
.com/broadinstitute/inferCNV), which was developed to infer
copy number alterations from the tumor single-cell RNA-seq
data. The typical inferCNV analysis centers the expressions of tu-
mor cell genes by subtracting the mean expression of corre-
sponding genes from a reference data set of normal cells. For
this purpose, we use 240 normal cells published in a recent breast
cancer study (Gao et al. 2017) as a reference input for inferCNV.
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DATA DEPOSITION

DUSC is implemented as an open-source tool freely available
to researchers through GitHub: https://github.com/KorkinLab/
DUSC. The data sets analyzed during the current study are avail-
able from the corresponding authors on reasonable request.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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