Skip to main content
. 2020 Sep 15;232:107921. doi: 10.1016/j.ijpe.2020.107921

Table 1.

Theories used in the studies on disruption propagation.

Theory Number of studies Study
Agent-Based Simulation 1 Mizgier et al. (2012)
Bayesian Networks 6 Cao et al. (2019), Garvey et al. (2015), Garvey and Carnovale (2020), Hosseini and Ivanov (2019), Hosseini et al. (2019), Ojha et al. (2018)
Complexity theory 5 Basole and Bellamy (2014), Deng et al. (2019), Lei et al. (2020), Levner and Ptuskin (2018), Zeng and Xiao (2014)
Discrete-Event Simulation 4 Dolgui et al. (2020), Ivanov (2017, 2019, 2020)
Entropy 2 Levner and Ptuskin (2018), Zeng and Xiao (2014)
Graph theory 5 Basole and Bellamy (2014), Li et al. (2019), Li and Zobel (2020), Sinha et al. (2019), Sokolov et al. (2016)
Linear/Mixed-Integer Programming 6 Liberatore et al. (2012), Ivanov et al. (2013, 2014, 2015, 2016), Pavlov et al. (2019)
Markov Chains 1 Hosseini et al. (2019)a,b
Monte-Carlo Simulation 1 Pariazar et al. (2017)
Optimal Control 5 Ivanov et al. (2010, 2013, 2014a,b, 2015, 2016)
Petri Nets 1 Blackhurst et al. (2018)
Reliability Theory/Statistical Analysis 4 Han and Shin (2016), Osadchiy et al. (2016), Pavlov et al. (2020), Tang et al. (2016)
Robust Optimization 3 Lu et al. (2015), Özçelik et al. (2020), Zhao and Freeman (2019)
Stochastic Optimization 2 Goldbeck et al. (2020), Pariazar et al. (2017)
Systems Dynamics 2 Bueno-Solano and Cedillo-Campos (2014), Ghadge et al. (2013),