Table 2.
Model quality measures (sensitivity, specificity, Cohen’s κ, accuracy, AUC curve and Brier score) for the elastic net machine learning model, Reese et al. cord blood, Richmond et al. 568 CpG, Richmond et al. 19 CpG score the gradient boosting machine, random forest and support vector machine models that were among the four best performing models in our analysis. Results provided in this table are based on the Raine Study test data (), NFBC1986 (), and NFBC1966 ().
| Sensitivity | Specificity | Cohen’s κ | Accuracy | AUC | Brier score | # CpGs required | |
|---|---|---|---|---|---|---|---|
| Raine Study test data set | |||||||
| Elastic net score | 0.91 | 0.76 | 0.68 | 0.83 | 0.87 | 0.13 | 204 |
| Gradient boosting machine | 0.91 | 0.82 | 0.72 | 0.88 | 0.88 | 0.1 | 1,511 |
| Random forest | 0.87 | 0.73 | 0.58 | 0.83 | 0.83 | 0.17 | 1,511 |
| Support vector machine | 0.87 | 0.73 | 0.6 | 0.83 | 0.85 | 0.13 | 1,511 |
| Reese score | 0.88 | 0.72 | 0.6 | 0.83 | 0.85 | 0.21 | 28 |
| Richmond score 568 CpGs | 0.7 | 0.68 | 0.34 | 0.69 | 0.72 | 0.22 | 568 |
| Richmond score 19 CpGs | 0.79 | 0.58 | 0.37 | 0.72 | 0.73 | 0.22 | 19 |
| NFBC1986 | |||||||
| Elastic net score | 0.87 | 0.75 | 0.56 | 0.84 | 0.85 | 0.13 | 204 |
| Gradient boosting machine | 0.95 | 0.29 | 0.19 | 0.54 | 0.74 | 0.39 | 1,511 |
| Random forest | 0.79 | 0.16 | 0.06 | 0.64 | 0.54 | 0.24 | 1,511 |
| Support vector machine | 0.87 | 0.44 | 0.33 | 0.77 | 0.79 | 0.16 | 1,511 |
| Reese score | 0.87 | 0.61 | 0.46 | 0.82 | 0.8 | 0.18 | 28 |
| Richmond score 568 CpGs | 0.65 | 0.76 | 0.34 | 0.74 | 0.71 | 0.22 | 568 |
| Richmond score 19 CpGs | 0.65 | 0.77 | 0.31 | 0.68 | 0.73 | 0.22 | 19 |
| NFBC1966 | |||||||
| Elastic net score | 0.72 | 0.78 | 0.39 | 0.73 | 0.8 | 0.19 | 204 |
| Gradient boosting machine | 0.88 | 0.26 | 0.1 | 0.45 | 0.68 | 0.48 | 1,511 |
| Random forest | 0.77 | 0.18 | 0.05 | 0.64 | 0.48 | 0.24 | 1,511 |
| Support vector machine | 0.88 | 0.45 | 0.33 | 0.76 | 0.75 | 0.2 | 1,511 |
| Reese score | 0.72 | 0.7 | 0.32 | 0.71 | 0.73 | 0.18 | 28 |
| Richmond score 568 CpGs | 0.66 | 0.63 | 0.22 | 0.69 | 0.72 | 0.22 | 568 |
| Richmond score 19 CpGs | 0.61 | 0.72 | 0.23 | 0.63 | 0.73 | 0.22 | 19 |
Note: AUC, area under the receiver operator curve.