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Abstract

The prediction of exceptional or surprising growth in research is an issue with deep roots

and few practical solutions. In this study, we develop and validate a novel approach to fore-

casting growth in highly specific research communities. Each research community is repre-

sented by a cluster of papers. Multiple indicators were tested, and a composite indicator

was created that predicts which research communities will experience exceptional growth

over the next three years. The accuracy of this predictor was tested using hundreds of thou-

sands of community-level forecasts and was found to exceed the performance benchmarks

established in Intelligence Advanced Research Projects Activity’s (IARPA) Foresight Using

Scientific Exposition (FUSE) program in six of nine major fields in science. Furthermore, 10

of 11 disciplines within the Computing Technologies field met the benchmarks. Specific

detailed forecast examples are given and evaluated, and a critical evaluation of the forecast-

ing approach is also provided.

Introduction

The prediction of exceptional or surprising growth in research is of keen interest to policy

makers in government, military, and commercial organizations [1]. Disruptive scientific and

technical innovation generates potential threats and opportunities that can change operating

environments. For example, exceptional growth in one research topic can displace another or

result in disruptive applications [2, 3]. Anticipating these opportunities and threats is a key ele-

ment of technical intelligence [4] and strategic planning [5, 6]. In general, more accurate fore-

casts can better inform resource allocation, investment, and other key decision categories.

Historically, the prediction of exceptional growth in research followed a case study

approach. Prior research, such as the National Science Foundation’s Technology in Retrospect

and Critical Events in Science (TRACES) program in the 1960s, Defense Advanced Research

Projects Agency’s Topic Detection and Tracking (TDT) program in the 1990s, and IARPA’s

FUSE program from the early 2010s focused on dozens of areas of research that were relevant

to the policy maker. Forecasting methods, when they were used at all, were created and evalu-

ated on a case-by-case basis. A generalizable method for forecasting growth in specific research

areas that can be applied at large scale has yet to be accepted.
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This study presents a novel approach to the issue of forecasting growth in research. Our

approach operates over a model of all possible areas of research—a population of roughly 105

research communities (RC)—and develops indicators that predict whether each RC will (or

will not) experience exceptional growth over three-year periods. Three-year growth forecasts

(0,1—where “1” denotes exceptional growth) are generated for each RC on a year-by-year

basis. The ~105 (0,1) annual forecasts are compared with their (0,1) outcomes. With well over

one million separate forecasts, we can evaluate whether specific indicators can meet pre-deter-

mined thresholds of forecast accuracy on a year-by-year, field-by-field, or discipline-by-disci-

pline basis. Another novel feature of this study is that forecast accuracy is measured using

Critical Success Index (CSI), a metric widely used in weather forecasting [7].

This paper proceeds as follows. First, we provide some background on the identification of

emerging topics. We then provide the background on how RC models are created and why we

have chosen a specific technique (direct citation analysis) in this study. A general approach for

calculating and predicting growth is introduced. Probit analysis is used to identify the lagged

indicators that best predict exceptional growth. Forecasts that might be contaminated with

future information are identified. Accuracy tests are done across years (2006–2015), using two

population models (one created in 2012 and the other created in 2018) and across nine broad

fields of research. Specific forecasts in an area of Artificial Intelligence in 2014 and 2018 are

provided. The final section focuses on limitations to the method and directions for future

research.

Background

Identification of emerging topics

The identification or characterization of emergence in science and technology is a subject of

continuous and growing interest. A search of abstracts in Scopus for the phrase “emerging

technology” returns over 25,000 documents, a tenth of which were published in 2019. The vast

majority of these studies are case based, declaring a particular technology to be emerging and

then proceeding with characterization. Relatively few studies seek to identify emerging topics a

priori using either existing methods or new methods of their own design. A review of the

salient literature on methods to identify emerging topics through the early 2010s can be found

in Small, Boyack & Klavans [8].

Although most studies of emergence are retrospective [9], forecasting studies do exist.

Examples of actual forecasts include work by Daim et al. [10], Bengisu & Nikhili [11], and

Zhou et al. [12]. However, even these forecasts are case based, exploring small and well-defined

topic areas rather than casting a wide net to forecast emerging events across the entire S&T

landscape.

Given the lack of validated methods to identify emerging topics at the time, the FUSE pro-

gram (https://www.iarpa.gov/index.php/research-programs/fuse) was formally launched in

2011 by IARPA, and ran through 2017. The FUSE Program was a fundamental research pro-

gram that aimed to see if it was possible to provide validated, early detection of technical emer-

gence that could alert analysts of areas with sufficient explanatory evidence to support further

exploration. FUSE was motivated by the need for a forward-looking capability that would sup-

port planning by reducing technical surprise with two- to five-year forecasts of related docu-

ment groups of scientific and patent literature. It sought to capture the “real-world concept of

a scientific or technical area or domain of inquiry” (https://www.iarpa.gov/index.php/

research-programs/fuse/baa) with indicators that functioned over a wide range of disciplines

and technical cultures in English and Chinese.
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One author of this paper was the founding FUSE program manager who noted that the pri-

mary challenge with the program was finding a robust and defensible way to define and mea-

sure performance. Multiple methods were tried over the lifetime of the program, ranging from

ranking related document groups by degree of emergence as compared to subject-matter

expert opinion to ranking emerging technical terms within defined technical areas as com-

pared to future usage rates.

A wide range of forecast quality metrics and measures was explored, including a specially

formulated prominence metric and Mean Absolute Percentage Error (MAPE) calculation,

scored by a variety of different formulations of precision, recall, and false positive rate, and

ranking performance computations (e.g., Kendall’s Tau and Spearman’s Rank Correlation

Coefficient). Despite multiple pragmatic and research advances (https://scholar.google.com/

scholar?hl=en&as_sdt=0%2C47&q=D11PC20152+OR+D11PC20153+OR+D11PC20154+OR

+D11PC20155+OR+D11PC2015&btnG=), a number of technical issues were faced in the

computation of these metrics. Some of these challenges were associated with changes in small

counts swamping growth rate indicators, threshold effects for identifying what is emerging

and what is not, and leakage of future information into the data when training the predictive

system.

Another significant challenge was finding forecasting methods that were explainable to ana-

lysts and decision-makers that would ultimately use the system. After consulting with potential

users and others, a heuristic metric was agreed upon. This heuristic is based on predicting

extreme weather, a phenomenon that many people are very familiar with. Most people have an

intuitive sense that the ability to predict a major storm in three days is extremely difficult.

Making a prediction that there is going to be a major storm, and then being right one out of

three times, is roughly the state of the art (a 33% true positive and a 67% false positive). Failure

to predict a storm that does happen (a false negative) of at a rate of roughly 50% is also state of

the art for three-day weather forecasts [13].

The specific indicator we use is Critical Success Index (CSI) and is calculated as TP/(TP+FP

+FN), where TP is true positive; FP is false positive; and FN is false negative. The CSI Score for

the example provided above is 25%. Given that this is the state of the art in forecasting storms

three days out, we have adopted the same threshold for predicting exceptional growth in a

research community three years out. The analogy to weather forecasting is very apt in that

action may be indicated. Forecasts of bad weather often inspire people to action (e.g., boarding

windows, changing travel plans). Similarly, three-year forecasts of exceptional research may

present opportunities for action.

For completeness, we note that TP, FP, and FN are used extensively in medical fields, that

values of specificity and sensitivity are often calculated and presented, and that this will be the

dominant mode of thinking for many readers. However, given that our use case—forecasting

of research—has much more in common with weather forecasting than medical testing, we

will not make further reference to the medical paradigm.

In this study, we calculate CSI using forecasts of exceptional growth (compared to out-

comes) of clusters of documents, or research communities (RC), from our comprehensive,

highly granular models of science. Further, this analysis is based on over a million instances

rather than on a few examples.

Comprehensive, detailed models of science

Since we propose to detect exceptional growth in research by looking at the publication growth

for a specific RC, the issue of literature clustering (choosing how to partition the literature so

that each partition corresponds to an RC and exceptional growth can be detected) becomes
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central. The clustering approach used in this study is to identify Kuhnian RCs using the “link-

ages among citations” that was recommended by Kuhn [14] but that was not scaled up to clus-

ter millions of documents until 2012 with the introduction of the VOS (Visualization of

Similarities) clustering methodology by researchers at the Centre for Science and Technology

Studies (CWTS) at Leiden University [15]. CWTS has since introduced two major updates to

their clustering methodology with the SLM [16] and Leiden algorithms, the latter of which

fixes specific problems in the earlier algorithms [17]. The VOS algorithm is thus no longer

available.

Among the different ways to use “linkages among citations,” we use direct citation analysis

as the basis for clustering the documents (and creating a classification system) for several rea-

sons. First, it was recommended by Kuhn for very specific reasons. Kuhn did not view RCs as

a group of researchers. Rather, each RC was focused on a problem that could be detected by

looking at the communication patterns between researchers. According to Kuhn, “. . . one

must have recourse to attendance at special conferences, to the distribution of draft man-

uscripts. . . and above all, to formal and informal communication networks and in the linkages

among citations. . . Typically, it may yield communities of perhaps one hundred members [14,

p. 178].” As such, a researcher could be participating in multiple RCs. However, the clustering

of researchers does not lend itself to research forecasting. In its stead, citations were a well-

known signal of a communication link and were correspondingly recommended as a useful

signal for detecting these RCs. Second, it is a first order measure that represents the decisions

made by authors about what to cite rather than a second order (co-occurrence) measure.

Third, it has been shown to be very accurate as compared to bibliographic coupling and co-

citation [18]. Finally, a direct citation computation is tractable. Co-occurrence measures, such

as bibliographic coupling, co-citation, or even textual similarity, generate hundreds of billions

of links for complete databases such as Scopus or the Web of Science, which makes them com-

putationally intractable. Additional information about the history, accuracy, and state of the

art of this type of clustering process can be found in Boyack & Klavans [19].

Within the context of creating forecasts of RC growth, this approach—using direct citation

information within a set of tens of millions of documents, and clustering using the VOS or Lei-

den algorithm—has the following positive features. First, and perhaps most importantly, the

type of document clusters that are created using this approach have been shown to represent

the way researchers actually organize around research problems, which is a central tenet in

Kuhnian theory [18]. Second, document clusters created using this approach are currently

being used productively in research evaluation worldwide as part of Elsevier’s SciVal tool [20].

Third, indicators can be easily created with very little influence from future information,

thereby providing the possibility for testing which indicators are able to predict exceptional

growth and allowing others to easily build on this research. Fourth, since the direct citation

approach inherently accounts for history, the resulting RCs can be effectively categorized by

their stage of growth (e.g., emerging, growing, transitional, mature). One would expect that

stage of growth would be extremely important in predicting which RCs will experience excep-

tional future growth. Finally, using a model consisting of around 100,000 RCs effectively allows

us to test the efficacy and generalizability of different forecasting indicators over different fields

of research and time, leading to robust, generalizable results of known accuracy.

Data and methods

General approach

The general approach used in this study takes advantage of two separate comprehensive, gran-

ular models of science that were created using Scopus data. Each model is comprised of tens of
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millions of papers that are partitioned into about 100,000 RCs. These models were created at

different time periods (2012 and 2018) using different clustering algorithms. We proceed by:

• Describing how these two models were constructed,

• Defining key terms used through this study,

• Determining the metric for exceptional growth,

• Creating a composite indicator for predicting exceptional growth,

• Testing the accuracy of the composite indicator by model, model age, field, and discipline.

Details on each step are provided below.

Global models

Two models of science were used in this study. Model one, named DC5, is described in detail

in Klavans & Boyack [20]. Briefly, it was created in fall 2013 with the VOS algorithm [15] and

an extended direct citation approach [19] using Scopus data from publication years 1996–

2012. Data from subsequent publication years through 2017 were added at intervals as updated

Scopus data were obtained. Additional papers from 1996–2012 that had been added to Scopus

were also added to the model. Table 1 shows the counts by year and when they were added to

the DC5 model. Papers were added as follows:

1. For papers with references, each paper was assigned to the RC to which its references had

the greatest number of links, and;

2. For papers without references but with an abstract, each paper was assigned to the RC to

which it was most related via the BM25 text-relatedness measure [21, 22].

The full DC5 model contains 38.73 million Scopus indexed documents through 2017

assigned to 91,726 RCs.

Model two, named STS5, was created in 2019 using Scopus data from 1996 through May

2019. Thus, it contains the full 2018 publication year, but only a partial 2019 publication year.

This model was created using a set of 1.039 billion citation links and the Leiden algorithm [17]

and contains 43.28 million Scopus indexed documents through 2018 assigned to 104,677 RCs.

It is important to note that the assignment of papers to RCs in both models relies, to some

degree, on future information. For instance, the 2010 papers in the STS5 model were assigned

using 69 million references and 39 million citations (from subsequent papers). However, although

the contribution from citations is significant, most papers tend to be cited primarily by papers that

end up in the same RC. We have run calculations that suggest that less than one percent of papers

would move from one RC to another each year due to accrued citations. Thus, while future infor-

mation does impact the assignment of documents to RCs, that impact seems not to be too severe.

This issue would need to be addressed when building a production-level forecasting system.

Table 1 also shows that Scopus continues to add information from previous years to its

indexed contents. We assume that the other major citation databases (Web of Science and

Dimensions) update contents in a similar fashion, which provides another source of future

information that would not have been available when making a forecast in any given year.

Definition of terms

Most of the terms used in this study are based on an analysis of the publication record of each

research community. From these data, one can observe new RCs forming and small RCs
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growing. As the publication outputs of an RC become larger, they eventually peak (see Fig 1)

in terms of share of worldwide publications in a given year and then lose publication share.

RCs can also have a more volatile publication pattern: some grow, peak, lose publication share,

and then regain publication share. Each RC has a temporal pattern of publications that can be

used to calculate growth and other variables such as vitality. Fig 1 gives an example of the pub-

lication pattern of an RC and is useful for defining specific terms that will be used throughout

our analysis.

Forecast year, target year and peak year. Fig 1 illustrates three concepts we will use in

this study. The forecast year (FY) is the year upon which a forecast is based. The target year

(TY) is three years after the forecast year. The peak year (PK) is the year of maximum publica-

tion share from the perspective of the forecast year. In Fig 1, FY = 2014, and the forecast is

made using data up through 2014 only. The peak year (PK) occurred two years before the fore-

cast year.

Publication share and growth. In addition, we track relative publication share over time

to measure growth in each RC over different periods of time. Publication share is defined as

the number of articles in an RC divided by all publications. Growth is based on publication

share rather than raw counts to account for annual fluctuations in the overall models due to

database growth, ensuring any indicator that might predict exceptional growth cannot be

attributed to such fluctuations. Publication share is also desirable from a modelling perspec-

tive: it tells us how well the research community is doing vis-à-vis other research communities.

The concept of publication share is analogous to the concept of market share.

Table 1. Numbers of papers by year in each global model of science. For Model 1, numbers of papers added originally and at each update are also shown.

Model 1 Model 2

Year Original 2016_01 2017_05 2018_05 DC5 STS5

1996 926,967 3,747 14,008 8,739 953,461 985,021

1997 951,188 2,952 15,738 8,512 978,390 1,012,744

1998 964,061 3,706 15,795 11,638 995,200 1,037,234

1999 979,298 5,007 15,602 15,481 1,015,388 1,054,479

2000 1,031,993 11,370 23,138 13,031 1,079,532 1,117,072

2001 1,089,015 12,670 25,912 16,467 1,144,064 1,179,964

2002 1,137,594 16,562 32,886 19,539 1,206,581 1,247,285

2003 1,207,002 41,316 19,802 17,143 1,285,263 1,335,419

2004 1,343,284 22,680 15,439 13,735 1,395,138 1,443,125

2005 1,495,559 45,018 17,593 8,738 1,566,908 1,623,300

2006 1,606,285 43,362 16,976 10,116 1,676,739 1,743,001

2007 1,704,068 51,182 22,055 10,151 1,787,456 1,862,707

2008 1,802,622 60,046 24,905 12,163 1,899,736 1,977,881

2009 1,919,363 70,072 20,630 11,829 2,021,894 2,111,872

2010 2,033,280 104,847 21,567 12,284 2,171,978 2,241,956

2011 2,159,551 118,872 23,839 12,236 2,314,498 2,393,555

2012 2,169,761 182,997 43,046 21,156 2,416,960 2,523,847

2013 2,427,223 47,810 31,583 2,506,616 2,622,512

2014 2,373,740 153,262 38,794 2,565,796 2,685,118

2015 1,688,949 754,767 5,850 2,449,566 2,658,829

2016 2,380,075 155,018 2,535,093 2,738,674

2017 662,165 1,742,014 2,404,179 2,813,466

2018 620,305 620,305 2,868,636

https://doi.org/10.1371/journal.pone.0239177.t001
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The annual compound growth rate for an RC is calculated as

GRFY ¼ ðSTY=SPKÞ
ð1:0=ðTY� PKÞÞ

ð1Þ

where S is publication share, FY is the forecast year, and PK is the peak year.

Note that growth is measured from the peak year rather than the forecast year. Fig 1 pro-

vides an example of a case where they differ. For this RC, the five-year growth rate from the

peak is 6.3%. The three-year growth rate of 14.8% overestimates the actual growth due to the

publication dip from 2012–2014. This, in essence, delays the signal that a volatile RC might be

experiencing exceptional growth and requires that it first has to make up for the dip in publica-

tion share. Using our method, the example in Fig 1 does exhibit exceptional growth for

FY = 2012 because the growth rate does not exceed the 8% threshold. However, this RC might

qualify in FY = 2015 if the three-year growth rate exceeds 8% from 2015–2018.

Model year and relative year. It is extremely important to make the distinction between

forecasts that are made before and after a model is created. We have therefore created a vari-

able (relative year, RY) that compares the forecast year (FY) with the year that the model was

Fig 1. Temporal profile of a research community in the DC5 model. The forecast year (FY) is two years after the model was built (MY), and the peak year (PK) occurs

before the forecast year. The growth rate (GR) is shown for both the PK to target year (TY) timespan as well as the FY to TY timespan.

https://doi.org/10.1371/journal.pone.0239177.g001
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built (MY). For example, the relative year for the example in Fig 1 is +2 since FY = 2014 and

the DC5 model was built using data through 2012. Note that a forecast can be done for other

years on the same RC. For example, for the RC in Fig 1 with FY = 2011, we would have

PK = 2011, TY = 2014 and RY = -1.

The reason that relative year is so important is that negative RY have the potential for leak-

age of future information—i.e., papers in negative RY were placed in clusters using subsequent

citations as well as their references. The effect of this future information on the clustering, and

thus on forecasts and CSI scores, has not been quantified. Conversely, papers in positive RY

were added to clusters without using future information, thus these forecasts have higher

integrity than those from negative RY—i.e., they are actionable forecasts.

Dependent variable–Exceptional growth. We have defined exceptional growth as a (0,1)

variable in order to use precision, recall, and CSI to measure forecast accuracy, with value “1”

if GRFY exceeds 1.08 (8%) and value “0” if it does not. While the 8% value may seem arbitrary,

it is based on a fifty-year tradition in business portfolio analysis to use a 10% growth threshold

(in actual revenue) to distinguish between different market opportunities (‘stars’ and ‘ques-

tion-marks’ are above 10%; ‘cash cows’ and ‘dogs’ are below 10%). Since we are using growth

in publication share (not actual growth in publication numbers) and the average publication

growth rate is roughly 2% per year, using an 8% growth rate in publication share corresponds

to a 10% growth rate in actual publication levels. The 8% value is also based on feedback from

users. Most users want to evaluate research communities that are opportunities—including

those that might be more “on the margin.”

Exceptional growth and relative year

The relationship between relative year and the percentage of RCs that achieve exceptional

growth is shown in Fig 2. When all RCs are considered, 5% or more of the RCs in both models

have exceptional growth for RY of -3 and lower. However, there is a precipitous drop in the

percentage of DC5 RCs that achieve exceptional growth from RY = -3 to RY = -2 and beyond.

In contrast, the percentage of RCs that achieve exceptional growth and have at least 20 papers

in the FY is relatively constant across models and years (dashed lines in Fig 2) at about 1.5%.

The reason for excluding papers with less than 20 papers is based on user requirements.

Users care about potential impact, which can be roughly modeled as mass (the number of

papers) times velocity (which corresponds to many of the potential indicators we will be dis-

cussing in the next section). A community size of 20 is about the lowest amount that we’ve

observed any user as being concerned about. Below this value there isn’t enough mass to make

a significant difference in the research environment.

There is a secondary reason for excluding the smaller research communities. We’ve noticed

that there appears to be a large number of very small RCs that only survive for a few years. We

are starting to investigate this phenomenon, and it appears that these very small RCs have very

sparse networks (very few links between nodes). As we learn more about the relationship

between community size, density, and survival, we may modify the size threshold in the future

in ways that reflect that learning.

We also point out that small RCs are subject to small number effects. For example, an RC

with five papers in the FY only needs to have seven papers in the TY to achieve exceptional

growth using our annual 8% growth threshold. The potential bias from small RCs starts to dis-

appear as one gets closer to the year that the model was created. Note that Fig 2 shows that

there are relatively few small topics in the DC5 model in RY -2 to +2. This may be due to the

inability of the document clustering algorithm to detect small emerging communities with

only one or two years of actual history. This might also be due to the fact that when data for
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later years were added to the DC5 model, these papers were preferentially assigned to larger

RCs, thus limiting the ability for smaller RCs to show growth, and also excluding the possibility

for new RCs to be formed in years after the model was created.

Overall, the potential bias and uncertainty introduced by small RCs suggests that future

analyses need to be done from two perspectives: 1) using the entire sample and 2) excluding

small RCs before a model is built but including them after. The exclusion of small RCs after a

model is built is, however, useful from a policy perspective since a community with only seven

papers is likely not of sufficient size to have an impact.

Predictive indicators of exceptional growth

We now turn to the prediction of exceptional growth. Our selection of potential indicators

draws from an underlying theoretical assumption that the landscape of research is composed

of Kuhnian research communities (RCs). Births and deaths among RCs are not common

events when compared to the total number of RCs. Rather, they utilize new discoveries and

methods to address an underlying problem that is defined by the community. For example, in

Fig 2. Likelihood of a research community having exceptional growth before and after a model is created (RY = 0).

https://doi.org/10.1371/journal.pone.0239177.g002
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2004 when a scalable method to make graphene was discovered [23], multiple RCs working

with graphite (instead of graphene) were already in place that could take quick advantage of

that breakthrough. In addition, over the next several years, large numbers of researchers

shifted their research to graphene-related RCs, migrating from existing RCs, many of which

started to decline as research on graphene emerged and grew. The RCs that supplied the largest

numbers of graphene researchers were inherently related to graphene, and included research

on carbon nanotubes, single crystals, and electronic properties [19]. Later on, new RCs did

form around applications that used graphene (e.g. batteries), but again were populated with

existing researchers who had the infrastructure to quickly shift their research focus.

Given this theoretical framework, indicators that reflect the characteristics of a research

community were emphasized. Overall, we investigated four variables dealing with the life cycle

of the research community, three dealing with assessments of academic importance and three

dealing with community size (see Table 2).

Stage. Referring to Fig 1, stage is related to the difference between peak year and forecast

year and is calculated as (1 / (FY-PY+1). This indicator can be used to estimate the stage of

growth of a research community. The longer the time from the forecast year to the peak year,

the longer it has been since there has been a significant contribution that resulted in a resur-

gence of publication. An RC is more likely to be in an early stage of growth if the peak year

equals the forecast year and more likely to be mature as the gap increases.

Table 3 shows that this formulation helps to linearize the relationship between stage and the

likelihood of exceptional growth. For RCs that are larger (at least 20 papers in the FY) and

where the peak year equals the forecast year, 18% and 23% of RCs in the DC5 and STS5 models

had exceptional growth, respectively. This percentage drops rapidly in both models as stage

decreases. Larger RCs rarely experience exceptional growth if the difference between the peak

year and forecast year is greater than three years.

As a further test that the gap between the forecast year and peak year is a valid indicator of

stage of growth, we looked at the possibility that the research community would reach its peak

in the following year as a function of stage. The results from this analysis are provided in

Table 4.

Table 4 focuses on the year right before the two models were built (RY = -1). For the DC5

model, there were 10,663 RCs as of 2011 that had their peak publication year in 2011. Of these

Table 2. Indicators that were tested for prediction of exceptional growth (std = standardized; log = log

transformed).

Type Name Definition Transform

Life cycle

stage Reciprocal length of time to peak year Std

cvit Average reciprocal paper age Std [log]

rvit Average reciprocal reference age from papers in FY Std [4th root]

Δrvit Change in rvit over time See text

Academic Importance

ntopj Number of articles in top 250 journals in FY Std [log]

ctopj Number of references to top 250 journals from articles in FY Std [log]

eigen Number of articles in top 250 Eigenvalue journals in FY Std [log]

Size

nart Number of non-review articles in FY Std [log]

nrev Number of review articles in FY Std [log]

nref Number of references Std [log]

https://doi.org/10.1371/journal.pone.0239177.t002
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RCs, 31% continue to increase their publication share in the next year (2012). At the other

extreme are the 47,532 RCs that had a peak publication share prior to 2006 (FY-PK < -5).

Only 3.9% of these RCs bounce back and achieve a new maximum publication share in 2012.

An analysis of the STS5 model shows very similar characteristics. Almost the same number of

RCs were clearly in their growth stage in 2017 and had the same likelihood of achieving a new

maximum in the next year. Almost the same percentage of RCs were extremely mature and

had the same (much smaller) likelihood of achieving a new peak publication level in the next

year.

Current paper vitality (cvit) is defined as the average reciprocal age of all documents in

the RC for a period of time ten years back from the forecasting year. This provides a more

nuanced view of when publications have occurred over time. Reciprocal age (1/age+1) is used

for much the same reason as above. The “distance” between an article published five years ago

versus six years ago is not the same as the “distance” between an article published this year and

last year. Use of reciprocal age discounts time so that more emphasis is placed on recent publi-

cations and the impact of much older papers is minimized. The natural range of cvit is from 1/

11 (all papers were published in FY-10) to 1.0 (all papers are published in FY).

We expected (and find) that this variable is highly correlated with stage. Whether one (or

both) indicators are used will depend on their complementary ability to predict exceptional

growth.

Reference vitality (rvit) looks at the tendency for researchers to build upon older or more

recent discoveries [24]. This is detected by calculating the average age of the references in the

papers that are being currently published. In an RC where one may have dozens of papers and

hundreds of references, the age of the references tells us whether current activity is building on

recent (versus older) literature. If a research community is emerging, there is less prior art and

the average reference age will be younger. 1/age is used as a transform, in a similar fashion as

Table 3. Likelihood of exceptional growth (xg) by stage using RCs with at least 20 papers in the FY.

DC5 (MY = 2012, RY = +1) STS5 (MY = 2018, RY = -3)

FY-PK Stage #RC (2013) #xg %xg #RC (2015) #xg %xg

0 1.000 5,397 967 17.92 4,585 1050 22.90

1 0.500 2,379 159 6.68 2,155 170 7.89

2 0.333 1,814 29 1.60 1,558 48 3.08

3 0.250 1,555 10 0.64 1,354 10 0.74

4 0.200 1,464 6 0.41 1,258 3 0.24

5 0.166 1,543 2 0.13 1,260 1 0.08

<5 0.143 13,150 4 0.03 10,730 4 0.04

https://doi.org/10.1371/journal.pone.0239177.t003

Table 4. Relationship between stage and likelihood of reaching a peak publication share in the next year.

FY-PK DC5 (MY = 2012, RY = -1) STS5 (MY = 2018, RY = -1)

#RC (2011) %RC %pk (2012) #RC (2017) %RC %pk (2018)

0 10,663 11.9 31.4 10,491 11.4 31.1

1 7,884 8.8 21.2 7,628 8.3 21.1

2 6,503 7.3 13.8 6,569 7.1 14.6

3 5,647 6.3 10.7 5,669 6.1 10.7

4 5,579 6.2 8.5 6,528 7.1 8.5

5 5,744 6.4 6.2 6,586 7.1 7.0

>5 47,532 53.1 3.9 48,905 52.9 3.9

https://doi.org/10.1371/journal.pone.0239177.t004
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cvit, because differences are more pronounced if the references are recent. The variable is nor-

malized using a fourth root instead of a log value, which makes the variable symmetric but

with extremely long distribution tails. These extreme values are set at a maximum of +/- 3 stan-

dard deviations.

Change in reference vitality (Δrvit) is based on the historical change in rvit. This indicator

is specifically designed to evaluate whether a mature RC has made recent discoveries that shifts

the referencing behavior to more recent work. Ten years of rvit are used to establish a within-

community mean and standard deviation. The 10-year mean rvit is then subtracted from the

FY rvit and divided by the standard deviation to get the difference in terms of numbers of stan-

dard deviations (Z score). Since there can be small number effects that give extreme values,

these Zscores are bounded by +/-5 standard deviations from the mean.

Academic importance (ntopj, ctopj, eigen). The next three indicators focus on the deci-

sions by editors and reviewers in the top ranked journals to publish articles on a particular topic.

These indicators were inspired by the claim that atypical combinations of journals result in higher

impact [25]. When we replicated this work, we found that most of the “atypical” citation impact

was due to a relatively small number of extremely influential journals [26]. Thus, we decided to

test indicators based on papers from these high impact journals to see if they were predictive of

growth. Papers in top journals (ntopj) counts the number of papers in the top 250 journals as mea-

sured by Elsevier’s CiteScore. Citations to top journals (ctopj) counts the number of references to

papers in the top 250 journals—this is closer to the indicator proposed by Uzzi et al. Papers in top
Eigenvalue journals (eigen) uses Eigenfactor [27] rather than CiteScore to identify the top 250

journals. All three indicators focus on articles (or references) in the forecasting year.

Size (nart; nrev; nref). The final three variables were related to size—number of articles
(nart) in the forecasting year (excluding reviews), number of reviews (nrev) in the forecasting

year, and number of references (nref) from the papers in the forecasting year. The first two

(nart and nref) focus on community activity (the number of documents in a forecasting year).

Nref is an indicator of the number of links between documents. A relationship between size

and exceptional growth, however, is not expected if the variables associated with life cycle and

academic importance are taken into account.

Transforms. Seven of the indicators in Table 4 were log-transformed (i.e., log(value))

because of skewness. This is a common transform when one is dealing with publication activity

and citation data. If an indicator can have a value of zero (which only occurs for the size and

impact indicators), we use log(value+1). The inverse age transform (1/(year+1) was used for

the three variables where it was more important to pick up changes that had recently occurred.

The transform used for reference vitality was the fourth root and was specifically designed to

create a symmetric distribution since a log transform created a highly asymmetric distribution.

Standardization. After the indicators were transformed, standardization was done by

year using the transform (value-mean)/stdev so that the mean and standard deviations would

be consistent across years and across models. The use of standardized values across years

allows us to combine datasets with different yearly slices of data. This also helps in replication

—anyone replicating this work need only standardize their variables and use the recom-

mended coefficients.

Composite indicator

The composite indicator was based on multi-stage regression analysis, using probit analysis

instead of a linear regression model because the dependent variable is binary. We proceeded

by identifying the single most important predictor of exceptional growth using Z-statistics, cal-

culating the residual (unexplained variance), and correlating the residual against all non-
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selected variables to identify the next most important predictor. This process was repeated

until there was no significant improvement in the model (e.g., the newly added variable had a

Z statistic less than 4.0). Choosing a Z statistic of four or more as the mechanism for sequen-

tially adding new variables to the model requires further explanation. We are trying to create a

model that is as simple as possible (i.e., it contains the minimum number of variables needed)

and as stable as possible (the variables are unlikely to be replaced when new variables are cre-

ated and tested). To accomplish this, we rejected variables that might have a statistically signifi-

cant effect but don’t have a sizable increase in adjusted R-squared. As stated previously, our

goal isn’t to create a complex model with very high CSI score. Our goal is to present a robust

model that is sufficiently accurate to warrant future improvement.

Our analyses (i.e. the nomination of variables using sequential entry into a probit model)

were done using eight different data extracts—four using all RCs in two-year periods, and the

other four using RCs with at least 20 papers in the FY for the same time periods. The first data

extract is the one on which we plan to base additional analysis. We used two forecast years

(2013 and 2014) with positive RY (1 and 2) from the DC5 model. This was chosen as the base-

line because the assignments of papers to RCs in these two years did not include any future

information. Thus, these two years represent actionable forecasts. Probit analysis was done

using data from this set of RCs, with four of the 10 variables from Table 4 being found to con-

tribute significantly to the prediction of exceptional growth. Table 5 lists the coefficients for

these four variables. All four indicators associated with life cycle were important—they provide

different insights into the stage of growth. Only one of the indicators associated with academic

importance is used. These four variables were extremely effective in predicting exceptional

growth with a pseudo-R2 [28] of 37%. The indicators of size had a negligible ability to margin-

ally improve the pseudo R2.

Table 5 also lists coefficients, sample sizes and pseudo-R2 values for the other seven data

extracts. The other three extracts that used all RCs were for time periods before a model was

created. The relationship between exceptional growth and these four variables is similar for all

four datasets as is the ordering of importance (stage, cvit, Δrvit and ntopj). However, the coef-

ficients are lower for the other three extracts and the corresponding pseudo-R2 values are also

lower (a common occurrence when the overall R2 is lower).

Coefficients are also provided for the same four samples using only those RCs with at least

20 papers in the FY. Coefficients for these subsets are higher in all cases, and the pseudo-R2

values are also higher for all but the true forecast (DC5, 2013–14).

Table 5. Indicator construction using different data samples.

Data Sample Coefficients from Probit Analysis #RCs Pseudo-R2

Model and FY RY stage† cvit† Δrvit† ntopj†

All RCs included in the analysis
DC5 (2013–14) +1, +2 0.292 0.473 0.100 0.113 161,660 0.3735
DC5 (2008–09) -3, -4 0.235 0.524 0.069 0.015 178,641 0.2694

STS5 (2014–15) -3, -4 0.185 0.561 0.073 0.059 172,795 0.2706

STS5 (2008–09) -9, -10 0.236 0.414 0.030 0.069 178,897 0.2070

Analysis limited to RCs with 20 or more papers in the FY
DC5 (2013–14) +1, +2 0.312 0.540 0.167 0.124 54,347 0.3563

DC5 (2008–09) -3, -4 0.374 0.481 0.134 0.040 51,849 0.3129

STS5 (2014–15) -3, -4 0.393 0.583 0.087 0.067 46,137 0.3641

STS5 (2008–09) -9, -10 0.410 0.624 0.176 0.068 41,081 0.3388

† transforms for all variables are listed in Table 4.

https://doi.org/10.1371/journal.pone.0239177.t005
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Coefficients from the true forecast [0.292; 0.473; 0.100 and 0.113] are used to generate an

indicator that can subsequently be used to rank all RCs by model, by year and by discipline as:

Score ¼ 0:292�stage y þ0:473�cvit y þ0:100�Drvit y þ0:113�ntopj y ð2Þ

where the transformed indicators as listed in Table 4 are used.

Results

Test #1: CSI score by model and relative year

With a composite indicator in place, we now proceed to measure the accuracy of this method

in forecasting RCs by model and FY that will achieve extreme growth. This is done for all RCs

and for the subset of RCs with at least 20 papers in the FY. The number of forecasts (N) to be

made is set at 1.5 times the number of RCs that experienced exceptional growth. This is consis-

tent with the initial requirement that precision exceed 33% and recall exceed 50%. Note that

this prediction score does not predict growth rate but is intended to rank RCs.

Using the composite indicator equation described above, the N RCs with the highest

indicator scores are selected as forecasts. This results in a simple 2x2 contingency table

where we can compare (0,1) forecasts made in year FY to their corresponding (0,1) out-

comes (whether these RCs experienced exceptional growth or not) in year TY. Contingency

tables were created for each model and FY. The CSI threshold for accuracy, established by

FUSE, is 25%.

CSI scores from these contingency tables are shown in Fig 3 as a function of model, relative

year and whether all RCs or only RCs with at least 20 papers were included. When all RCs are

included, neither model reaches the 25% CSI threshold in any year. When small RCs are

excluded, the STS5 model is well above the threshold in all years, while the DC5 model is

above the threshold in all relative years except -2, -1, and 0. While the STS5 model is above the

threshold, this is only for cases where relative year is less than zero (recall that the STS5 fore-

casts for RY less than zero are using future information).

The trend in CSI score for the DC5 model (using all RCs and using the subset) is perplex-

ing for RY -2, -1, and 0. While the CSI scores are roughly constant for relative years +1, +2,

and -3 and below, the scores dip dramatically between years -2 and 0 for reasons that are

not clear. Conversely, the STS5 model CSI scores are increasing as the relative year becomes

less negative. However, until data are added to this model, we cannot tell what will happen

during the next two relative years (-2 and -1) or when information leakage is no longer an

issue.

These patterns raise questions that have not been resolved. Is the DC5 dip due to flaws in

the way that articles were added to the DC5 model after it was created? Is this due to the flaws

that were found (and repaired) in the VOS algorithm [17]? In support of the first possibility,

Fig 2 shows a huge drop in the number of small RCs that had exceptional growth from year -3

to -2. In support of the latter possibility, the Leiden algorithm does a better job of assigning

papers to RCs than the older (first generation) VOS algorithm. Our sample calculations show

that around 86% of documents in the DC5 model are assigned to their dominant RC, while

that number is close to 94% for the STS5 model. The Leiden algorithm fixed some problems

associated with the earlier clustering algorithms [17], so this may account for some of the

differences.

The balance of the analysis will focus on RCs with at least 20 papers since smaller RCs may

introduce biases into the analysis, and since they are too small to provide sufficiently reliable

information for policy analysis.
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Test #2: Precision and recall by field (DC5-2014 and STS5-2014)

When restricted to RCs with at least 20 papers, both models have CSI scores that are above the

FUSE threshold of 25% in most years. Even though the overall CSI scores are quite high, given

field-level differences in citation behavior and characteristics, we expect that performance may

differ dramatically by field or discipline. To explore this possibility, we examined performance

using groups of RCs aggregated by field and discipline.

The research communities in the DC5 model had been previously aggregated to 114 disci-

plines (known as DC2 because it has ~102 clusters, while DC5 has ~105 clusters) and then fur-

ther to nine high level fields. The process by which this was done is described in detail in

Klavans & Boyack [29]. While RCs in the DC5 model were directly mapped to disciplines and

fields, we assigned RCs in the STS5 models to DC2 disciplines and fields using common papers

from 2008–2014.

Table 6 orders these nine fields by non-patent reference (NPR) intensity, which is the aver-

age number of times each paper in the field (from 2010–2013) is cited by a U.S. patent

(through 2018). Fields at the top of the list (Biochemistry, Computing Technology, Applied

Fig 3. CSI scores by model and relative year.

https://doi.org/10.1371/journal.pone.0239177.g003
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Physics and Medicine) have high precision and recall scores in both models and also have the

highest NPR intensities. Research in each of these fields contributes directly to economic

development in that it forms the foundation for later patenting and productization. On the

other end of the spectrum, two fields near the bottom of the list (Sustainability and Civics) con-

tribute relatively little to economic development and have much lower forecast precision and

recall scores. We find this correlation intriguing, but do not suggest a causal relationship.

Rather, these fields of research have inertial properties reflected by the indicators used to fore-

cast growth that are also associated with economic development. In general, the proposed fore-

casting approach works extremely well in a broad set of fields that have direct economic and

health impact.

Two of the three fields with lower precision and recall scores may suggest potential weak-

nesses in the choice of indicators or even to our choice of theoretical framework. Research in

Civics (which contains disciplines such as political science, law, economics, and management)

and Sustainability (which contains disciplines associated with climate change) is easily traced

to communities with paradigmatic belief systems. Early indicators of growth (or decline) in

these fields might best be picked up using signals from popular media and the internet.

Basic Physics had very few exceptional growth events in either model which, while it attests

to the steadiness of the field, made this a poor candidate for predicting exceptional growth.

This is perhaps not surprising given that this field includes the disciplines of particle physics

and astronomy, both of which are dependent on long-term investments in infrastructure such

as accelerators and observatories.

Test #3: Precision and recall by discipline (DC5-2014 and STS5-2014)

The field of Computing Technology, along with meeting the FUSE criteria in both models in

2014, has the largest number of RCs with exceptional growth. Table 7 shows that nine of 11

DC2 disciplines in the DC5 model meet the FUSE criteria, while 10 of the 11 DC2s in the STS5

model meet the criteria. There is reasonable correspondence between the two models in that

eight of the disciplines meeting these criteria did so in both models. However, there are also

differences, particularly in those disciplines that met the criteria in one model and not the

other (i.e., Computing, Statistics and Mathematics). These differences may reflect the lack of

direct overlap between the way DC2s are reflected in each model, since the DC2s are a direct

assignment for the DC5 model and a derivative (matching) assignment for the STS5 model.

They may also reflect different dynamics of community behavior or, in the case of Statistics
and Mathematics, disciplines which have relatively few examples of exceptional growth.

Table 6. Precision (%prec) and recall (%rec) for nine fields of research.

Field NPR Intensity DC5 [2014 model year] STS5 [2014 model year]

#RC #xg %Prec %Rec #RC #xg %Prec %Rec

Biochemistry 0.147 2,685 98 42.1 62.2 2,321 102 37.5 55.9
Computing Tech 0.143 3,261 172 42.9 64.5 3,223 253 48.2 72.7
Applied Physics 0.125 2,451 139 45.9 68.3 2,156 138 44.9 67.4
Medicine 0.099 5,466 113 35.4 51.3 4,387 156 39.8 59.0
Inf. Disease 0.077 971 21 31.0 42.9 803 28 39.0 57.1
Engineering 0.034 2,907 163 33.9 50.3 2,915 192 37.4 55.7
Sustainability 0.032 3,618 134 30.7 45.5 2,940 132 27.8 41.7

Basic Physics 0.027 877 10 35.7 50.0 729 17 24.0 35.3

Civics 0.015 4,473 155 19.7 29.7 3,756 231 30.1 45.5

https://doi.org/10.1371/journal.pone.0239177.t006
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Test #4: Specific forecasts for computing technology

Now that we have established the accuracy of the forecasting methodology for exceptional

growth in RCs, we proceed to provide some detailed examples of forecasts for the Computing
Technology field since it met the FUSE threshold in both models and has the largest number of

RCs with exceptional growth. Table 8 lists the top 10 forecasted RCs from the Computing Tech-
nology field in the DC5 model for a forecast year of 2014. Labels for these RCs are human gen-

erated but are based on extracted terms that are highly specific to the RC.

All 10 RCs were at their peak year as of 2014 (the standardized value of Stage is constant at

3.47). All 10 had most of their papers published very recently (current vitality, once standard-

ized, was over 3.3). But the next two standardized variables (change in reference vitality and

the number of papers in the top 250 journals) do not provide a consistent signal that these

research communities will experience exceptional growth. The four values listed in Table 8

were combined using the coefficients in Eq (2) to generate the score.

Overall, the accuracy of our model is exceptionally good in this field. Eight of the top ten

RCs did, in fact, experience exceptional growth. The growth rate of the two RCs that didn’t

meet the threshold wasn’t even close (4.4% and -1.0%). We have not, as yet, analyzed cases

where the actual growth rates of RCs that were expected to have exceptional growth were sig-

nificantly below the 8% threshold.

Table 7. Precision (%prec) and recall (%rec) for the eleven DC2 disciplines in the Computing Technology field in both models using the 2014 model year.

DC2 discipline DC5 [2014 model year] STS5 [2014 model year]

#RC #xg %Prec %Rec #RC #xg %Prec %Rec

9 –Computer Vision/Language 522 43 50.8 76.7 520 62 52.1 79.0
27 –Networks 347 27 51.2 77.8 340 46 54.3 82.6
67 –Human Computing 179 19 34.5 52.6 181 19 44.8 68.4
52 –Telecommunications 213 17 38.5 58.8 199 17 42.3 64.7
6 –Computing 560 16 29.2 43.8 555 47 45.1 68.1
34 –Industrial Engineering 340 16 41.7 62.5 340 16 37.5 56.2
83 –Cryptography 152 12 44.4 66.7 139 15 54.5 80.0
72 –Statistics 164 6 44.4 66.7 172 6 22.2 33.3

45 –Operations Research 240 6 33.3 50.0 258 10 53.3 80.0
102 –Nonlinear Dynamics 60 5 42.9 60.0 57 5 42.9 60.0
20 –Mathematics 484 5 28.6 40.0 462 10 46.7 70.0

https://doi.org/10.1371/journal.pone.0239177.t007

Table 8. Top 10 forecasted DC5 RCs from the Computing Technology field (FY = 2014, TY = 2017, RY = +2).

DC5 Label Stage† Cvit† ΔRvit† Ntopj† Score Growth

25308 software defined networks 3.47 5.03 0.54 3.12 3.80 45.9%
48081 D2D communication 3.47 4.95 0.50 1.76 3.60 27.8%
12007 mobile security/malware 3.47 4.32 -0.05 2.76 3.36 11.2%
14215 Twitter event detection 3.47 4.45 -0.24 2.32 3.36 9.3%
54895 nature-inspired optimization 3.47 4.50 0.77 0.97 3.33 17.9%
23854 computation offloading 3.47 3.98 1.65 2.32 3.32 34.6%
14700 appliance load monitoring 3.47 3.55 0.73 4.62 3.29 4.4%

13672 cellular network energy efficiency 3.47 4.13 0.24 2.32 3.25 -1.0%

3922 EV wireless charging 3.47 3.31 1.47 4.62 3.25 20.2%
31270 internet of things 3.47 4.43 -0.06 0.97 3.21 54.8%

† values listed are after transforms and standardization have been applied

https://doi.org/10.1371/journal.pone.0239177.t008
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Table 9 lists the top 10 forecasted RCs from the Computing Technology field in the STS5

model for a forecast year of 2014. In this case, the relative year is -4 (the model hadn’t been cre-

ated and all measures are subject to the leakage of future information). We correspondingly

included information about the number of papers in 2014 to illustrate the problem of small

topics mentioned previously.

One would not actually use the 2014 data slice from the STS5 model for making actionable

forecasts for the reasons mentioned previously. But the data in Table 9 do provide insights into

the nature of information leakage. The five smallest RCs were only able to predict one out of

five cases of exceptional growth. The five largest RCs all had exceptional growth. Stage cannot

be used to differentiate these RCs since they were all at their peak publication year. The four

RCs with the highest Ntopj value had exceptional growth while the remaining six had actual

Ntopj values of zero and one (with corresponding scores of -0.31 and 1.14 in Table 9).

We also noticed that two of the RCs that were false positives seemed to have more ambigu-

ity in the phrases used to describe the research. Cluster 44976 and 51600 did not have a clear

theme. Specific terms extracted from titles and abstracts of the documents (and the papers

themselves) in these RCs were only related generally, rather than in a specific way that is com-

mon to most RCs. Based on our comparisons of the results in Tables 8 and 9 (and looking at

many other RCs from both models), we have a higher level of trust in the actionable forecasts

for positive RY than for the forecasts made from negative RY. The data in Table 9 support our

initial suspicion that the clustering algorithm may be overestimating the number of small RCs

for negative RY. Thematic clarity may be a feature that we should consider as a filter in future

studies.

2018 forecasts (STS5 model)

Our final step is to provide actionable forecasts based on the STS5 model. The forecast year is

2018. There is no leakage of future information in the creation of these forecasts. Here we

focus a little more tightly on a discipline that focuses on Artificial Intelligence applications

(DC2 = 9). We will not go over the components of the score—their distribution is similar to

what was observed in Tables 8 and 9. Rather, we focus more on who was the research leader in

each research community.

The list of top 10 RCs shown in Table 10 forms a very interesting group. Each RC is very

well defined with a key phrase. Large, medium and small RCs are all represented. Top institu-

tions in Table 10 are based on activity (number of publications) rather than impact (citations

per paper). The most distinctive feature of this list is the large number of industry leaders (four

out of 10) and the hegemony of China and the United States, with the top institution in all but

Table 9. Top 10 forecasted STS5 RCs from the Computing Technology field (FY = 2014, TY = 2017, RY = -4, #papers in 2014> = 20).

STS5 Label #Papers Score Growth

6681 cloud radio access networks 126 2.65 48.7%
3602 D2D communication 377 2.64 14.0%
385 software defined networks 675 2.62 24.7%
7974 cellular content caching 75 2.61 67.5%
44976 (general computing) 80 2.60 -77.0%

4223 nature-inspired optimization 247 2.60 18.5%
61637 ontology mapping 34 2.56 -30.4%

3046 EM wave metamaterial absorbers 439 2.52 10.9%
24180 spectrum sharing 50 2.47 1.6%

51600 (general image processing) 23 2.46 -6.0%

https://doi.org/10.1371/journal.pone.0239177.t009
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one RC. Alphabet is the parent company of Google and is the leader in three of the top 10 RCs,

while Tsinghua University is the leader in two of the top 10.

Table 10 gives only a sampling of the features that can be used to describe STS5 RCs. Fig 4

shows an example of a characterization of topic #5495, which includes top phrases, phrases

that differentiate this topic from others, top categories, journals, institutions, countries,

authors, etc. It also shows the temporal history of the topic (document counts per year), a sam-

ple of recent papers that are central to the topic in terms of their citation characteristics, and a

few top cited historical papers. Finally, a variety of indicators are shown at the bottom right.

Characterizations such as these, along with a listing of the papers that comprise the topic, can

be used by analysts to understand the history and content of a topic and thus inform policy

recommendations and decisions. We look forward to scoring the accuracy of the extreme

growth forecast classifications, those in Table 10 along with many others, after data through

2021 are added to the STS5 model.

Flaws and future directions

The ultimate goal of this project is to create a regularly updated data-driven forecasting system

based on automatically generated RCs in all discipline areas. Community characteristics and

technology application maturity levels will be continuously measured and forecasted. Changes

in forecasts with an auditable method for identifying the source of the change will allow for

policy makers and planners to maintain an awareness of how new work is impacting previous

assumptions and decisions and will allow them to update judgments as new evidence comes

in. There is much work to be done to get to this desired state.

Overall, this study has been extremely helpful toward the accomplishment of this goal. It

has introduced a method to forecast which research communities in a highly granular model

of science will achieve extreme growth. Although Scopus data were used here, the method can

be applied to any comprehensive citation database. This study has also measured forecast accu-

racy of growth in scientific research using hundreds of thousands of events, a scale which has

never before been attempted, much less achieved. The overall results are both reasonable and

encouraging. Although the results for the overall models do not meet the FUSE criteria of a

CSI score of 25% in every field, they do meet the criteria in fields of particular importance to

national security. Gains in accuracy may be achievable with the addition of complementary

databases, improvements in the modeling approach, and the development of field specific

indicators.

Despite this progress, there are both conceptual and methodological assumptions to this

study that need to be viewed from a more critical perspective. From a conceptual perspective,

Table 10. Top 10 forecasted STS5 RCs (FY = 2018) from the Computing Technology field.

STS5 Label #P Score Top Institution and Country

5495 generative adversarial networks 964 3.37 Alphabet U.S.

27709 intelligent fault diagnosis 142 3.27 Xi’an Jaiotong Univ China

105 convolutional neural networks 4238 3.11 Tsinghua Univ China

3647 semantic image segmentation 1038 3.03 Univ CAS China

44644 deep computational models 58 3.00 Dalian Univ China

6403 image captioning 615 2.92 Microsoft U.S.

28965 hate speech detection 105 2.88 Poly Univ Valencia Spain

30977 ReLU networks 62 2.86 Alphabet U.S.

37537 few-shot learning 53 2.85 Alphabet U.S.

1005 word embedding 1831 2.79 Tsinghua Univ China

https://doi.org/10.1371/journal.pone.0239177.t010
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there is an underlying assumption that the research environment is predictable. Forecasts

assume predictability. In contrast, foresight and scenarios studies tend to be used when there

are many possibilities with extremely low probabilities. But instead of arguing whether specific

areas of research are predictable or not, we suggest that a high CSI score for a discipline is

strong evidence of historical predictability. Low CSI scores may help to identify areas that have

low predictability and might best be addressed using foresight or scenario analysis. Overall, the

predictability of growth of any specific RC is an assumption that must be looked at from a

Fig 4. Characterization of STS5 topic #5495.

https://doi.org/10.1371/journal.pone.0239177.g004
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critical perspective. Predictability in the past does not guarantee predictability in the future.

Nevertheless, large-scale studies of where predictability seems high (or low) can provide funda-

mental insights into this question.

Predictability also is at the basis for the choice of a three-year forecast window. Bibliometric

models are not designed for very short-term forecasts (less than two years out) because of the

inherent time delay of publications. Nor do we think they will be as effective for long term

forecasts (more than five years) because the underlying structure of research appears to change

more rapidly than one would expect (a phenomenon we are looking at separately). The current

sweet spot is in the three- to four-year forecast window. Expanding this model to four years is

justified when we can reach the goal of a 25% CSI score. Expanding the applicability of these

models beyond four years requires far more understanding about how research communities

actually evolve.

The methodological weaknesses of this study can be summarized around issues of data,

algorithms, indicators, and application. Forecasts can only be made with the data available,

and any biases in the data (e.g., by language, nationality, completeness) naturally bias the

resulting forecasts. From a database perspective, we have used one of the largest curated biblio-

graphic databases. This helped to simplify a great deal of the pre-processing work that is some-

times needed to create a truly global model of research from the scientific and technical

literature. But every database has gaps which need to be kept in mind when creating and evalu-

ating forecasts. For example, an analysis of the field of Artificial Intelligence might be best

served by including Chinese language technical literature. In Scopus, China is publishing

roughly the same number of articles in this field as is the United States, yet the papers from

China are cited much less than those from the United States. Might this citation gap be due to

the possibility that the English-based technical literature is highly represented in Scopus while

Chinese-based technical literature is not?

Clustering algorithms have advanced a great deal over the past two decades, and while they

tend to enable larger and more comprehensive calculations as they evolve, their effect on the

accuracy of RCs is hard to quantify. One methodological weakness, therefore, is validating that

these RCs are, in fact, being identified more accurately as algorithms advance. We have pub-

lished extensively on accuracy [cf. 18, 30, 31], yet those studies have almost exclusively investi-

gated relatedness measures rather than algorithmic effects.

Perhaps the biggest flaw in this study is in the indicators that are available for use. The most

obvious indicators worked well—those based on publication trends are the most effective at

predicting exceptional growth three years in advance. Yet indicators that draw more from an

understanding of the life cycle of a research community are noticeably missing. Prior literature

has focused on emergence and growth. But when an RC does not keep growing it means that

more researchers are leaving the community than entering it. Why do researchers stop enter-

ing a community at their previous rates? Why do they leave? These are key phenomena that

we know little about and have no indicators by which to predict when a research community

is transitioning into maturity or even decline. Specifically, we haven’t looked at the age of new

entrants or the age of the researchers that stopped publishing in a research community. Signals

that might anticipate mass entry or mass exit of researchers into a research community are

noticeably missing and are a promising area for future research.

There is also the possibility of bias from an ex post facto perspective. We do not believe the

ex post facto perspective has influenced our choice of clustering algorithms, which were

selected to improve accuracy [18]. An ex post facto perspective has influenced our choice of

indicators (i.e. they “worked” in the DC5 model). But choices in indicators, or in the combina-

tions of indicators, were not based on identifying actual cases of exceptional growth and then
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“working backwards” to determine what would have identified them. Nor have we tried to

optimize the CSI scores.

Finally, we need a better understanding of what makes a forecast actionable. Our working

hypothesis is that forecasts based on positive relative years (forecasts made at or after the

model year) are the most actionable because they don’t include future information, and that

forecasts based on negative RY are circumstantial but may not be actionable due to the leakage

of future information. We’ve included the CSI scores of circumstantial forecasts to show CSI

trends that are useful for understanding how the models work over time. One can expect, with

better clustering algorithms and document assignment algorithms, that the newer STS5 model

will outperform the older DC5 model. But we simply don’t know this to be true with the evi-

dence presented to date.

One potential experiment that could address this issue would be to create a new model

using data through year n (e.g., 2013) and then to add annual data sequentially. However, the

annual additions would be done in an algorithmically different way than before. The Leiden

algorithm has the capability of assigning cluster numbers to existing nodes—to seed the new

calculation with results from a previous calculation. Thus, one could create a model through

2013 and then create a separate model through 2014 while assigning the existing papers to

their 2013 cluster numbers as a starting point, and so on for subsequent years. Done this way,

each year starting with 2013 could be used to provide an actionable forecast because of the way

the model would be built sequentially and without the inclusion of future information. Until

this experiment is completed, however, or until we add three more years of data to the existing

STS5 model, our assessments are incomplete despite the promise inherent in the circumstan-

tial forecasts.

In summary, this study represents a starting point. Despite known flaws, the results to date

are promising. Indicators have been identified that do a reasonable job of forecasting future

growth, and a composite indicator using four indicators has been developed. The forecast

events from the 2014 DC5 model shown in Table 6 are strong evidence that the approach

works well in those fields in which it does best. The true analytic value of this approach is at

the granular (DC5 or STS5) level where research communities are good representations of sci-

entific topics in the Kuhnian sense. Our hope is that future work will lead to the development

of a production-level forecasting system based on models with increased accuracy and robust-

ness. Such a system will generate forecasts that will influence decision-making in a positive

way.
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