Skip to main content
. 2020 Sep 15;128(9):097003. doi: 10.1289/EHP6076

Table 2.

Model quality measures (sensitivity, specificity, Cohen’s κ, accuracy, AUC curve and Brier score) for the elastic net machine learning model, Reese et al. cord blood, Richmond et al. 568 CpG, Richmond et al. 19 CpG score the gradient boosting machine, random forest and support vector machine models that were among the four best performing models in our analysis. Results provided in this table are based on the Raine Study test data (n=198), NFBC1986 (n=478), and NFBC1966 (n=602).

Sensitivity Specificity Cohen’s κ Accuracy AUC Brier score # CpGs required
Raine Study test data set
 Elastic net score 0.91 0.76 0.68 0.83 0.87 0.13 204
 Gradient boosting machine 0.91 0.82 0.72 0.88 0.88 0.1 1,511
 Random forest 0.87 0.73 0.58 0.83 0.83 0.17 1,511
 Support vector machine 0.87 0.73 0.6 0.83 0.85 0.13 1,511
 Reese score 0.88 0.72 0.6 0.83 0.85 0.21 28
 Richmond score 568 CpGs 0.7 0.68 0.34 0.69 0.72 0.22 568
 Richmond score 19 CpGs 0.79 0.58 0.37 0.72 0.73 0.22 19
NFBC1986
 Elastic net score 0.87 0.75 0.56 0.84 0.85 0.13 204
 Gradient boosting machine 0.95 0.29 0.19 0.54 0.74 0.39 1,511
 Random forest 0.79 0.16 0.06 0.64 0.54 0.24 1,511
 Support vector machine 0.87 0.44 0.33 0.77 0.79 0.16 1,511
 Reese score 0.87 0.61 0.46 0.82 0.8 0.18 28
 Richmond score 568 CpGs 0.65 0.76 0.34 0.74 0.71 0.22 568
 Richmond score 19 CpGs 0.65 0.77 0.31 0.68 0.73 0.22 19
NFBC1966
 Elastic net score 0.72 0.78 0.39 0.73 0.8 0.19 204
 Gradient boosting machine 0.88 0.26 0.1 0.45 0.68 0.48 1,511
 Random forest 0.77 0.18 0.05 0.64 0.48 0.24 1,511
 Support vector machine 0.88 0.45 0.33 0.76 0.75 0.2 1,511
 Reese score 0.72 0.7 0.32 0.71 0.73 0.18 28
 Richmond score 568 CpGs 0.66 0.63 0.22 0.69 0.72 0.22 568
 Richmond score 19 CpGs 0.61 0.72 0.23 0.63 0.73 0.22 19

Note: AUC, area under the receiver operator curve.